Volcanisme et tectonique sur l’Etna // Volcanism and tectonics on Mt Etna

Une étude intitulée “Time and space scattered volcanism of Mt. Etna driven by strike-slip tectonics” publiée le 20 août 2019 dans les Scientific Reports nous explique l’ascension du magma à l’intérieur de l’Etna.

Le travail, effectué par des scientifiques de l’INGV et de l’Institut National d’Océanographie et de Géophysique Expérimentale (OGS) a permis de déterminer les conditions qui permettent au magma de remonter vers la surface.
L’Etna se trouve dans une zone de failles transformantes. Grâce aux données sismiques, gravimétriques et magnétiques les chercheurs ont pu obtenir des images permettant de »voir » les secteurs où se situent les failles et comment elles sont organisées. Il y a au moins 500 000 ans, l’activité tectonique dans une vaste zone de failles de la partie sud du volcan (entre Acireale et les environs d’Adrano) a entraîné la formation de zones « d’ouverture »de la croûte terrestre qui ont été les voies préférentielles choisies par le magma pour sortir par des fissures éruptives disséminées le long de la ligne de faille. Ces fissures, identifiées entre Aci Trezza et Adrano, ont caractérisé les premières phases d’activité de l’Etna.
La déformation continue le long de la même zone de faille et même plus au nord, ainsi que leur interaction mutuelle, « ont entraîné la migration des zones d’éruption du magma et la fermeture soudaine de conduits éruptifs précédemment actifs ». C’est ce qui explique le processus de migration du volcanisme du versant sud (actif d’au moins 500 000 à environ 200 000 ans) vers la région de la Valle del Bove (entre 100 000 et 70 000 ans) et vers les centres éruptifs actuels (d’il y a 60 000 ans à aujourd’hui). La déformation induite par les failles sur le substrat sur lequel repose le volcan a également influencé le glissement du flanc E de l’Etna, qui se caractérise par une forte sismicité, comme en témoigne le séisme de décembre 2018.

Vous trouverez l’intégralité de l’étude (en anglais ) à cette adresse :

 https://www.nature.com/articles/s41598-019-48550-1

————————————————-

 A study entitled « Time and space scattered volcanism of Mt. Etna driven by strike-slip tectonics » published August 20th, 2019 in the Scientific Reports explains the ascent of magma inside Mt Etna.
The work, carried out by scientists from INGV and the National Institute of Oceanography and Experimental Geophysics (OGS) has determined the conditions that allow magma to reach the surface.
Mt Etna is in a zone of strike-slip faults. Thanks to the seismic, gravimetric and magnetic data, the researchers were able to obtain images allowing to « see » the areas where the faults are located and how they are organized. At least 500,000 years ago, tectonic activity in a large fault zone in the southern part of the volcano (between Acireale and the Adrano area) resulted in the formation of « open » areas in the Earth’s crust which were the preferred pathways chosen by magma to exit through eruptive fissures scattered along the fault line. These fissures, identified between Aci Trezza and Adrano, characterized the first phases of activity of Mt Etna.
The continuous deformation along the same fault zone and even further north, as well as their mutual interaction, « have resulted in the migration of magma eruptive zones and the sudden closure of previously active eruptive ducts ». This accounts for the migration process of the southern slope volcanism (active from at least 500 000 to about 200 000 years ago) to the Valle del Bove region (between 100 000 and 70 000 years) and to the current eruptive centres (from 60,000 years ago to today). The deformation induced by the faults on the substrate on which the volcano rests has also influenced the sliding of the eastern flank of Mt Etna, which is characterized by a high seismicity, as evidenced by the earthquake of December 2018.
You will find the entire study at:
https://www.nature.com/articles/s41598-019-48550-1

Schémas illustrant l’évolution du volcanisme de l’Etna dans l’espace et dans le temps, en relation avec les systèmes de failles (Source : Scientific Reports)

Chaleur, sécheresse et manque d’eau : ATTENTION DANGER !

On parle beaucoup de l’Amazonie en ce moment où des feux de forêts gigantesques envoient du CO2 dans l’atmosphère et contribuent à accentuer encore davantage le réchauffement climatique. La hausse des températures est de plus en plus sensible en France, avec des épisodes de canicule à répétition et le mercure qui oscille souvent entre 30 et 35°C sur de longues périodes.

La conséquence de cette situation sur les réserves en eau commence à se faire sentir de manière très aigue dans certaines régions. Si nos gouvernants continuent à pratiquer la politique de l’autruche et à ne pas prendre des mesures drastiques, notre pays va droit dans le mur. Selon le site de Propluvia, 85 départements français sont placés depuis le mercredi 21 août 2019 en restrictions d’eau plus ou moins sévères.

Le Limousin où j’habite connaît en ce moment de graves difficultés d’approvisionnement en eau. C’est un double problème pour les agriculteurs de notre région d’élevage Il n’y a plus assez d’eau pour le bétail et l’herbe ne pousse pas, ce qui oblige les éleveurs à entamer les réserves de foin prévues pour l’hiver.

La population est également impactée car l’eau potable se fait de plus en plus rare.  En Corrèze, certaines communes sont ravitaillées par camion-citerne et l’hypothèse d’une pénurie complète d’eau n’est pas écartée

En Creuse, le maire de Guéret explique qu’ « on a 100 jours de provision d’eau devant nous. » Le département n’a jamais connu une telle sécheresse. Aujourd’hui, la production des sources est quasiment inférieure de 30% à ce qu’elle était il y a quelques temps, si bien que désormais on a une production d’eau qui est inférieure à la consommation. La ville de Guéret va devoir remettre en service le plan d’eau qui servait à alimenter en eau la ville il y a une quinzaine d’années. Le maire explique qu’ « il y a environ 100 jours de provision d’eau. Après, il faudra trouver des solutions extérieures, avec des camions-citernes pour approvisionner la ville. »

Les prévisions météorologiques à court et moyen terme ne sont pas très bonnes. La pluie est annoncée, mais pas en quantité suffisante. Les sols sont très secs, donc des averses ne suffiront pas. S’il n’y a pas de précipitations abondantes en octobre et novembre, la Creuse et le Limousin dans son ensemble vont être dans une situation compliquée ; il faudra aller chercher de l’eau avec des camions-citernes.

Les conséquences de la sécheresse peuvent prendre d’autres aspects.  De nombreuses maisons  construites sur un sol argileux se sont fissurées et 3 000 communes françaises sont concernées. Les journaux donnent l’exemple de la commune de Crégy-lès-Meaux (Seine-et-Marne), où les fissures sont devenues une obsession. Certaines maisons sont devenues invendables en raison du montant des travaux à réaliser.

Le phénomène touche de plus en plus de communes françaises qui n’y étaient pas habituées. Jusqu’à présent, les fissures dans les murs des habitations étaient plus fréquentes dans la moitié sud du pays. Désormais, en particulier à la suite de la sécheresse de 2018, le problème s’étend vers la moitié nord.

Les propriétaires des maisons fissurées n’excluent pas d’avoir recours à la justice si leur demande d’indemnisation est rejetée. De son côté, la fédération française de l’assurance appelle ses experts à examiner les cas avec le plus de bienveillance possible.

Source : France Info.

Photo: C. Grandpey

Les zones de rift du Kilauea (Hawaii) // Kilauea’s rift zones (Hawaii)

De nombreuses éruptions, que ce soit sur le Mauna Loa ou le Kilauea, se produisent dans des zones de rift, autrement dit de fractures à la surface du sol. C’est ce qui s’est passé en 2018 lorsque la lave est sortie dans la zone de rift est (East Rift Zone – ERZ) du Kilauea.
Ce volcan possède deux zones de rift. La zone de rift Est est longue ; elle s’étire sur une cinquantaine de kilomètres sur terre et environ 70 km sous le niveau de la mer. La zone de rift Sud-Ouest, qui est historiquement moins active, mesure environ 35 km de long et seule une petite partie se prolonge dans l’océan.

Les zones de rift sont des zones de faiblesse du volcan qui se forment dès le début de sa formation, probablement en raison de l’étirement de l’édifice au fur et à mesure de sa mise en place. Les zones de rift permettent au magma de migrer plus facilement depuis la région de stockage au sommet. Ce sont les éruptions successives des zones de rift qui mettent en place les flancs du volcan.
Les jeunes volcans hawaïens ont généralement deux ou trois zones de rift, selon qu’ils s’édifient ou non contre un volcan à proximité immédiate. Dans le cas du Kilauea, il n’y a que deux zones de rift, car le volcan s’appuie contre le flanc sud-est du Mauna Loa. Les deux zones de rift du Kilauea sont presque parallèles aux zones de rift du Mauna Loa, ce qui confirme l’appui du Kilauea contre son voisin. Les zones de rift séparent le flanc nord – relativement stable – du flanc sud qui est  plus mobile. Lorsque le magma pénètre dans la zone de rift, le flanc nord reste stable contre le Mauna Loa au nord tandis que le flanc sud du Kilauea est poussé vers le sud pour recevoir le nouveau magma.
À mesure que la pression augmente dans le système d’alimentation magmatique au sommet, des intrusions se produisent souvent dans la zone de rift, comme ce fut le cas en 2018 dans la partie inférieure de la zone de rift est, la Lower East Rift Zone (LERZ). Les intrusions s’accompagnent généralement d’une hausse de la sismicité lorsque le magma fracture le sol le long de son trajet. Les séismes ont leurs hypocentres à des profondeurs d’environ 2 à 4 km sous la surface et les périodes de forte sismicité peuvent durer plusieurs heures, voire plusieurs jours, en fonction de la progression de l’intrusion. En plus de la sismicité, on observe aussi des déformations du sol lors d’une intrusion magmatique dans une zone de rift. L’inflation au-dessus de l’intrusion est mesurée par des tiltmètres et des stations GPS qui révèlent un mouvement à la fois vertical et latéral au fur et à mesure que les stations s’éloignent de la zone de rift en phase d’inflation.
Tandis que le magma s’élève des profondeurs et se fraye un chemin à travers la roche, la fracturation se traduit à la surface du sol par de nombreuses fissures parallèles au-dessus de l’intrusion. Ces fissures continuent de s’élargir sous la pression du magma. Si l’intrusion atteint la surface, une ou plusieurs fissures vont s’ouvrir et laisser échapper la lave. Des rideaux de fontaines de lave et/ou des phénomènes de spatter apparaissent lorsque la lave jaillit des fissures. Lorsqu’une fissure évolue, on passe généralement d’une éruption linéaire à une éruption à partir d’une ou plusieurs bouches. Cela peut entraîner une augmentation de la pression dans le système éruptif, avec intensification des fontaines de lave.
Les fontaines de lave sont provoquées par la formation rapide de bulles de gaz lorsque le magma monte à de faibles profondeurs ; elles éclatent ensuite et projettent la lave sous pression vers la surface. Les bulles se forment parce que la pression à faible profondeur est suffisamment basse pour permettre au gaz dissous dans le magma de s’échapper, un peu comme des bulles qui se forment lorsqu’on ouvre une bouteille d’eau gazeuse. En plus des coulées, les fontaines qui jaillissent des fissures peuvent entraîner des accumulations de projections près de la bouche éruptive, ce qui donne naissance à des formations linéaires ou coniques. Les spatter cones que l’on rencontre souvent le long des zones de rift du Kilauea se forment de préférence lorsque l’activité éruptive persiste.

Quand l’éruption se termine, le magma de l’intrusion qui n’a pas atteint la surface redescend à l’intérieur de la zone de rift où il peut demeurer en fusion pendant des décennies. C’est ainsi qu’une lave de composition chimique semblable à celle de l’éruption de 1955 a été émise au cours de la première semaine de l’éruption de 2018 dans la Lower East Rift Zone, ce qui laisse supposer que la lave sortie des premières fissures était un magma résiduel de l’éruption de 1955.

Cela montre que les zones de rift jouent un rôle essentiel dans l’acheminement du magma dans l’édifice volcanique, mais elles peuvent aussi stocker du magma susceptible d’alimenter de futures éruptions.
Source: USGS / HVO.

————————————————-

Many eruptions on both Mauna Loa and Kilauea occur alon rift zones . This is what happened in 2018 when lava eruped along Kilauea’s East Rift Zone.

Kilauea has two rift zones. The East Rift Zone is longer, with about 50 kilometres on land, plus approximately 70 kilometres below sea level. The Southwest Rift Zone, which is historically less active, is about 35 kilometres long with only a small portion underwater.

Rift zones are areas of weakness in the volcano which form early in its lifetime, likely due to spreading of the volcano as it settles. Volcanic rift zones provide the easiest pathways for magma to travel underground from the summit storage region, with successive eruptions from the rift zones building up the volcano’s flanks.

The youngest Hawaiian volcanoes typically have two or three rift zones depending on whether they are built up against a neighbouring volcano. In the case of Kilauea, there are only two rift zones because the volcano is buttressed against the southeastern slope of Mauna Loa. Kilauea’s two rift zones are nearly parallel to Mauna Loa’s rift zones reflecting this buttressing and the rift zones separate the relatively stable northern flank from the more mobile southern flank of the volcano. When magma intrudes into the rift, the northern flank remains stable against Mauna Loa to the north, and Kilauea’s southern flank is forced southward to accommodate the additional magma.

As pressure builds within the summit magma plumbing system, rift zone intrusions, like the 2018 intrusion into the lower East Rift Zone (LERZ), can occur. Intrusions are typically accompanied by increasing numbers of earthquakes as the magma fractures the ground along its path. The earthquakes are concentrated at depths of about 2 to 4 kilometres below the ground surface, and periods of increased seismicity can last several hours to days as the intrusion progresses. In addition to seismicity, ground deformation also occurs during a rift zone intrusion. Inflation above the intrusion is measured by tilt and GPS stations showing upward and outward motion as the stations move away from the swelling rift zone.

As the magma ascends and forces its way through the rock, fracturing is mirrored on the ground surface with many parallel cracks above the intrusion. These cracks continue to widen as the rift is forced open. If the intrusion reaches the surface, one or more fissures will open and erupt lava. Long curtains of lava fountains or spatter form as the lava erupts through cracks in the ground. As a fissure evolves, it typically transitions from erupting along a line to focusing at a single or several vents. This in turn can cause increased pressurization within the erupting system resulting in higher lava fountains.

Lava fountains are driven by the rapid formation of gas bubbles as magma rises to shallow depths, which then burst to create the pressurized lava at the surface. The bubbles form because pressure at shallow depths is low enough for the gas dissolved within the magma to escape, like bubbles forming when you open a carbonated drink. Beside lava flows, fissure fountains can produce spatter build-up adjacent to the vent in linear or conical formations. Spatter cones which are common along Kilauea’s rift zones, are likely to build when eruptive activity persists.

When an eruption ends, the intrusion’s un-erupted magma drains back into the rift zone where it can remain molten for decades. In fact, lava with a chemical composition similar to the 1955 eruption was produced during the first week of the 2018 LERZ eruption, suggesting that the early fissures were supplied by stored magma. This illustrates that rift zones are not only essential for the transportation of magma within the volcano, but are also storing magma that could feed future eruptions.

Source : USGS / HVO.

Zone de rift Est du Kilauea

Zone de rift Sud-Ouest du Kilauea

(Photos: C. Grandpey)

Groenland : Nouvelle accélération du glacier Petermann // Greenland : The Permann Glacier is again accelerating

Dans une note mise en ligne le 18 avril 2017, j’attirais l’attention sur le comportement du glacier Petermann au Groenland. A cette époque, les scientifiques avaient décelé sur les images satellitaires une nouvelle fracture dans la plateforme glaciaire, avec le risque d’une une rupture spectaculaire dans les années à venir.

Le glacier Petermann, situé à 80 degrés de latitude nord, constitue l’une des principales portes par lesquelles la calotte glaciaire du Groenland s’écoule dans la mer. En 2010 et 2012, la plateforme flottante du glacier a déjà laissé s’échapper des morceaux extrêmement importants. Ainsi, un iceberg produit en 2010 avait une superficie de 251 km2. Un autre en 2012 présentait une surface de 147 km². Cette fracturation à répétition de la plateforme est un gros problème parce que le glacier Petermann  retient une partie de la banquise du Groenland qui, si elle devait prendre le chemin de la mer, ferait monter son niveau d’une trentaine de centimètres.
Une étude récente effectuée par des glaciologues allemands et publiée en janvier 2019 dans le Journal of Geophysical Research révèle que la vitesse d’écoulement du glacier Petermann s’est accrue de 10 % par rapport à l’hiver 2011 et de nouvelles fractures sont apparues 12 km en amont du front glaciaire, indiquant la formation possible d’un nouvel iceberg. Les images satellite montrent que le glacier s’écoulait à une vitesse de 1135 mètres par an en 2016, phénomène que les chercheurs expliquent comme une conséquence du vêlage de 2012. La perte de glace a réduit la longueur de langue et a donc amoindri les frottements de la masse glaciaire contre les parois du fjord qui freinent  son écoulement. Le détachement d’un autre iceberg pourrait accélérer encore la vitesse du glacier.

Les glaciologues ne peuvent pas dire à la seule observation des données satellitaires si l’accélération découlement du glacier Petermann est causée par le réchauffement de l’atmosphère ou de l’eau de mer au Groenland. Néanmoins, les scientifiques expliquent que l’accélération du glacier Petermann est un signal important. Contrairement aux glaciers du sud-est et du sud-ouest du Groenland, ceux du nord de l’île étaient restés relativement stables jusqu’à présent; mais la situation semble avoir changé. Depuis 2002, la banquise et les glaciers du Groenland ont perdu en moyenne 286 milliards de tonnes de glace par an. Cette perte de masse est due avant tout à l’accélération de la fonte de surface en été. Le vêlage des icebergs a également augmenté. Les glaciers du Groenland perdent maintenant un quart de glace de plus sous forme d’événements de vêlage que pendant 1960-1990 qui sert de période de référence. Les causes potentielles incluent des courants océaniques plus chauds qui font fondre les langues glaciaires par en dessous, et les eaux de fonte qui s’infiltrent dans les fissures et les crevasses jusqu’à atteindre le soubassement des glaciers où elles jouent le rôle de lubrifiant et provoquent une accélération de l’écoulement de la glace. L’augmentation globale annuelle du niveau de la mer est d’environ 3,3 millimètres ; la perte de glace au Groenland y contribue actuellement pour environ 0,7 millimètre.

Voici une animation du vêlage du glacier en 2012 : https://upload.wikimedia.org/wikipedia/commons/transcoded/b/b2/Wild_Arctic_Summer.ogv/Wild_Arctic_Summer.ogv.480p.webm

Source : Presse scientifique.

————————————————

In a post released on April 18th, 2017, I drew attention to the behaviour of the Petermann Glacier in Greenland. At that time, scientists had detected on satellite images a new crack in the floating ice shelf with the risk of a spectacular break in the coming years.
The Petermann Glacier, located in the high Arctic at 80 degrees North latitude, is one of the most important outlets through which the Greenland icecap flows into the sea. In 2010 and 2012, the glacier’s floating platform has already released extremely large pieces. For example, an iceberg produced in 2010 had an area of ​​251 km2. Another in 2012 had an area of ​​147 km². This repetitive breaking of the platform is a big problem because the Petermann glacier retains part of the Greenland ice sheet which, if it were to flow into the sea, would raise its level by about thirty centimetres.
A recent study conducted by German glaciologists and published in January 2019 in the Journal of Geophysical Research reveals that the flow rate of the Petermann glacier has increased by 10% compared to winter 2011 and new fractures have appeared. 12 kilometres upstream of the ice front, indicating the possible formation of a new iceberg. Satellite imagery shows that the glacier was flowing at a speed of 1135 metrs per year in 2016, a phenomenon that the researchers explain as a consequence of the calving in 2012. The loss of ice has reduced the length of the ice tongue and thus also reduced the friction of the glacial mass against the walls of the fjord which slow down its flow. The detachment of another iceberg could further accelerate the speed of the glacier.

The question of whether these changes are due to the warming atmosphere over Greenland, or to warmer seawater, is not an aspect that glaciologists could investigate using the satellite data.  Nevertheless, the experts consider the acceleration of Petermann Glacier to be an important signal. Unlike the glaciers in southeast and southwest Greenland, those in the island’s northern reaches had remained largely stable; but the situation now appears to have changed. Since 2002, the Greenland Ice Sheet and the island’s glaciers have lost an average of 286 billion tonnes of ice per year. This loss of mass is above all due to intensified surface melting in the summer. Iceberg calving has also increased: Greenland’s glaciers are now losing a fourth more ice in the form of calving events than in the comparison period (1960 to 1990). Potential causes include warmer ocean currents, which melt the glaciers’ floating tongues from below; and meltwater, which percolate into cracks and crevasses until it reaches the glacier bed, where it acts like a lubricant, causing ice flows to accelerate. The total annual global sea-level rise is about 3.3 millimetres, of which the loss of ice on Greenland is currently contributing about 0.7 millimetres.

Here is a timelapse video of the glacier in 2012 : https://upload.wikimedia.org/wikipedia/commons/transcoded/b/b2/Wild_Arctic_Summer.ogv/Wild_Arctic_Summer.ogv.480p.webm

Source: Scientific press.

Source: NASA

Hawaii: Pas d’éruption, mais encore des problèmes pour les habitants de Puna // Hawaii: No eruption but more problems for Puna residents

Cela fait quatre mois que la dernière éruption du  Kilauea est terminée dans le district de Puna et la Federal Emergency Management Agency (FEMA) qui gère les situations d’urgence n’accepte plus de nouvelles demandes d’aide en cas de problèmes liés à l’éruption. Pourtant, les habitants de la région subissent encore les conséquences de l’éruption, même s’il n’y a plus de nouveau magma dans le sous-sol.

Dans le secteur des Leilani Estates, des fractures qui émettent de la vapeur continuent à s’ouvrir sous les habitations. Les arbres meurent car leurs racines sont carrément cuites par la chaleur. Les fractures ont contraint les habitants du lotissement à quitter au moins trois maisons jusqu’à présent, et plusieurs autres sont menacées. La température de la vapeur qui sort des fractures atteint plus de 65°C et est parfois proche du point d’ébullition de l’eau. Certaines fractures ont continué à se propager dans la forêt et sur certaines propriétés, avec augmentation de leur température.
Les personnes victimes de ces problèmes ont tenté d’entrer en contact avec le HVO, mais ont entendu un message préenregistré en raison du shutdown. Il indiquait que « tout employé avait l’interdiction d’exercer ses fonctions, y compris de répondre aux appels téléphoniques et aux courriels, jusqu’à nouvel ordre». Cependant, il existe un numéro de téléphone pour les appels d’urgence. Malgré le shutdown, le HVO surveille la situation dans les Leilani Estates et a déclaré qu’il n’avait décelé «aucun signe de magma approchant de la surface dans le secteur. La zone de fractures continue de s’ajuster et l’apparition de nouvelles fractures n’est pas trop surprenante.»
La FEMA est également victime du shutdown, mais elle «continue de traiter les dossiers» liés à l’éruption. L’article cite l’exemple de résidents qui se sont vus offrir un prêt de 47 000 dollars sur 30 ans, mais ils ont calculé que le remboursement des intérêts sur cette période coûterait 160 000 dollars, sans aucune garantie que Madame Pele leur permette de garder ou même vendre leur maison. Comme beaucoup de rescapés de la dernière éruption, ils ont des démêlés avec la compagnie d’assurance Lloyd’s de Londres. La Lloyd’s a envoyé un ingénieur examiner leur maison, mais ils n’ont reçu aucun dédommagement pour le moment.
D’autres habitants ne sont pas assurés. Ils avaient acheté le terrain parce qu’il était bon marché et les maisons ont été édifiées sans respecter les codes légaux  de construction. C’était un rêve qui pourrait bien ne jamais se réaliser avec les nouvelles fractures dans le sol…
Source: Honolulu Civil Beat.

———————————————————-

Four months after the end of Kilauea’s latest eruption in Lower Puna, and the refusal of the Federal Emergency Management Agency to accept new registrations for eruption-related disaster aid, residents are still facing the consequences of the eruption, although there is no sign of new magma in the ground. .

In the Leilani Estates area, steaming cracks are still opening up under people’s houses. Trees are dying, cooked from the roots up. The cracks have forced neighbourhood residents to leave at least three homes so far, and several more are threatened. Temperatures of the steam coming out of the cracks have been measured more than 65°C and sometimes near the boiling point of water. Cracks have spread from the original steam vent, creeping through the forest and onto residents’ properties, and the temperatures in those cracks have been rising.

The persons suffering from these problems tried to get in touch with HVO but received a pre-recorded message because of the shutdown. It said any employee was “prohibited from conducting work as a Federal employee, including returning phone calls and emails, until further notice.” However, there is a phone number for emergency calls. Despite the shutdown, HVO is monitoring the situation in the Leilani Estates and said there was “certainly no sign of magma nearing the surface there. The rift zone is still adjusting and cracking isn’t too surprising.”

The Federal Emergency Management Agency (FEMA) is also a victim of the shutdown but is “still working the cases” related to the eruption. The article gives the example of residents who were offered a $47,000, 30-year loan, but they calculated that repaying it with interest over that time would cost $160,000, with no guarantee that Madame Pele would let them keep the house or even sell it.  Like many survivors of the last eruption, they are also involved in a fight with Lloyd’s of London to get action on their insurance claims. Lloyd’s sent an engineer to examine their home, but they have yet to see any payment.

Other residents are not insured. They bought the land because it was cheap and it did not meet Hawaii’s building codes. It was a dream that may never come true with the new fissures…

Source : Honolulu Civil Beat.

Fractures avec émissions de vapeur à Hawaii (Photos: C. Grandpey)

Mt Agung (Bali / Indonésie) & Ambrym (Vanuatu)

Selon le Centre de gestion des risques, l’Agung a connu un nouvel épisode éruptif le 21 janvier 2019 à 17 heures (heure locale). Le sismogramme montre que l’éruption a duré 1 minute et 12 secondes avec une amplitude maximale de 23 millimètres. Les mauvaises conditions météo ont empêché d’évaluer la quantité de cendre émise par le volcan pendant l’éruption.
Le niveau d’alerte est maintenu à 3 (siaga) sur une échelle de quatre niveaux.
Les habitants, les randonneurs et les touristes doivent respecter le rayon de 4 km de la zone de danger.

La sismicité est assez forte au Vanuatu ces temps-ci. Plusieurs événements tectoniques ont été enregistrés au cours des derniers mois. Un événement peu profond d’une magnitude de M 6,6 a été enregistré près des côtes du Vanuatu le 15 janvier 2019.
Des témoins ont indiqué que des séismes liés à l’activité volcanique à Ambrym ont ouvert des fractures dans le sol au cours du mois écoulé. Elles ont endommagé des villages entiers et entraîné l’évacuation de 700 personnes. Ces dernières ont été transférées dans des zones plus sûres de l’île. Jusqu’à présent, il n’est pas prévu de les transférer dans d’autres îles. Toutefois, si l’activité volcanique s’intensifie, il est envisagé de les déplacer à Malekula, l’une des grandes îles de la province.
L’activité volcanique est actuellement faible et le niveau d’alerte reste à 3. La zone de danger reste d’environ 2 km autour de Benbow et à 4 km autour de Marum (voir carte). Une autre zone de risque se situe à moins de 3 km des principales fractures au sud-est d’Ambrym.
Bien qu’elle soit inférieure à celle de décembre 2018 et non ressentie par la population, la sismicité persiste à Ambrym. GeoHazards indique qu’elle est lié à l’activité volcanique actuelle. Elle pourrait continuer d’affecter les fractures existantes, en particulier dans le sud-est d’Ambrym. Les dernières images satellitaires confirment la déformation du sol à Ambrym, ce qui signifie que la population de l’île et des îles voisines doivent s’attendre à plus de séismes, de gaz volcaniques et de retombées de cendre.
Source: GeoHazards, The Watchers.

————————————————-

According to the Center for Volcanology and Geological Hazard Mitigation, Mount Agung erupted on January 21st, 2019 at 5 p.m. (local time). The seismogram shows that the eruption lasted 1 minute and 12 seconds with a maximum amplitude of 23 millimetres. Foggy weather prevented from measuring the amount of ash the volcano spewed during the eruption.

The alert level is kept at 3 (siaga) on a four-level scale.

Residents, climbers and tourists should steer clear of the danger zone within a 4-kilometer radius of the crater.

 

Seismicity is quite hjgh in Vanuatu these days. Several tectonic earthquakes have been recorded during the past months. A strong and shallow event with an M 6.6 magnitude hit near the coast of Vanuatu on January 15th, 2019.

Witnesses indicate that other earthquakes related to volcanic activity at Ambrym opened fissures in the ground during the past month. They damaged entire villages, forcing the evacuation of 700 people. These persons are being relocated to safer zones on the island. There are so far no plans to relocate them to other islands. Should volcanic activity intensify, there is a plan to move them to Malekula, one of the big islands in the province.

Volcanic activity is currently low and the alert level remains at 3. The danger zone remains about 2 km around Benbow and 4 km around Marum (see map). The additional area of risk is within 3 km from major cracks in the South East of Ambrym.

Although it is lower than in December 2018 and not felt by the population, seismicity persists at Ambrym. GeoHazards indicates it is related to the current volcanic activity. It may continue to affect the existing cracks, especially in the South East Ambrym area. The latest satellite imagery confirms ongoing land deformation at Ambrym, which means the population of the island and neighbouring ones may expect more earthquakes, volcanic gases and ashfall at any time.

Source : GeoHazards, The Watchers

 Fractures provoquées par l’activité sismique à Ambrym (Source: strangesounds.org)

Zones de sécurité sur l’île d’Ambrym (Source: GeoHazards)

Anak Krakatau (Indonésie): Nouvelles fractures // New fissures

Selon l’Agence indonésienne de météorologie, climatologie et géophysique (BMKG), l’activité volcanique se poursuit sur Anak Krakatau et deux nouvelles fractures ont été observées au travers de l’île volcanique. En conséquence, les autorités craignent un autre glissement de terrain et un tsunami de grande ampleur. Le public est invité à faire preuve de vigilance dans une zone des 500 mètres de largeur le long de la côte.
Le BMKG indique que la partie actuelle du volcan susceptible de s’effondrer présente un volume d’environ 60 millions de mètres cubes, contre les 90 millions de mètres cubes qui ont glissé dans le Détroit de la Sonde le 22 décembre 2018 en déclenchant un tsunami meurtrier.
Selon le VAAC de Darwin, le 5 janvier 2019 l’Anak Krakatau a émis des panaches de cendre jusqu’à 10 km de hauteur.
Le niveau d’alerte de l’Anak Krakatau est maintenu à 3 sur une échelle de 4. Les habitants et les touristes ne doivent pas s’approcher à moins de 5 kilomètres du cratère.

Source: BMKG, The Watchers, presse indonésienne.

———————————————–

According to the Indonesian Meteorology, Climatology and Geophysics Agency (BMKG), volcanic activity continues at Anak Krakatau and two new cracks have been observed across the volcanic island. As a consequence, authorities fear another large-scale landslide and tsunami could be produced. Tthe public is asked to be vigilant in the 500-metre zone along the coast.

BMKG indicates that the current part of the volcano likely to collapse has a volume of about 60 million cubic metres, compared with the 90 million cubic metres that collapsed into the Sunda Strait on December 22nd, 2018 and triggered a deadly tsunami.

According to the Darwin VAAC, on January 5th, 2019, Anak Krakatau emitted ash up to 10 km high. .

The alert level for Anak Krakatau is kept at 3 on a scale of 4. Residents and tourists should not approach within 5 kilometres of the crater.

Source: BMKG, The Watchers, Indonesian news media.