Effondrement sur le Cervin // Rock collapse on the Matterhorn

Selon la presse transalpine, un effondrement s’est produit pendant l’après-midi du  21 août 2020 sur le Cervin, sous le Colle del Leone (3581 m). L’événement a entraîné l’évacuation d’une vingtaine d’alpinistes engagés sur le versant italien de la montagne. L’effondrement, qui s’est déclenché sur la Testa in Leone a empêché la possibilité d’une descente en autonomie vers la vallée.

Un géologue de l’administration régionale est arrivé sur place pour évaluer l’ampleur de l’effondrement. Comme indiqué dans le communiqué de presse qui a fait suite à cette visite, « suite à l’inspection menée avec le géologue et compte tenu des conditions météorologiques (avec le risque d’orage), il a été décidé d’évacuer préventivement les personnes qui se trouvaient sur la montagne. Deux hélicoptères du secours alpin du Valle d’Aoste ont transféré à Breuil-Cervinia un guide et client qui se trouvaient sur la crête, ainsi qu’une vingtaine de personnes, qui se trouvaient à Capanna Carrel ».

Pour le moment, l’ascension du Cervin par la voie italienne normale est déconseillée. Pour les prochains jours, il est conseillé de consulter la Società Guide del Cervino pour obtenir des informations sur la praticabilité de l’ascension.

Ce n’est pas la première fois que des effondrements se produisent sur le Cervin et dans les Alpes en général. Ils sont provoqués par la fragilisation des parois suite au dégel du permafrost de roche qui sert de liant entre les roches et assure leur stabilité. Le 22 juillet 2019, deux alpinistes – un guide de montagne et son client – sont décédés à la suite de la chute d’un rocher. Au moment du drame, les deux hommes évoluaient, encordés, à environ 4300 mètres d’altitude, dans le secteur «Keuzsatz». Le pilier rocheux équipé de cordes fixes et d’ancrages sur lequel ils se trouvaient s’est effondré. Les deux alpinistes n’avaient aucune chance de s’en sortir vivants. L’expédition de secours a été interrompue en raison des risques liés aux pierres qui se détachaient.

Source : Presse italienne.

———————————————-

According to the Italian press, a collapse occurred during the afternoon of August 21st, 2020 on the Matterhorn, under the Colle del Leone (3581 m). The event led to the evacuation of about 20 mountaineers engaged on the Italian side of the mountain. The collapse, which was triggered on Testa in Leone, prevented the possibility of an autonomous descent into the valley.

A geologist from the regional administration arrived on site to assess the extent of the collapse. As indicated in the press release which followed this visit, « following the inspection carried out with the geologist and taking into account the weather conditions (with the risk of thunderstorm), it was decided to preventively evacuate the people. who were on the mountain Two helicopters from the Alpine rescue of the Aosta Valley transferred to Breuil-Cervinia a guide and client who were on the ridge, as well as about 20 people who were in Capanna Carrel ”.

For the moment, the ascent of the Matterhorn by the normal Italian way is not recommended. For the next few days, it is advisable to consult the Società Guide del Cervino for information on the practicability of the ascent.

This is not the first time that collapses have occurred on the Matterhorn and in the Alps in general. They are caused by the weakening of the walls following the thawing of the rock permafrost which acts as a binder between the rocks and ensures their stability. On July 22nd, 2019, two climbers – a mountain guide and his client – died after falling from a rock. At the time of the tragedy, the two men were moving, roped, at an altitude of about 4300 meters, in the « Keuzsatz » sector. The rock pillar with fixed ropes and anchors they were standing on collapsed. The two climbers had no chance of making it alive. The relief expedition was halted due to the risk of the loose stones.
Source: Italian press.

Photo : C. Grandpey

Grosses inquiétudes pour le glacier Thwaites en Antarctique // Major concerns for Thwaites Glacier in Antarctica

Le glacier Thwaites, parfois appelé ‘glacier de l’apocalypse’, est une immense rivière de glace de l’Antarctique Occidental qui se jette dans la baie de Pine Island. Tout comme le glacier de Pine Island, il est étroitement surveillé car on sait que sa fonte et sa disparition  pourraient faire s’élever considérablement le niveau des océans.

En ce moment, la glace qui s’échappe par vêlage du glacier Thwaites et termine sa course dans la Mer d’Amundsen représente environ 4% de l’élévation du niveau de la mer dans le monde. La crainte des glaciologues, c’est que le Thwaites s’écroule* et disparaisse, faisant s’élever d’environ 65 cm le niveau des océans en fondant. Ce n’est pas tout. Comme je l’ai signalé à plusieurs reprises, l’écroulement du glacier Thwaites aurait probablement un effet domino et déclencherait un écroulement glaciaire en chaîne dans la partie occidentale de l’Antarctique, ce qui pourrait entraîner une élévation du niveau de la mer pouvant atteindre 1,80 mètre. Ce serait bien sûr catastrophique pour les villes côtières dans le monde. Selon le directeur du programme de glaciologie antarctique à l’America’s National Science Foundation, le glacier Thwaites est la clé de voûte des autres glaciers en Antarctique Occidental. «S’il s’écroule, les autres glaciers feront de même et commenceront à partir dans l’océan.»
Ce qui inquiète les glaciologues, c’est que le glacier Thwaites perd de plus en plus de glace et le processus semble s’accélérer. La grande question est de savoir à quel moment il va perdre sa stabilité. Des équipes de scientifiques effectuent des forages dans le glacier pour savoir s’il est sur le point de commencer à s’écrouler.
Il faut savoir que le glacier est immense. Sa taille est celle de la Grande-Bretagne et on pense qu’il est particulièrement sensible au réchauffement climatique. Au cours des 30 dernières années, la quantité de glace vêlée par le Thwaites et les glaciers voisins a presque doublé.
Ils ne sont probablement pas près d’arrêter de fondre. En effet, le pôle Sud s’est réchauffé trois fois plus rapidement que les autres régions du globe au cours des trois dernières décennies. Des études publiées dans la revue Nature Climate Change indiquent que les températures ne cessent de grimper au pôle Sud depuis 1989, avec une hausse de 0,6 degrés par décennie, soit trois fois la hausse pour le reste de la planète.
Les chercheurs pensent que cette hausse des températures est certes due à une augmentation des gaz à effet de serre dans l’atmosphère, mais aussi à des changements météorologiques naturels sous les tropiques. Cependant, les concentrations de CO2 provenant des activités humaines semblent être la principale cause de la situation actuelle en Antarctique.
Source: Presse scientifique américaine.

* L’‘écroulement’ d’un glacier fait référence à un vêlage de très grande ampleur comme celui du glacier Helheim au Groenland : https://youtu.be/7tyfSlnMe8E

—————————————-

Thwaites Glacier, sometimes referred to as the Doomsday Glacier, is a huge glacier of West Antarctica flowing into the Pine Island Bay. Like Pine Island Glacier, it is closely watched for its potential to raise sea levels.

Even now, ice draining from Thwaites Glacier into the Amundsen Sea accounts for about 4% of global sea-level rise, but scientists fear it could collapse and then raise sea levels about 65cm as it melts. What is more, the collapse of the Thwaites Glacier could trigger a runaway collapse across the western half of Antarctica that could lead to a sea level rise of up to 1.80 metres. Such a rise would be catastrophic for coastal cities around the world. According to the programme director for Antarctic glaciology at America’s National Science Foundation, Thwaites is a keystone for the other glaciers around it in West Antarctica. “If you remove it, other ice will potentially start draining into the ocean too.”

What worries glaciologists is that Thwaites Glacier is losing ice faster and faster, and that the process seems to be accelerating. The big question is how quickly it becomes unstable.

Teams of scientists are drilling into Thwaites Glacier to find out if it is about to collapse.

The glacier is the size of Great Britain, and thought to be particularly susceptible to climate change. Over the past 30 years, the amount of ice flowing out of Thwaites and its neighbouring glaciers has nearly doubled.

It looks as if Thwaites Glacier is not about to stop melting. The South Pole, the most remote place on the planet, has warmed three times faster than other areas over the past three decades. Research published in Nature Climate Change indicates that temperatures lave rocketted upwards at the South Pole since 1989, with a rise of 0.6 degrees per decade, three times the rate for the rest of the planet.

Researchers believe the high temperatures are being fuelled not just by a rise in greenhouse gases, but also by natural weather shifts in the tropics. However, CO2 concentrations from human activities seem to be the main cause of the current situation in Antarctica.

Source: American scientific press.

* The ‘collapse’ of a glacier refers to large scale calving like the one observed on Helheim Glacier in Greenland : https://youtu.be/7tyfSlnMe8E

Source: Wikipedia

Processus de fonte des glaciers en Antarctique (Source: British Antarctic Survey)

Effondrement des Alpes (suite) // Collapse of the Alps (continued)

Dans la matinée du 27 décembre 2019, de nombreux randonneurs et skieurs de la station de ski italienne de Crissolo ont assisté à l’effondrement d’une partie de la face Nord du Monte Viso. Cette montagne, qui culmine à 3841 mètres d’altitude est frontalière des Hautes-Alpes, et plus particulièrement de la vallée du haut-Guil, dans le Queyras.

D’après la presse italienne, l’effondrement se serait produit à environ 3300 mètres d’altitude, sur la gauche de la face nord, et non loin du refuge Quintino Sella.

Les causes de cet effondrement, filmé par de nombreux usagers de la montagne, sont pour le moment indéterminées, mais il est fort à craindre que l’on se trouve à nouveau dans le contexte de la fonte du permafrost de roche qui assure la cohésion des massifs rocheux.

Déjà le 6 juillet1989, une grande partie du glacier supérieur de Coolidge s’était détachée, provoquant la chute de roches et de glace jusqu’au lac Chiaretto. L’événement avait été attribué à des conditions climatiques et morphologiques défavorables.

Source : Presse italienne.

—————————————————

In the morning of December 27th, 2019, many hikers and skiers from the Italian ski resort of Crissolo witnessed the collapse of a portion of the North Face of Monte Viso. This mountain, which rises to 3,841 metres above sea level, borders the French Hautes-Alpes, and more particularly the Haut-Guil valley, in Queyras.
According to the Italian press, the collapse occurred at an altitude of about 3,300 metres, on the left side of the north face, and not far from the Quintino Sella refuge.
The causes of this collapse, filmed by many mountaineers, are for the moment undetermined, but it is feared that we are again in the context of the melting of the rock permafrost which ensures the cohesion of the rock structures.
Already on July 6th, 1989, a large part of the upper Coolidge glacier had detached, causing the fall of rocks and ice to Lake Chiaretto. The event was attributed to unfavorable climatic and morphological conditions.

Source: Italian newspapers.

Le Monte Viso vu depuis le col de Chamoussiere (Crédit photo: Wikipedia)

Vers une désintégration de l’Antarctique occidental ? // Toward a disintegration of West Antarctica ?

De nos jours, avec le réchauffement climatique, on craint de plus en plus que l’Antarctique occidental s’effondre et disparaisse dans l’océan. Cela déclencherait inévitablement une augmentation rapide du niveau des mers. Ce ne serait pas la première fois qu’une telle situation se produirait. Il y a 125 000 ans, au cours de la dernière brève période chaude – baptisée Eémien – entre les périodes glaciaires, les températures étaient à peine plus élevées qu’aujourd’hui et le niveau de la mer était de 6 à 9 mètres plus élevé que de nos jours, recouvrant d’immenses étendues de terres sèches aujourd’hui.
Les scientifiques ont révélé que la source de toute cette eau était un effondrement de l’inlandsis antarctique occidental et les glaciologues s’inquiètent de la stabilité fragile de cette énorme masse de glace. Sa base, située au-dessous du niveau de la mer, risque d’être minée par le réchauffement des océans. Les glaciers qui se trouvent en amont et qui sont retenus par cette masse de glace, accéléreraient leur course vers l’océan si la plateforme ouest antarctique disparaissait. J’ai décrit ce phénomène dans les notes précédentes. Lors d’une réunion de l’American Geophysical Union à Washington, D.C., des scientifiques de l’Oregon State University ont prouvé, au moyen de carottes de sédiments, que la calotte glaciaire avait disparu dans un passé géologique récent et dans des conditions climatiques analogues à celles d’aujourd’hui.
La forte perte de masse observée en Antarctique occidental au cours des deux ou trois dernières décennies pourrait marquer le début d’une nouvelle désintégration de la calotte glaciaire de l’Antarctique occidental. Si tel est le cas, le monde devra se préparer à une hausse du niveau des mers plus importante et plus rapide que prévu. En effet, après l’effondrement de l’ancienne calotte glaciaire de l’Ouest Antarctique, certains relevés sur le terrain montrent que la hausse de la mer atteignait 2,5 mètres par siècle.
Au cours de l’Eémien, les températures globales étaient supérieures de 2°C à celles observées avant l’ère industrielle (contre 1°C aujourd’hui). Cependant, le réchauffement n’était pas dû aux gaz à effet de serre, mais à de légers changements dans l’orbite et l’axe de rotation de la Terre. L’Antarctique était probablement plus froid qu’aujourd’hui. La cause de la montée du niveau de la mer, enregistrée par les coraux fossiles situés aujourd’hui bien au-dessus de la marée haute, est longtemps restée un mystère.
Les scientifiques ont commencé par accuser la fonte de la calotte glaciaire du Groenland. Cependant, en 2011, des chercheurs ont disculpé le Groenland après avoir identifié des empreintes isotopiques de son substrat rocheux dans des sédiments provenant d’une carotte océanique forée au large de son extrémité sud. Les isotopes ont montré que la glace continuait à éroder le substrat rocheux au cours de l’Eémien. Si la calotte glaciaire du Groenland n’avait pas disparu et ne contribuait donc pas à la hausse du niveau de la mer, la suspicion se dirigeait vers calotte glaciaire de l’Antarctique occidental.
Les chercheurs de l’Université de l’Oregon ont décidé d’appliquer leur technique isotopique à l’Antarctique. Ils ont d’abord analysé les carottes de sédiments marins extraites le long de la partie occidentale de la banquise. Ils ont examiné 29 carottes et identifié des signatures géochimiques pour trois régions sources différentes du substrat rocheux: la partie montagneuse de la Péninsule Antarctique; la province d’Amundsen, près de la mer de Ross; et la zone intermédiaire, autour du glacier Pine Island, particulièrement vulnérable.
Avec ces empreintes à leur disposition, ils ont ensuite analysé les sédiments marins contenus dans une carotte prélevée au large dans la mer de Bellingshausen, à l’ouest de la Péninsule Antarctique. Un courant marin continu longe la plateforme continentale de l’Ouest Antarctique et transporte les sédiments provenant de l’érosion glaciaire en cours de route. Le courant fait s’accumuler une grande partie de ces sédiments près du site où la carotte a été prélevée. Ces sédiments s’accumulent rapidement et piègent des microorganismes à coquilles appelées foraminifères, protozoaires unicellulaires qui peuvent être datés en comparant leurs rapports isotopes d’oxygène à ceux des carottes avec des dates connues. Sur une longueur de 10 mètres, la carotte contient 140 000 ans d’accumulation de sédiments. Pendant la majeure partie de cette période, les sédiments contiennent les signatures géochimiques des trois régions du socle rocheux de l’Antarctique occidental, ce qui révèle une érosion continue provoquée par la glace. Toutefois, dans une section datant du début de l’Eémien, les empreintes disparaissent en deux endroits  tout d’abord au niveau du glacier de Pine Island, puis de la province d’Amundsen. Il ne subsiste que des sédiments de la partie montagneuse de la péninsule où les glaciers ont peut-être persisté. La datation de la carotte n’est pas très précise, ce qui signifie que la pause dans l’érosion glaciaire n’a peut-être pas eu lieu pendant l’Eémien. Il se peut aussi que la pause proprement dite soit illusoire, ou que les courants marins se soient temporairement déplacés, avec un transfert des sédiments vers un autre site.
D’autres recherches sont en cours. Le mois prochain, un navire de recherche entamera une mission de trois mois avec comme but l’extraction d’au moins cinq carottes au large de l’Antarctique occidental. Dans le même temps, le chercheur responsable de l’étude mentionnée dans cet article espère la faire publier à temps pour qu’elle fasse partie du prochain rapport des Nations Unies sur le climat. Dans les rapports de 2001 et 2007, le risque de désintégration de l’Antarctique occidental n’a pas été pris en compte dans le cadre des estimations de hausse du niveau de la mer dans les prochaines années. Ce n’est qu’en 2013 que les auteurs du rapport ont commencé à mentionner l’Antarctique.
Source: Science.

————————————————————–

Today, with global warming, there are increasing fears that West Antarctica might collapse and disappear in the ocean. This would inevitably trigger a rapid increase of ocean levels. This would not be the first time such a situation happened. Some 125,000 years ago, during the last brief warm period between ice ages – it was called the Eemian – ttemperatures were barely higher than in today’s and sea levels were 6 to 9 metres higher than they are today, drowning huge areas of land that is dry today.

Scientists have revealed that the source of all that water was a collapse of the West Antarctic Ice Sheet and glaciologists worry about the present-day stability of this formidable ice mass. Its base lies below sea level, at risk of being undermined by warming ocean waters, and the glaciers behind it would accelerate their forward movement of this mass of ice disappeared. I described this phenomenon in previous notes. Scientists from Oregon State University at a meeting of the American Geophysical Union in Washington, D.C., have provided evidence, by means of a sediment core, that the ice sheet disappeared in the recent geological past under climate conditions similar to today’s.

The big increase in mass loss observed in West Antarctica in the past decade or two might be the start of a new collapse of the West Antarctic Ice Sheet. If so, the world may need to prepare for sea level to rise farther and faster than expected: Once the ancient ice sheet collapse got going, some records show that ocean waters rose as fast as some 2.5 metres per century.

During the Eemian, global temperatures were some 2°C above preindustrial levels (compared with 1°C today). But the cause of the warming was not greenhouse gases, but slight changes in Earth’s orbit and spin axis, and Antarctica was probably cooler than today. What drove the sea level rise, recorded by fossil corals now marooned well above high tide, was a mystery.

Scientists once blamed the melting of Greenland’s ice sheet. But in 2011, researchers exonerated Greenland after identifying isotopic fingerprints of its bedrock in sediment from an ocean core drilled off its southern tip. The isotopes showed ice continued to grind away at the bedrock through the Eemian. If the Greenland Ice Sheet didn’t vanish and push up sea level, the vulnerable West Antarctic Ice Sheet was the obvious suspect.

The Oregon University researchers set out to apply their isotope technique to Antarctica. First, they analysed archived marine sediment cores drilled from along the edge of the western ice sheet. Studying 29 cores, they identified geochemical signatures for three different bedrock source regions: the mountainous Antarctic Peninsula; the Amundsen province, close to the Ross Sea; and the area in between, around the particularly vulnerable Pine Island Glacier.

Armed with these fingerprints, they then analyzed marine sediments from a core drilled farther offshore in the Bellingshausen Sea, west of the Antarctic Peninsula. A stable current runs along the West Antarctic continental shelf, picking up ice-eroded silt along the way. The current dumps much of this silt near the core’s site, where it builds up fast and traps shelled microorganisms called foraminifera, which can be dated by comparing their oxygen isotope ratios to those in cores with known dates. Over a stretch of 10 metres, the core contained 140,000 years of built-up silt. For most of that period, the silt contained geochemical signatures from all three of the West Antarctic bedrock regions, suggesting continuous ice-driven erosion. But in a section dated to the early Eemian, the fingerprints winked out: first from the Pine Island Glacier, then from the Amundsen province. That left only silt from the mountainous peninsula, where glaciers may have persisted. The dating of the core is not precise, which means the pause in erosion may not have taken place during the Eemian. It is also possible that the pause itself is illusory, that ocean currents temporarily shifted, sweeping silt to another site.

More research is on the way. Next month, a research ship will begin a 3-month voyage to drill at least five marine cores off West Antarctica. Meanwhile, the head of the research hopes to get his own study published in time to be included in the next United Nations climate report. In the 2001 and 2007 reports, West Antarctic collapse was not even considered in estimates of future sea level; only in 2013 did authors start mentioning Antarctica.

Source: Science.

Anak Krakatau (Indonésie): Nouvelles fractures // New fissures

Selon l’Agence indonésienne de météorologie, climatologie et géophysique (BMKG), l’activité volcanique se poursuit sur Anak Krakatau et deux nouvelles fractures ont été observées au travers de l’île volcanique. En conséquence, les autorités craignent un autre glissement de terrain et un tsunami de grande ampleur. Le public est invité à faire preuve de vigilance dans une zone des 500 mètres de largeur le long de la côte.
Le BMKG indique que la partie actuelle du volcan susceptible de s’effondrer présente un volume d’environ 60 millions de mètres cubes, contre les 90 millions de mètres cubes qui ont glissé dans le Détroit de la Sonde le 22 décembre 2018 en déclenchant un tsunami meurtrier.
Selon le VAAC de Darwin, le 5 janvier 2019 l’Anak Krakatau a émis des panaches de cendre jusqu’à 10 km de hauteur.
Le niveau d’alerte de l’Anak Krakatau est maintenu à 3 sur une échelle de 4. Les habitants et les touristes ne doivent pas s’approcher à moins de 5 kilomètres du cratère.

Source: BMKG, The Watchers, presse indonésienne.

———————————————–

According to the Indonesian Meteorology, Climatology and Geophysics Agency (BMKG), volcanic activity continues at Anak Krakatau and two new cracks have been observed across the volcanic island. As a consequence, authorities fear another large-scale landslide and tsunami could be produced. Tthe public is asked to be vigilant in the 500-metre zone along the coast.

BMKG indicates that the current part of the volcano likely to collapse has a volume of about 60 million cubic metres, compared with the 90 million cubic metres that collapsed into the Sunda Strait on December 22nd, 2018 and triggered a deadly tsunami.

According to the Darwin VAAC, on January 5th, 2019, Anak Krakatau emitted ash up to 10 km high. .

The alert level for Anak Krakatau is kept at 3 on a scale of 4. Residents and tourists should not approach within 5 kilometres of the crater.

Source: BMKG, The Watchers, Indonesian news media.

Anak Krakatau (Indonésie) : Une étude visionnaire ! // Anak Krakatau (Indonesia) : A visionary study !

S’agissant de la prévision des éruptions volcaniques, je dis souvent que nous ne sommes pas encore en mesure de les prévoir correctement. Certes, notre capacité à analyser le comportement d’un volcan est bien meilleure qu’il y a cent ans, mais il reste encore beaucoup à faire.
Pourtant, certains scientifiques sont plus optimistes que moi et affirment qu’ils sont capables de faire des prévisions volcaniques à long terme. Un chercheur de l’Université de l’Oregon a déclaré que ses collègues et lui-même avaient anticipé ce qui s’est passé le 22 décembre 2018. En janvier 2012, ces scientifiques ont publié les résultats de simulations numériques d’un effondrement du flanc de l’Anak Krakatau et du tsunami que le glissement de terrain avait déclenché. Ils ont mis en garde contre les effets dévastateurs pour les côtes. Dans leur étude, ils ont « simulé numériquement une déstabilisation soudaine vers le sud-ouest d’une grande partie de l’Anak Krakatau, ainsi que la formation et la propagation du tsunami qui résulterait ».
Les chercheurs rappellent à la communauté scientifique que l’Anak Krakatau a grandi rapidement depuis sa première apparition à la surface de la mer en 1928. Depuis cette époque, en moins de 100 ans, il a édifié un cône par accumulation de matériaux au cours de plusieurs éruptions, dont celle qui a commencé en mai 2018 et continue encore aujourd’hui. L’île est particulièrement sujette aux ruptures gravitationnelles car elle s’est édifiée à proximité et au-dessus d’une pente sous-marine abrupte qui représente la limite nord-est de la caldeira laissée par l’éruption cataclysmale de 1883.
En raison de cette topographie sous-marine combinée à de forts courants marins, le versant ouest de l’Anak Krakatau est devenu beaucoup plus escarpé que le côté est. L’étude explique que le volcan continue de croître de préférence vers le sud-ouest, de sorte que « les glissements de terrain le long du flanc sud-ouest ne peuvent pas être exclus. Un tel glissement de terrain serait dirigé vers le sud-ouest à l’intérieur de la caldeira de 1883 et déclencherait des vagues qui se propageraient dans le Détroit de la Sonde et menaceraient les côtes indonésiennes « .
La hauteur des vagues modélisée dans l’étude des universitaires correspond assez bien à ce qui a été observé le 22 décembre. Dans la mesure où les systèmes d’alerte aux tsunamis locaux ont été conçus uniquement en fonction des séismes terrestres, aucune alerte n’a pu être émise à l’attention des populations vivant sur la côte. En outre, l’effondrement du flanc du volcan s’est produit pendant la nuit. Le volumineux panache de cendre ainsi que les violentes explosions de vapeur résultant de l’interaction soudaine de l’eau avec le magma ont entravé la visibilité. Lorsque les vagues du tsunami sont arrivées, elles ont surpris tout le monde.
Cette étude est fort intéressante. Le problème est qu’il existe encore un grand fossé entre la modélisation et les simulations d’une part et la réalité sur le terrain d’autre part. Anticiper un processus éruptif est une chose ; convaincre les autorités de mettre en place les mesures adéquates pour y faire face est une autre chose! C’est un peu la même chose aujourd’hui avec le réchauffement climatique : les climatologues préviennent que les événements extrêmes avec vents violents et inondations vont se multiplier, mais les autorités n’ont pas encore pris les mesures qui s’imposent pour y faire face.
Le style de l’éruption de l’Anak Krakatau a radicalement changé depuis l’effondrement du flanc sud-ouest. L’éruption ne se produit plus au sommet du cône, mais au niveau de la mer ou en dessous. Cela explique les violentes explosions que l’on observe actuellement. L’eau de mer interagit avec le magma, un processus qui donne lieu à des explosions phréatomagmatiques avec projections de vapeur, de débris et de cendre, souvent de forme cypressoïde et typiques de l’activité surtseyenne.

Source : Tsunami hazard related to a flank collapse of Anak Krakatau Volcano, Sunda Strait, Indonesia (T. Giachetti, R. Paris, K. Kelfoun and B. Ontowirjo) – 2012.

————————————————

As far as the prediction of volcanic eruptions is concerned, I often say we are not yet able to predict them properly. Our ability to analyse the behaviour of a volcano is much better than a century ago, but a lot of progress needs to be made.

However, some scientists are more optimistic than me and affirm they are able to make long term volcanic predictions. A University of Oregon researcher said he and his colleagues had anticipated what happened on December 22nd, 2018. In January 2012, these scientists published the results of numerical simulations a flank collapse and associated tsunami at Anak Krakatau and warned about the devastating effects it would have on nearby coasts:
In their study, they « numerically simulated a sudden southwestwards destabilization of a large part of the Anak Krakatau Volcano, and the subsequent tsunami formation and propagation. »
They also remind the scientific community that Anak Krakatau island has been growing rapidly growing since it first breached the surface of the sea in 1928. Since then, in less than 100 years, it built an overlapping cone during several eruptions, the latest being the one that started in May 2018 and still continues. What makes the island particularly prone to gravitational flank failure is that it has been constructed close and above a steep submarine slope, the NE margin of the caldera basin left by the massive 1883 eruption.
As a consequence of this underwater topography, combined with strong sea currents, the western slope of Anak Krakatau has developed to be much steeper than the eastern side. The study explains that the volcano continues to grow preferably towards the south-west, so that « landslides along its southwestern flank cannot be excluded. Such a landslide would be directed southwestwards into the 1883 caldera and would trigger waves that would propagate into the Sunda Strait, possibly affecting the Indonesian coasts ».
The modelled wave heights in various location correspond quite well with what had been observed. Since the local tsunami warning systems in place was built only with earthquakes as trigger in mind, no warning could be given to the people on the beaches. In addition, the flank collapse occurred at night and the resulting large ash plume and violent steam explosions as result of sudden interaction of water with magma and hot rocks could not be seen by people. When the tsunami waves arrived they caught everyone by surprise.

The problem is that there is still a wide gap between modelling and simulations and on-the-field reality. Anticipating an eruption process is one thing; convincing the authorities to enforce the right measures to face it is another thing! It is like saying that today, with global warming, extreme events with high winds and floodings will be more and more frequent, but authorities have not yet really taken the measures to face such events.
The eruption style changed drastically right after the flank collapse occurred. It is no longer located at the summit of the cone, but at or below sea level. This accounts for the violent explosions which are currently observed. As seawater interacts with hot rocks and the ascending magma, the process gives birth to phreatomagmatic explosions ejecting dense jets of steam, debris and ash, with cypress-shaped ejections typical of this kind of Surtseyan activity.

Source : Tsunami hazard related to a flank collapse of Anak Krakatau Volcano, Sunda Strait, Indonesia (T. Giachetti, R. Paris, K. Kelfoun and B. Ontowirjo) – 2012.

Photos de l’éruption de l’Anak Krakatau parues dans la presse internationale

Anak Krakatau (Indonésie)

Selon le Centre indonésien de gestion des catastrophes (PVMBG), l’Anak Krakatau a perdu près d’un tiers de sa hauteur initiale qui est passée de 338 mètres à 110 mètres, après la série d’éruptions et un effondrement du volcan qui a provoqué un tsunami la semaine dernière, faisant plus de 400 morts et des milliers de blessés. Après l’effondrement du flanc du volcan, on estime que son volume est passé de 150-180 millions de mètres cubes à 40-70 millions de mètres cubes.
En conséquence, le PVMBG pense que le risque d’un nouveau tsunami est relativement faible, à moins que des failles se réactivent dans le Détroit de la Sonde. Les autorités pensent que maintenant le plus grand danger est une éruption de type surtseyen au niveau de la surface de la mer, suite au contact de l’eau de mer et de la lave. Ce type d’éruption produit beaucoup de cendre mais ne déclenche pas de tsunami. Les dernières photos publiées dans la presse confirment cette hypothèse (voir image ci-dessous). Il est probable que cette activité persistera jusqu’à ce que les matériaux issus de l’éruption se soient suffisamment accumulés pour constituer une nouvelle structure émergée. Depuis le poste d’observation de Pasauran, on se rend compte que le cône du volcan se trouve actuellement plus bas que l’île de Sertung et l’île de Panjang, qui se dressent respectivement à 182 mètres et 132 mètres au dessus du niveau de la mer.
Certains géologues américains font toutefois remarquer que le volcan est toujours instable et pourrait s’effondrer à nouveau. Ils expliquent que l’édifice volcanique est instable car il repose en bordure de la caldeira émergée de 1883, profonde de 150 à 200 mètres. À ce jour, le volume et la forme exacts du glissement de terrain de la semaine dernière sont inconnus, ce qui ne permet pas de modéliser avec précision les glissements de terrain et les tsunamis associés. Ces mêmes scientifiques pensent que l’aléa tsunami lié à l’activité volcanique n’a pas disparu. Le volcan doit être surveillé en permanence et les observations effectuées sur le volcan doivent aller de pair avec un système d’alerte aux tsunamis.
Le niveau d’alerte pour Anak Krakatau est maintenu à 3.
Source: The Jakarta Post.

——————————————————

According to the Volcanology and Geological Disaster Mitigation Center (PVMBG), Anak Krakatau has shrunk to almost a third its original height, from 338 meters to 110 metres, after the series of eruptions and a collapse that triggered a tsunami last week, killing more than 400 people and injuring thousands. Following last week’s collapse, it is estimated that the volcano has reduced to between 40 million and 70 million cubic metres in size from a mass of about 150 million to 180 million cubic metres.

As a consequence, PVMBG thinks that the potential for another tsunami is relatively small, unless there is a reactivation of faults or fault structure in the Sunda Strait. Authorities think the greatest potential danger from Anak Krakatau is a Surtseyan eruption, which takes place on the surface of the sea, with the contact between sea water and lava. This kind of eruption produces a lot of ash but cannot trigger a tsunami. The latest photos released in the press confirm this hypothesis (see image below). It is likely that this activity will persist until the lava accumulated enough to build another emerged platform. Based on the view from the Pasauran Volcano Observation Post, the cone of the volcano is currently situated lower than Sertung Island and Panjang Island, which are 182 metres and 132 metres above sea level, respectively.

However, some American geologists think that the volcano is still unstable and might collapse again. They say that the cone of the volcano is particularly unstable because it was built on the rim of the emerged 1883 caldera, 150 to 200 metres deep. To date, the exact volume and shape of last week’s landslide is still unknown, preventing accurate modelling of landslides and related tsunamis. These scientists believe that the tsunami hazard related to volcanic activity has not passed; the volcano should be watched almost permanently, and observations at the volcano should be linked to a tsunami alert system.

The alert level for Anak Krakatau is kept at 3.

Source: The Jakarta Post.

Les images satellitaires montrent que l’effondrement du 22 décembre a considérablement réduit la taille de l’Anak Krakatau

Les cypressoïdes confirment la présence d’une activité de type surtseyen, nom donné par référence à la naissance de l’île Surtsey au sud de l’Islande en 1963.