Toujours plus de CO2 dans l’atmosphère // More and more carbone dioxide in the atmosphere

Un article publié dans la rubrique Environnement du site web de la chaîne de radio France Info aborde un sujet que j’ai développé à maintes reprises sur ce blog en essayant d’alerter les visiteurs sur la gravité de la situation.

L’article de France Info explique que la concentration de dioxyde de carbone dans l’atmosphère terrestre a atteint un pic en février. En effet, on a enregistré 411,66 parties par million (ppm) de CO2 sur le Mauna Loa à Hawaii, là où a été élaborée la Courbe de Keeling à laquelle je fais si souvent référence dans mes notes et au cours de mes conférences sur la fonte des glaciers. Cette courbe doit son nom à Charles Keeling, climatologue américain qui a commencé à mesurer le CO2 atmosphérique en 1958 à Big Sur en Californie avant d’installer un spectroscope infrarouge à l’observatoire du Mauna Loa à Hawaii  La courbe est publiée sur le site de la Scripps Institution of Oceanography :

https://scripps.ucsd.edu/programs/keelingcurve/

En février 2019, la station avait mesuré une concentration moyenne de 411,66 ppm, un taux mensuel jamais atteint. Le record vient à nouveau d’être battu le 9 mars 2019 avec 413,45 ppm. Du jamais vu, et surtout pas au mois de mars.

Cette succession de nouveaux records était prévisible. En effet, les émissions de CO2 étaient déjà en hausse de 2,7% en 2018. Ce qui inquiète les scientifiques avec ce nouveau record, c’est sa soudaineté. En général, les précédents maximums étaient dépassés en mars ou en avril, pas en février. Le record de 2018, à 411,31 ppm, avait été battu en mai. En principe, on observe le pic de CO2 au début du printemps, puis la concentration baisse quand les forêts vastes d’Amérique du Nord et d’Asie commencent à verdir.

Les climatologues américains de la Scripps Institution expliquent que « la récente hausse n’est pas surprenante face à des émissions sans précédent provenant des combustibles fossiles. »

Ce nouveau record va dans le sens d’une accélération plus générale annoncée. Selon le Met Office britannique, « la moyenne annuelle de concentration du CO2 sur le Mauna Loa sera plus haute de 2,75 ppm (± 0,58) en 2019 par rapport à 2018, selon nos prévisions. » Pour rappel, la teneur en CO2 était de 405,5 ppm en 2017.

De toute évidence, comme l’a démontré la dernière COP 24 en Pologne, tous les gouvernements s’en fichent.

————————————————-

An article published in the Environment section of the France Info radio website tackles a topic I have repeatedly developed on this blog, trying to alert visitors to the seriousness of the situation.
The France Info article explains that the concentration of carbon dioxide in the Earth’s atmosphere reached a peak in February. In fact, scientists recorded 411.66 parts per million (ppm) of CO2 on Mauna Loa in Hawaii, where the Keeling Curve was developed. Ioften refer to this curve in my posts and during my conferencess on the melting of glaciers. This curve owes its name to Charles Keeling, an American climatologist who began measuring atmospheric CO2 in 1958 in Big Sur, California, before installing an infrared spectroscope at the Mauna Loa Observatory in Hawaii. The curve is published on the site of Scripps Institution of Oceanography:

https://scripps.ucsd.edu/programs/keelingcurve/

In February 2019, the station measured an average concentration of 411.66 ppm, a monthly rate never reached before. The record was again beaten on March 9th, 2019 with 413.45 ppm. This was never seen, especially in March.
This succession of new records was predictable. Indeed, CO2 emissions were already up 2.7% in 2018. What worries scientists with this new record is its suddenness. In general, the previous maximums were exceeded in March or April, not in February. The record of 2018, at 411.31 ppm, was beaten in May. Usually, the CO2 peak is observed in the early spring, then the concentration drops as the vast forests of North America and Asia begin to green.
Scripps Institution’s climatologists explain that « the recent rise is not surprising in the face of unprecedented emissions of fossil fuels. »
This new record goes in the direction of a more general acceleration that has been announced. According to the British Met Office, « the average annual concentration of CO2 on Mauna Loa will be higher by 2.75 ppm (± 0.58) in 2019 compared to 2018, according to our forecasts.” As a reminder, the CO2 rate was 405.5 ppm in 2017.
It seems quite clear, as the last COP 24 in Poland demonstrated, that the world’s governments don’t care a straw.

Vue de la Courbe de Keeling sur les six derniers mois

Piton de la Fournaise (Ile de la Réunion) : Le volcan inquiète l’Observatoire // OVPF worries about the volcano

Suite à la forte augmentation observée au cours des dernières heures, l’intensité du tremor éruptif reste très élevée, ce qui est à mettre en relation avec l’ouverture des deux nouvelles fissures les 5 et 7 mars dernier. Le débit de surface a lui aussi augmenté de manière significative avec une moyenne sur les dernières 24 heures se situant aux alentours de 20-25 mètres cubes par seconde. Ces augmentations de débit de surface ont favorisé une progression rapide des coulées. D’après les observations visuelles depuis la RN2 et les images de la webcam du Piton des Cascades, le front de coulée actif a pu être estimé à 650 – 700 mètres d’altitude le 9 mars 2019 à 8h. Le front de coulée a ainsi parcouru environ 1 km en 24heures et se situait ce matin entre 2,5 et 3 km de la RN 2.

Les stations de l’OVPF situées sur le pourtour de l’Enclos Fouqué ont détecté pour la journée du 8 mars des émissions de SO2 dans l’air 3 à 4 fois plus importantes que celles enregistrées au début de l’éruption.

Les concentrations en CO2 dans le sol en champ proche (secteur Gîte du Volcan) semblent chuter depuis le 9 mars au matin, ce qui indiquerait une accélération du transfert du magma entre le réservoir profond et la surface.

Aucune déformation significative de l’édifice volcanique n’a été enregistrée. .

Sur les dernières 36 heures, plus d’une centaine de séismes volcano-tectoniques superficiels (à moins de 2,5 km de profondeur) ont été enregistrés sous la zone sommitale, mais ce nombre est largement sous estimé du fait de la difficulté à les comptabiliser compte tenu de l’intensité du tremor.

A noter que cette forte sismicité sous la zone sommitale ne cesse d’augmenter depuis 48 heures avec souvent des mécanismes en compression à la source, qui pourraient correspondre à des effondrements du toit de la chambre magmatique superficielle due à sa vidange importante. Cette sismicité est suivie de près par l’OVPF ; en effet, en cas de propagation de cette sismicité vers la surface (ce qui n’est pas le cas actuellement), cela pourrait engendrer la formation d’un pit-crater, comme cela a déjà été observé par le passé au Piton de la Fournaise, par exemple en Décembre 2002.

L’OVPF conclut son derner bulletin en expliquant que, compte tenu de l’ensemble des paramètres développés ci-dessus, l’ouverture de nouvelles fissures éruptives au niveau du site éruptif actuel ou ailleurs, à l’intérieur ou à l’extérieur de l’Enclos, n’est pas exclue.

La situation doit donc être surveillée très attentivement.

Source : OVPF.

————————————————–

Following the strong increase observed during the last hours, the intensity of the eruptive tremor remains very high, which is related to the opening of the two new fissures on March 5th and 7th. The surface flow output has also increased significantly with an average of about 20-25 cubic metres per second over the last 24 hours. This increase of the surface flow output favoured a rapid progression of the flows. Based on visual observations from RN2 and images provided by the Piton des Cascades webcam, the active flow front was estimated at 650-700 metres a.s.l. on 9 March 2019 at 8 am. The flow front travelled about 1 km in 24 hours and was this morning between 2.5 and 3 km from the RN 2.
For the day of March 8th, OVPF stations located around the Enclos Fouqué have detected SO2 emissions in the air 3 to 4 times greater than those recorded at the beginning of the eruption.
CO2 concentrations in the near-field soil (Gîte du Volcan area) appear to have dropped since the morning of 9 March, indicating an acceleration of magma transfer between the deep reservoir and the surface.
No significant deformation of the volcanic edifice has been recorded. .
Over the past 36 hours, more than 100 shallow volcano-tectonic earthquakes (less than 2.5 km deep) have been recorded under the summit area, but this number is largely underestimated because of the intensity of the tremor.
It should be noted that this strong seismicity under the summit area has been increasing for 48 hours, often with mechanisms in compression at the source, which could correspond to a collapses of the roof of the shallow magma chamber due to a significant drainage. This seismicity is followed monitored by OVPF; indeed, in the event of a propagation of this seismicity towards the surface (which is not currently the case), this could lead to the formation of a pit-crater, as has already been observed in the past at Piton de la Furnace, for example in December 2002.
OVPF concludes its latest bulletin by explaining that, considering all the above-mentioned parameters, the opening of new eruptive fissures at the current eruptive site or elsewhere, inside or outside the Enclos, is not excluded.
The situation must therefore be monitored very carefully.
Source: OVPF.

La hausse significative du tremor montre que le Piton de la Fournaise n’a pas dit son dernier mot. Vigilance! (Source: OVPF)

L’éruption est visible sur quatre webcams ce soir!

Le CO2 du Kilauea (Hawaii) // Kilauea’s CO2 (Hawaii)

Avec la fin de l’éruption du Kilauea, les habitants de Big Island peuvent respirer plus facilement, sans être importunés par le vog, ce brouillard volcanique provoqué par les émissions de dioxyde de soufre (SO2).
Malgré tout, en raison de l’activité volcanique récente, on perçoit encore parfois des odeurs de soufre sur l’île, mais c’est le gaz carbonique, ou dioxyde de carbone (CO2) qui intéresse à présent les géochimistes du HVO.
Le CO2 est émis en abondance au cours d’une éruption, en même temps que les gaz sulfureux, la vapeur d’eau et des quantités infimes d’autres gaz tels que le chlorure d’hydrogène, le fluorure d’hydrogène et l’hélium. Ce qui est intéressant avec le CO2, c’est qu’il peut donner des indications précieuses sur la profondeur à laquelle se trouve le magma.
Pour expliquer comment se comporte le CO2, les géologues font souvent une comparaison avec une bouteille de boisson gazeuse dans laquelle un seul gaz (le CO2) est dissous. Ce CO2 reste dissous tant que la bouteille est fermée car elle crée suffisamment de pression pour maintenir le gaz dans le liquide. Dès que la bouteille est ouverte, la pression diminue et le CO2 crée des bulles qui s’échappent dans l’atmosphère.
Contrairement à l’eau gazeuse, le magma contient de nombreux gaz différents les uns des autres et qui ne se comportent pas tous de la même manière. Avec la boisson gazeuse, une diminution de la pression suffit à libérer tout le gaz, mais avec le magma, des degrés de diminution de pression différents entraînent la libération de gaz différents.
Dans la mesure où la pression exercée sur le magma est créée par le poids de la terre qui se trouve au-dessus, plus le magma est profond, plus il est soumis à une pression élevée. À mesure que le magma s’élève à des profondeurs moindres, il est soumis à une moindre pression et différents gaz peuvent alors s’échapper en cours de route.
Lorsque le magma est peu profond ou atteint la surface, la pression exercée est assez faible de sorte que le SO2 peut facilement s’échapper, ce qui explique la formation du vog mentionné précédemment. Lorsque le magma est plus profond, comme c’est le cas actuellement sur le Kilauea, la pression est suffisante pour maintenir le SO2 dissous. Cependant, comme le CO2 est moins soluble que le SO2 dans le magma, il peut s’échapper même lorsque le magma est profond et que la pression est élevée. C’est pourquoi, même sans coulées de lave à la surface, le Kilauea émet actuellement du CO2. Il est important de noter que ces quantités sont très faibles à côté des émissions anthropiques. C’est ce CO2 qui, associé aux faibles quantités de gaz sulfureux encore émises, peut fournir des indications sur la profondeur du magma sous le Kilauea.
Comme le CO2 peut s’échapper même lorsque le magma est profond alors que le SO2 reste dissous jusqu’à ce qu’il s’approche de la surface, le magma plus profond produit un rapport CO2 / SO2 plus élevé.. C’est ce rapport CO2 / SO2 que les géochimistes utilisent généralement comme indication de la profondeur du magma.
Le magma profond peut commencer avec un rapport CO2 / SO2 élevé, mais ce rapport va diminuer eu fur et à mesure que le magma va se déplacer vers la surface et que de plus en plus de SO2 commencera à s’échapper. En conséquence, si les scientifiques sont capables de mesurer le rapport CO2 / SO2 du Kilauea au fil du temps, toute variation dans ce rapport peut leur indiquer si le magma est en train de remonter dans le système d’alimentation du volcan.
La mesure précise du rapport CO2 / SO2 dans le panache de gaz volcanique n’est pas chose aisée à cause de la quantité importante et variable de CO2 qui existe déjà dans l’atmosphère. Sur le Kilauea, la situation est encore plus complexe à cause des événements d’effondrement qui ont remodelé la caldeira sommitale et endommagé les routes et autres moyens d’accès aux zones de dégazage.
Tant que durera la phase d’inactivité du Kilauea, les géochimistes du HVO exploreront de nouvelles techniques de mesure du rapport CO2 / SO2, notamment grâce à l’installation de capteurs multi-gaz au sommet du volcan et à l’utilisation de capteurs de gaz montés sur des drones. Le but de cette collecte de données est de mieux comprendre les changements susceptibles d’indiquer une reprise d’activité du volcan.
Source: USGS / HVO.

———————————————————

With the end of the Kilauea eruption, Big Island residents can breathe more freely and are no loger disturbed by the vog, or volcanic smog, produced by voluminous sulphur dioxide (SO2) emissions.

Because of the recent volcanic activity, sulphur smells are still sometimes detected around the island, but carbon dioxide (CO2) is the other gas that is interesting HVO geochemists these days.

CO2 is a significant volcanic emission, along with sulphur gases, water vapour, and trace amounts of other gases, such as hydrogen chloride, hydrogen fluoride, and helium. What is interesting about CO2 is that it can give clues about the depth of magma.

To explain the behaviour of CO2, geologits often make a comparison with a bottle of soda, which has only one gas (CO2) dissolved in it. This CO2 stays dissolved as long as the bottle is sealed, because the bottle creates enough pressure to keep the CO2 in the liquid. As soon as the bottle is opened, pressure on the liquid decreases and the CO2 creates bubbles that escape to the atmosphere.

Unlike soda, magma has many different gases dissolved in it, and they do not all behave the same way. With soda, one pressure decrease is enough to release all the gas from it, but with magma, different degrees of pressure decrease result in the release of different gases.

Since pressure on magma is created by the weight of the earth above it, the deeper magma is, the higher the pressure it feels. As magma rises to shallower depths, it feels lesser amounts of pressure and different gases are able to escape along the way.

When magma is shallow or actually reaches the surface, the pressure on it is quite low, so SO2 can easily escape, leading to the above menyioned vog. When magma is deeper, as is the case now, there is enough pressure to keep the SO2 dissolved. However, CO2 is less soluble than SO2 in magma and can escape even when magma is deep and the pressure is high. This is why, even with no lava erupting at the surface, Kilauea is currently producing CO2. It is important to note that these amounts are very small compared to anthropogenic CO2 emissions. It is this CO2, in conjunction with the small amounts of sulphur gases still being emitted, that can provide clues to how deep Kilauea’s magma is.

Because CO2 can escape even when magma is deep but SO2 mostly stays dissolved until the magma is shallow, deeper magma produces a high ratio of CO2 to SO2. Geochemists typically use this CO2/SO2 ratio as an indication of magma depth.

Deep magma may begin with a high CO2/SO2 ratio, but that ratio will drop as magma moves to shallower depths and more SO2 begins to escape. Therefore, if scientists can measure Kilauea’s CO2/SO2 ratio over time, any changes in it can tell them whether magma is once again rising through the system.

The difficulty lies with the measurement of the CO2/SO2 ratio. Accurately measuring the CO2/SO2 ratio in volcanic gas is tricky because of the large and variable amount of CO2 that already exists in the atmosphere. At Kilauea, the situation is further complicated by collapse events that rearranged the summit caldera and damaged roads and other means of access to degassing areas.

As the current phase of inactivity at Kilauea continues, gas geochemistry scientists at HVO will explore new techniques for measuring the CO2/SO2 ratio, including the installation of multi-gas sensors at the volcano’s summit and the use of gas sensors mounted on unmanned aerial systems (UAS). The goal in collecting such gas data is to document changes that could eventually indicate an increased likelihood of renewed activity at Kilauea.

Source: USGS / HVO.

Pendant de longs mois, le vog a perturbé la vie des Hawaiiens.

Différents gaz sont émis pendant l’éruption du Kilauea…

(Photos: C. Grandpey)

Les détecteurs multi-gaz font partie des instruments utilisés sur les volcans.

Piton de la Fournaise (Ile de la Réunion / Reunion Island)

Dans son dernier bulletin du 13 février 2019, l’OVPF indique que depuis la fin du mois de janvier 2019, on observe une inflation de la base et du sommet de l’édifice du Piton de la Fournaise. Cela signifie que l’on assiste à une pressurisation du réservoir magmatique superficiel. Cette reprise de l’inflation s’accompagne d’une augmentation des concentrations en CO2 dans le sol en champ lointain (Plaine des Cafres et Plaine des Palmistes). Les concentrations en CO2 en champ proche dans le secteur du Gîte du Volcan sont également en augmentation depuis décembre 2018. Ces concentrations en CO2 correspondent également à une remontée profonde de magma vers le réservoir superficiel.

S’agissant de la sismicité, depuis le 1er février 2019, 19 séismes volcano-tectoniques superficiels sont enregistrés sous le sommet, ainsi que 3 séismes profonds sous le flanc est.

J’aime beaucoup la conclusion du bulletin de l’OVPF : « Ce processus de recharge du réservoir superficiel peut durer plusieurs jours à plusieurs semaines avant que le toit du réservoir se fragilise et se rompe, donnant ainsi lieu à une injection de magma vers la surface et à une éruption, et peut également s’arrêter sans donner lieu à brève échéance à une éruption. » Autrement dit, tout est possible !

Cela confirme que la prévision éruptive est encore à un niveau très faible, même sur un volcan truffé d’instruments comme le Piton de la Fournaise. A la Réunion, ce n’est pas très grave car il y a de fortes chances pour que la prochaine éruption ait lieu dans l’Enclos, sans menace pour la population. Sur un volcan explosif de la Ceinture de Feu, la prévision prend une autre dimension….

————————————————–

In its latest update of February 13th, 2019, OVPF indicates that since the end of January 2019, there has been an inflation of the base and the summit of Piton de la Fournaise. This means that there is a pressurization of the shallow magma reservoir. This new inflation is accompanied by an increase in CO2 concentrations in the far-field soil (Plaine des Cafres and Plaine des Palmistes). Near-field CO2 concentrations in the Gîte du Volcan area have also been increasing since December 2018. These CO2 concentrations also correspond to a deep rise of magma towards the shallow reservoir.
As regards seismicity, since February 1st 2019, 19 shallow volcano-tectonic earthquakes have been recorded under the summit, as well as 3 deep earthquakes under the eastern flank.
I really like the conclusion of the OVPF bulletin: « This process of recharge of the shallow reservoir can last several days to several weeks before the roof of the reservoir breaks open, with an injection of magma towards the surface and the start of an eruption, and can also stop without an eruption in the short term. In other words, everything is possible!
This confirms that eruptive prediction is still at a very low level, even on a volcano equipped with plenty of instruments like Piton de la Fournaise. On Reunion Island, it is not a real problem because the next eruption is likely to take place in the Enclos, without any threat to the population. On an explosive volcano of the Ring of Fire, prediction takes another dimension ….

Crédit photo: Wikipedia.

Les températures en 2018 // Temperatures in 2018

Le « shutdown » qui paralyse les administrations américaines va forcément avoir un impact sur la diffusion des bilans de températures pour l’année 2018. Tout comme la Smithsonian Institution pour les informations volcaniques, la NASA et la NOAA sont impactées et on ne sait toujours pas quand aura lieu le retour à la normale. .

En attendant, le National Center for Atmospheric Prediction (NCEP) et le National Center for Atmospheric Research (NCAR) confirment la rumeur qui circulait, à savoir que 2018 a été  la quatrième année la plus chaude. Les deux agences donnent des résultants très proches, avec +0,40°C et +0,43°C au-dessus de la moyenne 1981-2010. L‘année 2018 n’a pas été tirée vers le haut par El Niño, ce qui explique qu’elle n’ait pas battu le record de 2016. L’Europe a connu sa 3ème année la plus chaude. Comme je l’indiquais précédemment, 2018 arrive en tête en France.

La NASA, la NOAA, le Berkeley Earth et le Met Office, qui utilisent les relevés au sol et les températures de surface de la mer devraient pointer 2018 à la 4ème place également, comme vient de le faire la JMA au Japon.  Le NCEP et le NCAR sont également touchés par le shutdown américain et ne publient plus rien depuis le 23 décembre 2018. En conséquence, le bilan présenté ici concerne la période qui va du 1er janvier au 23 décembre 2018. La fin d’année n’aurait évidemment rien changé au classement final puisque 2018 devance 2005 de 0,05°C, ce qui ne se perd par en une semaine. On notera que ces 4 dernières années sont les plus chaudes de l’archive NCEP-NCAR, qui remonte à 1948.

Sur la période 1948-2018, le rythme du réchauffement est de 0,13°C par décennie, d’après le couple NCEP-NCAR. Sur les 30 dernières années, le rythme est passé à 0,23°C par décennie. Depuis 2008, la tendance est de 0,34°C par décennie.

Le European Center for Medium-Range Weather Forecast (ECMWF), centre européen pour les prévisions météorologiques à moyen terme, n’a pas été impacté par le shutdown et a publié un bilan complet. Le Centre place 2018 au 4ème rang, quasiment à la 3ème place, donc au niveau de 2015, mais derrière 2016, 2017.

Pour comparer les températures mondiales récentes au niveau préindustriel tel que défini dans le rapport spécial du GIEC sur le «Réchauffement de la planète de 1,5°C», il convient d’ajouter 0,63°C à ces valeurs. Ce qui donnerait +1,03°C pour NCEP-NCAR en 2018 et 1,06°C pour ECMWF.

En observant les données fournies par les différents centres météorologiques à travers le monde, il apparaît assez clairement que l’est du Pacifique n’a pas connu des anomalies positives propices à une température globale élevée. Avec des conditions La Niña en début d’année, 2018 aurait probablement été plutôt froide sans la forte concentration de CO2 qui avoisine désormais les 410 ppm (409,43 ppm le 11 janvier 2019), contre 280 ppm pour la période préindustrielle et 180 ppm pour les périodes glaciaires.

Pour l’Europe également, les quatre dernières années sont parmi les plus chaudes des archives ECMWF. 2018 se classe au 3e rang avec 1,16°C au-dessus de la moyenne 1981-2010. Des records de chaleur ont été battus dans de nombreux pays comme la France où 2018 a été l’année la plus chaude de l’histoire.

D’après les dernières prévisions du Met Office publiées fin décembre, la température mondiale devrait rester à un niveau élevé en 2019 et approcher le record de 2016 en raison du changement climatique et de l’effet du phénomène El Niño dans le Pacifique. Celui-ci étant prévu avec une faible intensité, le coup d’accélérateur lié à la variabilité naturelle serait nettement moins important qu’en 2016. L’arrivée d’El Niño est jugée très probable cet hiver même s’il tarde à se manifester.

Source : global-climat.

——————————————————–

The shutdown that paralyzes US administrations will inevitably have an impact on the release of temperature reports for the year 2018. Like the Smithsonian Institution for volcanic information, NASA and NOAA are impacted and we still do not know when the situation will get back to normal. .
Meanwhile, the National Center for Atmospheric Prediction (NCEP) and the National Center for Atmospheric Research (NCAR) confirm the rumour that 2018 was the fourth hottest year ever. The two agencies give very similar results, with + 0.40°C and + 0.43°C above the 1981-2010 average. The year 2018 was not influenced by El Niño, which explains why it did not break the 2016 record. Europe had its third hottest year. As I put it previously, 2018 comes first in France.
NASA, NOAA, Berkeley Earth and the Met Office, using ground surveys and sea surface temperatures, are expected to point to 2018 in 4th place as well, just like JMA has done in Japan. NCEP and NCAR are also affected by the US shutdown and have not published anything since December 23rd, 2018. Accordingly, the results presented here relate to the period from January 1st to December 23rd, 2018. The end of year would obviously not have changed anything in the final ranking since 2018 is ahead of 2005 by 0.05°C, which can’t be lost in a week. It should be noted that these last 4 years are the hottest of the NCEP-NCAR archive, which dates back to 1948.
Over the period 1948-2018, the rate of warming is 0.13°C per decade, according to NCEP-NCAR. Over the past 30 years, the pace has increased to 0.23°C per decade. Since 2008, the trend has been 0.34°C per decade.
The European Center for Medium-Range Weather Forecast (ECMWF) has not been impacted by the shutdown and has published a comprehensive review. The Center places 2018 in 4th place, almost in 3rd place at the level of 2015, but behind 2016 and 2017.
To compare recent global temperatures with the pre-industrial level as defined in the IPCC Special Report on « Global Warming of 1.5°C », 0.63°C should be added to these values. This would give an increase of 1.03°C for NCEP-NCAR in 2018 and 1.06°C for ECMWF.
When observing the data provided by the different meteorological agencies around the world, it is quite clear that the eastern Pacific has not experienced any positive anomalies that would lead to a high global temperature. With La Niña conditions at the beginning of the year, 2018 would probably have been rather cold without the high concentration of CO2 now approaching 410 ppm (409.43 ppm on January 11th, 2019), compared with 280 ppm for the pre-industrial period and 180 ppm for the ice ages.
For Europe too, the last four years are among the hottest of the ECMWF archives. 2018 ranks 3rd, with 1.16°C above the 1981-2010 average. Heat records have been broken in many countries such as France where 2018 was the hottest year in history.
According to the latest Met Office forecasts released in late December, global temperature is expected to remain high in 2019 and approach the 2016 record due to climate change and the effect of the El Niño phenomenon in the Pacific. As El Niño is planned with a weak intensity, the acceleration linked to the natural variability should be much less significant than in 2016. The arrival of El Niño is considered very likely this winter even if it is taking quite a long time to appear.
Source: global-climat.

Carte montrant les anomalies pour l’année 2018 (Source: Copernicus / ECMWF)

Evolution des températures annuelles dans le monde (Source : NCEP-NCAR)

2018 : Probablement la 4ème plus chaude année dans le monde et la plus chaude en France // Probably the 4th warmest in the world and the hottest in France

J’attends les données officielles publiées habituellement mi janvier par la NASA et la NOAA aux Etats-Unis. Ils se peut cette année qu’elles arrivent avec du retard à cause du « shutdown » qui affecte les administrations américaines. En attendant, on peut s’appuyer sur un communiqué du C3S (Copernicus Climate Change Service) qui confirme des prévisions émises fin 2018. Sur les cinq dernières années, la température moyenne a été 1,1°C au-dessus de la moyenne préindustrielle et 2018 a été la quatrième année la plus chaude enregistrée depuis le début de l’ère industrielle. En parallèle, la concentration de dioxyde de carbone (CO2) a poursuivi sa progression dans l’atmosphère, avec une hausse comprise entre 1,7 et 3,3 ppm (parties par million de molécules d’air) par an, comme le montre la courbe de Keeling ci-dessous. Il est bon de rappeler que le CO2 est le principal responsable de l’effet de serre puisqu’il contribue à piéger le rayonnement solaire et à faire augmenter la température de l’atmosphère. On remarquera que la courbe de Keeling atteint actuellement plus de 411 ppm, du jamais vu !

Le plus inquiétant, c’est que le réchauffement s’accélère. La température de l’air à la surface du globe a augmenté en moyenne de 0,1 °C tous les cinq à six ans depuis le milieu des années 1970 et les cinq dernières années ont été d’environ 1,1 °C supérieures aux températures de l’ère préindustrielle.

Il faut attendre les chiffres officiels, mais 2018 risque fort d’être en France l’une des années les plus chaudes, voire la plus chaude depuis 1900 et le début des relevés météorologues.

Les climatologues indiquaient au mois de novembre 2018 que jamais un tel écart à la moyenne n’avait été observé en métropole sur la période entre janvier et octobre. Avec 1,3°C de plus que la moyenne, cet écart dépasse nettement le +1,1°C de la période janvier-octobre 2014, qui détenait le record jusqu’à présent.

—————————————————-

I’m waiting for the official data usually released in mid January by NASA and NOAA in the United States. This year they may arrive late because of the shutdown affecting US administrations. In the meantime, we can rely on a C3S (Copernicus Climate Change Service) press release confirming forecasts issued at the end of 2018. Over the last five years, the average temperature has been 1.1°C above the pre-industrial average and 2018 was the fourth warmest year since the beginning of the industrial era. In parallel, the concentration of carbon dioxide (CO2) continued to increase in the atmosphere, with an increase ranging between 1.7 and 3.3 ppm (parts per million of air molecules) per year, as shown by the Keeling Curve below. It is worth remembering that CO2 is one of the main greenhouse gases as it helps to trap solar radiation and increase the temperature of the atmosphere.
Most disturbing is that global warming is accelerating. Global air temperature has risen by an average of 0.1°C every five to six years since the mid-1970s, and the last five years have been about 1.1°C above temperatures of the pre-industrial era. One can notice that the Keeling curve lies currently above 411 ppm, a level never observed before!

We’ll have to wait for the official figures, but 2018 is likely to be in France one of the hottest years, even the hottest since 1900 and the beginning of meteorological surveys.
Climatologists indicated in November 2018 that such a deviation from the average had never been observed in mainland France between January and October. At 1.3°C above average, this difference clearly exceeded 1.1°C for the January-October 2014 period, which held the record so far.

Niveau de concentration de CO2 dans l’atmosphère (Source: Scripps Institution)

Fonte du permafrost et son effet sur le budget carbone // Permafrost melting and its effect on the carbon budget

Une nouvelle étude publiée dans Nature Geoscience  a évalué l’impact de la fonte du permafrost sur les budgets d’émission de CO2 alors que le monde semble se rapprocher plus vite que prévu du dépassement des objectifs de l’Accord de Paris sur le climat.

Le pergélisol, ou permafrost, occupe une grande partie du Groenland, de l’Alaska, du Canada et de la Russie. Au total, il couvre un cinquième des terres émergées de la planète. Le permafrost contient du carbone qui s’est accumulé dans le sol pendant des dizaines, voire des centaines de milliers d’années. Jusqu’à présent, le sol gelé en permanence avait retenu ce carbone qui représente trois à sept fois la quantité de carbone retenue dans les forêts tropicales. Le problème à l’heure actuelle, c’est que la couche supérieure du pergélisol dégèle périodiquement en été, avec une accélération du phénomène liée à l’augmentation des températures.

La dernière étude montre comment le réchauffement climatique, en favorisant le dégagement de carbone du pergélisol, diminue  la quantité de CO2 que l’humanité peut se permettre d’émettre. Bien que le rapport le plus récent du GIEC ait reconnu que le pergélisol se réchauffait, les modèles climatiques n’ont pas pris en compte ces émissions lors des projections climatiques.

L’intérêt de la nouvelle étude est d’affirmer que le risque sera encore plus important si les objectifs d’émissions sont dépassés, même ponctuellement. L’Accord de Paris reconnaît explicitement une trajectoire de dépassement, culminant d’abord sous les 2°C, et avec des efforts par la suite pour revenir à 1,5°C. Le problème avec cette stratégie, c’est que, pendant la période de dépassement, la hausse des températures provoquera un dégel du pergélisol. Cela entraînera la libération d’un surplus de carbone qui devra être éliminé de l’atmosphère pour que la température mondiale diminue.

Les budgets d’émission sont définis comme la quantité cumulée d’émissions anthropiques de CO2 compatibles avec une cible de changement de température globale, en l’occurrence 1,5 et 2°C. Inclure les émissions du dioxyde de carbone (CO2) et de méthane (CH4) sur les budgets d’émission par dégel du pergélisol change la donne.

Il est difficile pour les scientifiques de déterminer les proportions relatives des émissions de dioxyde de carbone et de méthane qui pourraient résulter du dégel du pergélisol à grande échelle. La contribution spécifique des émissions de CH4 représente 5 à 35% de l’effet total du pergélisol en fonction de la température cible et du parcours pour atteindre l’objectif. Dans les scénarios de dépassement, le CH4 joue un rôle moins important, car la cible est atteinte plus tard et le CH4 est un gaz à effet de serre à durée de vie relativement courte.

Le rythme actuel d’émissions est de 10 GtC par an ou 40 GtC02. Une libération de 150 GtCO2 due au permafrost reviendrait à réduire le budget de 4 années. Le pergélisol dégèle déjà à certains endroits et si le problème se propage, les scientifiques craignent que le réchauffement climatique ne s’emballe, davantage de dégel favorisant encore plus de hausse des températures…

Il y a aussi de grandes incertitudes quand à l’effet à long terme du permafrost, c’est à dire pour les siècles à venir. Au final, le réchauffement de la planète dû au dégel du pergélisol dépendra de la quantité de carbone libérée, de sa rapidité et de sa forme sous forme de CO2 ou de méthane. L’impact pourrait être beaucoup plus important après 2100 en fonction des scénarios d’émissions.

Source : Nature Geoscience.

———————————————–

A new study published in Nature Geoscience has assessed the impact of permafrost melting on CO2 emission budgets. The world seems to be moving faster than expected to exceed the objectives of the Paris Agreement on Climate Change.
Permafrost covers a large part of Greenland, Alaska, Canada and Russia. In total, it spreads over one-fifth of the earth’s land surface. The permafrost contains carbon that has accumulated in the soil for tens or even hundreds of thousands of years. So far, the permanently frozen ground has avoided the release of this carbon which is three to seven times the amount of carbon retained in tropical forests. The problem at present is that the upper permafrost layer thaws periodically in summer, with an acceleration of the phenomenon related to the increase in temperatures.
The latest study shows how global warming, by promoting the release of carbon from the permafrost, reduces the amount of CO2 that humans can afford to emit. Although the most recent IPCC report acknowledged that permafrost was melting, its climate models did not take these emissions into account in climate projections.
The interest of the new study is to show that the risk will be even greater if the emission targets are exceeded, even punctually. The Paris Agreement explicitly admitted an excess path, culminating first below 2°C and then continuing efforts to return to 1.5°C. The problem with this strategy is that, during the exceedance period, rising temperatures will cause the thawing of permafrost carbon. This will result in the release of a surplus of carbon that will have to be removed from the atmosphere in order to reduce the global temperature.
Emission budgets are defined as the cumulative amount of anthropogenic CO2 emissions that are compatible with an overall temperature change target of 1.5 and 2°C. Including emissions of carbon dioxide (CO2) and methane (CH4) caused by the thawing of permafrost in emission budgets is a game changer.
It is difficult for scientists to determine the relative proportions of carbon dioxide and methane emissions that could result from large-scale permafrost thaw. The specific contribution of CH4 emissions accounts for 5 to 35% of the total effect of permafrost depending on the target temperature and route to achieve the goal. In exceedance scenarios, CH4 plays a less important role because the target is reached later and CH4 is a relatively short-lived greenhouse gas.
The current rate of emissions is 10 GtC per year, or 40 GtCO2. A release of 150 GtCO2 due to permafrost would reduce the budget by 4 years. Permafrost is already thawing in some places and if the problem is spreading, scientists are worried that global warming will get worse, with more thaw to further increase temperatures …
There is also a great uncertainty about the long-term effect of permafrost, ie for centuries to come. This is because in the end, global warming due to permafrost thaw will depend on the amount of carbon released, its speed and its form in the form of CO2 or methane. The impact could be much larger after 2100 depending on the emissions scenarios.
Source: Nature Geoscience.

Carte montrant l’étendue du permafrost dans l’Arctique

(Source: National Snow and Ice data Center)

 

J’ai attiré l’attention sur les conséquences de la fonte du permafrost dans un chapitre de mon dernier livre « Glaciers en péril » que l’on peut se procurer en me contactant directement par mail: grandpeyc@club-internet.fr