La fonte de l’Antarctique continue // The melting of Antarctica is going on

Dans l’hémisphère nord, la glace de mer dans l’Arctique se situe à des niveaux historiquement bas. Son extension pour le mois de janvier 2023 est inférieure à celle des mois de janvier des 4 dernières années. Comme je l’ai indiqué à plusieurs reprises,, la tendance sur le long terme est à un déclin rapide dans cette région du globe.

Il n’y a pas si longtemps, on pensait que la glace de mer de l’Antarctqiue était à l’abri du réchauffement climatique et ne subirait pas les effets de la hausse des températures. C’est terminé. Les dernières années ont montré que l’Antarctique fondait lui aussi. Les dernières nouvelles ne sont pas bonnes.

Le 21 février 2023, la glace de mer de l’Antarctique a probablement atteint son extension minimale annuelle avec 1,79 million de kilomètres carrés. C’est ce que révèlent les mesures du National Snow and Ice Data Center (NSIDC). C’est un nouveau record pour la deuxième année consécutive. Le précédent record établi le 25 février 2022 était de 1,92 million de kilomètres carrés. De plus, l’extension minimale de 2023 est inférieure de 1,05 million de kilomètres carrés à la moyenne de 1981 à 2010.

La carte ci-dessous montre l’extension de la glace de mer de l’Antarctique avec la délimitation orange représentant l’extension moyenne sur la période 1981-2010. Il est bon de rappeler que la fonte de la glace de mer n’a pas d’impact perceptible sur le niveau de la mer car cette glace est déjà dans l’eau de l’océan.

S’agissant de l’impact de l’Antarctique sur la hausse du niveau des océans, il faut se tourner vers les plates-formes glaciaires. Leur amincissement et donc leur moindre résistance favorisent l’écoulement des glaciers auxquels elles servent de rempart. L’arrivée de ces glaciers dans l’océan contribue, elle, à l’élévation du niveau des océans. J’ai signalé à plusieurs reprises l’impact que pourrait avoir la fonte des glaciers Thwaites ou Pine Island. Si ces glaciers n’étaient plus retenus par les plates-formes, cela favoriserait leur avancée rapide vers l’océan Austral, d’autant plus que ces systèmes glaciaires de l’Antarctique occidental sont interconnectés.

Selon les données satellitaires, la réduction annuelle de la banquise antarctique est de 2 800 kilomètres carrés, soit une baisse de 1 % par décennie par rapport à la moyenne de 1981 à 2010.

Selon le NSIDC, cette réduction de la glace antarctique est due à plusieurs facteurs. D’une part, une oscillation antarctique positive a conduit à des vents d’ouest plus forts que la moyenne. D’autre part, les conditions météorologiques ont apporté de l’air chaud des deux côtés de la péninsule antarctique. Cela a largement contribué à la perte de glace dans la région.

L’étendue de la glace de mer de l’Antarctique a été très variable au cours des dernières années et les scientifiques disent qu’il faudra davantage de recul pour affirmer que cette tendance à la baisse est une conséquence du réchauffement climatique. Le doute ne semble toutefois guère permis. La perte de masse totale de l’Antarctique est aujourd’hui six fois plus rapide qu’il y a quarante ans. La fragilité de l’Antarctique de l’Ouest est observée depuis plusieurs années et l’Antarctique Est, réputé plus stable, semble vouloir suivre la même trajectoire.

Source : NSIDC, global-climat.

 ———————————————-

In the northern hemisphere, sea ice in the Arctic is at historically low levels. Its extension for January 2023 is lower than that of the months of January of the last 4 years. As I have repeatedly indicated, the long-term trend is one of rapid decline in this region of the globe.
Not so long ago, Antarctica’s sea ice was thought to be immune to global warming and would not suffer the effects of rising temperatures. It’s over. The last few years have shown that Antarctica is also melting. The latest news is not good.
On February 21st, 2023, Antarctic sea ice probably reached its annual minimum extent of 1.79 million square kilometers. This was revealed by measurements from the National Snow and Ice Data Center (NSIDC). This is a new record for the second consecutive year. The previous record set on February 25th, 2022 was 1.92 million square kilometers. Additionally, the 2023 minimum extension is 1.05 million square kilometers less than the 1981-2010 average.
The map below shows the Antarctic sea ice extent with the orange boundary representing the average extent over the period 1981-2010. It is worth remembering that the melting of sea ice has no impact on sea level because this ice is already in the ocean water.
When it comes to Antarctica’s impact on sea level rise, one has to look to ice shelves. Their thinning and therefore their lower resistance promote the flow of the glaciers to which they serve as a rampart. The arrival of these glaciers in the ocean contributes to the rise in the level of the oceans. I have repeatedly pointed out the impact that the melting of the Thwaites or Pine Island glaciers could have. If these glaciers were no longer held back by the ice shelves, it would favor their rapid advance towards the Southern Ocean, especially as the West Antarctic ice systems are interconnected.
According to satellite data, the annual reduction in Antarctic sea ice is 2,800 square kilometers, a decrease of 1% per decade compared to the average from 1981 to 2010.
According to NSIDC, this reduction in Antarctic ice is due to several factors. On the one hand, a positive Antarctic Oscillation led to stronger than average westerly winds. On the other hand, the weather conditions brought warm air to both sides of the Antarctic Peninsula. This has largely contributed to the loss of ice in the region.
Antarctica’s sea ice extent has been highly variable in recent years and scientists say it will take more time to decide whether Antarctica’s declining sea ice trend is a sign of global warming. However, there is hardly room for doubt. Antarctica’s total mass loss is now six times faster than forty years ago. The fragility of West Antarctica has been observed for several years and East Antarctica, reputed to be more stable, seems to want to follow the same trajectory.
Source: NSIDC, global-climat.

 

Extension de la glace de mer antarctique le 21 février 2023. La moyenne 1981-2010 est délimitée en orange. (Source : NSIDC)

La fonte de la Péninsule Antarctique (suite) //The melting of the Antarctic Peninsula (continued)

En seulement trois jours fin janvier 2022, une masse de glace de la taille de la ville de Philadelphie s’est détachée de la plate-forme glaciaire Larsen-B sur la Péninsule Antarctique. Les satellites de la NASA ont capturé l’événement entre le 19 et le 21 janvier. Il s’est accompagné du vêlage d’icebergs du glacier Crane et de ses voisins car la glace de mer ne retenait plus leurs fronts. La conséquence est inquiétante : désormais plus vulnérables à la fonte et avec une avancée plus rapide dans l’océan, les glaciers qui bordent la péninsule antarctique vont contribuer directement à la hausse du niveau des océans.
La plate-forme glaciaire Larsen se trouve le long de la partie nord-est de la Péninsule Antarctique, dans la mer de Weddell. Elle est divisé en quatre secteurs baptisés Larsen A, B, C et D, en allant du nord au sud.
Le secteur Larsen-A a été le premier à se désintégrer en 1995, suivi de l’effondrement partiel de Larsen-B en 2002. Larsen-C a fait la Une des journaux en juillet 2017 lorsqu’un iceberg géant, baptisé A68, s’en est détaché. Étant la plus au sud, Larsen-D est considéré comme un secteur relativement stable.
La perte de 3 250 km2 de glace de la plate-forme Larsen B en 2002 a été attribuée aux eaux océaniques plus chaudes qui avaient miné la plate-forme par en dessous, et à la présence d’eau de fonte à sa surface, qui a également accéléré la perte de glace. Du fait de la perte de glace, Larsen B était beaucoup moins stable et vulnérable à un nouvel épisode de désintégration. La plate-forme s’est amincie, ce qui a permis aux glaciers du côté terrestre de progresser plus rapidement. Entre 2011 et 2022, les glaciers se sont malgré tout quelque peu stabilisés, mais la rupture de la plate-forme s’est faite en seulement trois jours fin janvier 2022.
Ce dernier effondrement de la plate-forme Larsen-B est important et inquiétant car les grands glaciers qui étaient retenus jusqu’à présent sont maintenant exposés directement à l’océan. Comme je l’ai expliqué précédemment, contrairement à la glace de mer et à la fonte d’une banquise, les glaciers contribuent à l’élévation du niveau de la mer.
Avec la hausse des températures et l’évolution des régimes climatiques, il faut s’attendre à de nouveaux événements notables et de plus en plus fréquents le long de la plate-forme glaciaire Larsen. Grâce aux images satellites en particulier, les scientifiques sont en mesure de suivre de près le comportement de chaque secteur de la plate-forme Larsen. ils peuvent analyser les effondrements, le comportement de la glace de mer et celui des icebergs géants susceptibles de menacer certaines régions.

Avec la persistance du réchauffement climatique, des questions prévalent sur la durée de stabilité du secteur Larsen-D. Sa situation plus proche du pôle Sud l’a, pour le moment, protégé des effets du changement climatique, mais jusqu’à quand?
Source : Columbia Climate School.

——————————————-

In just three days in late January 2022, a mass of ice the size of Philadelphia fragmented from the Larsen-B Ice Shelf on the Antarctic Peninsula and floated away. NASA satellites captured the break-up between January 19th and 21st. The event was accompanied by the calving of icebergs from Crane Glacier and its neighbours as the sea ice no longer buttressed their fronts. The consequence is worrying : now more vulnerable to melting and acceleration into the ocean, the glaciers that line the Antarctic Peninsula could add directly to sea level.

The Larsen Ice Shelf is situated along the northeast part of the Antarctic Peninsula, in the Weddell Sea. It is divided into four regions termed Larsen A, B, C and D running north to south.

Larsen-A was the first to disintegrate in 1995, followed by the abrupt partial collapse of Larsen-B in 2002. Larsen-C became popular in July 2017 when a giant iceberg, named A68, calved from it. Being furthest south, the only portion to be considered relatively stable is Larsen-D.

The loss of 3,250 square kilometers of ice from the Larsen B ice shelf in 2002 has been blamed on warmer ocean waters that melted it from below, and on the presence of meltwater on its surface, which also accelerated the loss of ice.

With only a remnant portion left behind following the collapse, this section was much less stable and vulnerable to further disintegration. It grew thinner, which allowed glaciers on the landward side to flow faster. Between 2011 and 2022, the glaciers were somewhat stabilized, but this large expanse shattered within three days in January 2022.

The recent break-up of ice in the Larsen-B ice shelf is important because the large glaciers that were buttressed by the ice are now exposed to the sea. Unlike sea ice and melt from an ice shelf, glaciers add directly to sea level.

With warming temperatures and changing climatic patterns, notable events along the Larsen ice shelf are predicted to occur more frequently. Scientists are able to track each section of the Larsen Ice Shelf closely, documenting ice shelf collapse, growth of sea ice and the long survival of giant icebergs which threaten distant areas. As warming continues, questions prevail over how long the Larsen-D portion will remain stable. Its location closer to the South Pole has protected it from the impacts of climate change, so far.

Source : Columbia Climate School.

Les plates-formes glaciaires le long de la Péninsule Antarctique (Source : Wikipedia)

Réchauffement climatique et plates-formes glaciaires en Antarctique // Global warming and ice-shelves in Antarctica

En mars 2002, la plate-forme glaciaire Larsen B – une surface de 3 200 kilomètres carrés de glace flottante à proximité de la pointe de la Péninsule Antarctique – s’est effondrée avant de dériver dans la mer. Dans les semaines qui ont précédé cet événement, les satellites avaient repéré de nombreux lacs de fonte à la surface de la plate-forme en raison des températures chaudes dans la région au cours de l’été austral. Ensuite, en seulement trois jours, à partir du 2 mars, c’est presque toute la plate-forme qui s’est fracturée et est partie dans la mer de Weddell.
Aujourd’hui, près de 20 ans après cet événement, on observe une nouvelle désintégration de plate-forme glaciaire dans cette partie du monde. Une fois qu’une plate-forme glaciaire s’effondre et disparaît, elle ne se régénère pas et continue de s’effondrer. Contrairement à la glace de mer, qui fond et regèle chaque année, une plate-forme glaciaire se forme lorsque la partie avant d’un glacier avance à la surface de l’océan et devient une extension de la glace terrestre. Des icebergs se détachent de temps en temps des bordures des plates-formes glaciaires sous l’action des courants océaniques ou lors de collisions avec la glace de mer. La glace se reconstitue ensuite à partir de la poussée du glacier sur la terre ferme, mais il faut des décennies ou plus pour qu’une immense plate-forme glaciaire se régénère.
C’est ainsi qu’à partir de 2011, une nouvelle bande de glace de mer s’est mise en place dans la baie de Larsen B (Larsen B Embayment). Ce n’était certes pas l’épaisse glace qui était là une décennie auparavant, mais c’était la première fois depuis l’effondrement de la plate-forme au début de l’année 2002 que l’on voyait la baie de Larsen B retrouver sa glace qui est restée pendant plusieurs étés australs. Année après année, cette nouvelle glace s’est maintenue dans la baie. Espionnée par des satellites en orbite, elle a même repris la forme (sinon l’épaisseur) de la plate-forme d’origine.

Cependant, tout au long du mois de décembre 2021 et de la première moitié de janvier 2022, les satellites ont enregistré une répétition du processus observé en 2002. De nombreux lacs de fonte sont apparus à la surface de la glace. Ensuite, en quelques jours, la glace s’est désintégrée et est partie à la dérive dans l’océan
Le 11 janvier 2022, le National Snow and Ice Data Center (NSIDC) a expliqué que les lacs de fonte résultaient d’une série de vents de Foehn qui avaient parcouru la Péninsule Antarctique depuis le mois de décembre. Ces vents de Foehn, qui véhiculent de l’air chaud, ont eu un fort impact sur la saison de fonte à travers la Péninsule. Ainsi, fin décembre 2021, la fonte de la glace était trois fois supérieure à la moyenne pour la même période de 1990 à 2020.
La désintégration de la nouvelle glace qui s’était formée dans la baie de Larsen B n’aura pas d’impact direct sur l’élévation du niveau de la mer. De la même façon, un nouvel iceberg, ou même l’effondrement d’une banquise, ne contribue pas à cet aspect particulier du changement climatique. C’est comme un glaçon qui fond dans un verre d’eau.
Ce dernier événement de fonte dans la baie de Larsen B est toutefois préoccupant. Selon la NASA, il est maintenant probable que la glace qui vient de disparaître ne retiendra plus les glaciers en amont de la baie de Larsen B et que ces glaciers terrestres ne tarderont pas à perdre une glace qui fera s’élever le niveau de la mer.
Il convient de rappeler que la plate-forme glaciaire Larsen est une étendue de glace épaisse le long du littoral oriental de la Péninsule Antarctique. Après avoir été complètement cartographiée, elle a été divisée en quatre sections: Larsen A, B, C et D. Larsen A est la plus septentrionale. Elle s’est effondrée en janvier 1995. Larsen B a tenu bon jusqu’en 2002, avant de se désintégrer. Larsen C a fait la une des journaux en 2017 lorsque l’iceberg A68 s’est détaché de son front en juillet de la même année. Poussé par les courants, le plus grand iceberg du monde à l’époque a fini par dériver en mer jusqu’à l’île de Géorgie du Sud où il s’est brisé en mille morceaux à la fin de l’année 2020. Aujourd’hui, ce qu’il reste de Larsen C et tout Larsen D restent intacts.
Source : The Weather Network.

———————————————–

In March 2002, the Larsen B ice shelf — 3,200 square kilometres of floating glacial ice attached near the tip of the Antarctic Peninsula — broke apart and collapsed into the sea. In the weeks leading up to this event, satellites had spotted numerous melt ponds on the ice shelf’s surface due to warm summer temperatures over the region. Then, in just three days, starting on March 2nd, nearly the entire ice shelf fractured and surged out into the Weddell Sea.

Now, close to 20 years after that event, there was a second collapse of the ice in that part of the world. Once an ice shelf collapses, it never regenerates and keeps collapsing. Unlike sea ice, which melts and refreezes each year, an ice shelf forms when the leading edge of a glacier pushes out over water, becoming a direct extension of the land ice. Icebergs break off the edges of ice shelves from time to time simply due to the stresses of ocean currents and sea ice collisions. The sheet ice is replenished from the glacier on land, though. So it would take decades or longer for an immense ice shelf to regenerate, even without the continued stresses of global warming.

However, starting in 2011, a swath of sea ice set up in the Larsen B embayment. This was not the thick glacial ice that was there a decade before, but it was the first time since the early 2002 shelf collapse that the Larsen B embayment was seen to freeze up and stay frozen through multiple austral summers.

Year after year, this new ice persisted in the embayment. As captured by orbiting satellites, it even took on the shape (if not the thickness) of the original ice shelf. However, throughout December 2021 and the first half of January 2022, satellites recorded a repeat of the same pattern that occurred in 2002. Numerous blue melt ponds were spotted on the surface of the ice. Then, in a matter of days, the ice disintegrated and drifted away.

On January 11th, 2022, the National Snow and Ice Data Center (NSIDC) noted that the extensive melt water ponds resulted from a series of wind storms accompanied by Foehn winds that crossed the Peninsula since December. Each of these wind storms, with thee warm air brought by the Foehn winds, had a strong impact on the melt season across the Peninsula. For example, in late December, the amount of melting detected was roughly three times greater than the average for that same period from 1990 to 2020.

The disintegration of the new ice that had formed in the Larsen B embayment will not directly impact sea level rise. This is for the same reason a new iceberg, or even the collapse of an ice shelf, does not contribute much to this particular aspect of climate change. It is like an ice cube melting in a glass of water.

There is an indirect concern stemming from this event, though. According to NASA Earth Observatory, this summer’s breakup of the sea ice in the embayment is important because it is now likely that the backstress will be reduced on all glaciers in the Larsen B Embayment and that additional inland ice losses will be coming soon.

It is worth reminding that the Larsen ice shelf is an expanse of thick glacial ice along the eastern shoreline of the Antarctic Peninsula. After it was completely mapped out, it was divided into four different sections — Larsen A, B, C, and D. Larsen A was the northernmost of these ice shelves. It collapsed in January of 1995. Larsen B held on until 2002, before it disintegrated. Larsen C made headlines in 2017 when iceberg A68 broke away from its front in July of that year. The largest iceberg in the world at the time, A68 ended up floating out to sea and got as far as South Georgia Island by late 2020. There, it shattered into numerous pieces. So far, the rest of Larsen C and all of Larsen D currently remain intact.

Source: The Weather Network.

Images satellites montrant le processus de désintégration de la plate-forme Larsen B en janvier 2022. (Source: NASA)

Gros plan sur les plates-formes Larsen A et B avec, en encart, un aperçu des 4 plate-formes de la Péninsule Antarctique (Source: NASA)

Fonte des plateformes glaciaires en Antarctique // Melting of ice shelves in Antarctica

Comme je l’ai écrit plusieurs fois sur ce blog, si les plates-formes glaciaires de l’Antarctique occidental fondent et disparaissent, elles ne retiendront plus les glaciers qui se trouvent en amont. Si ces glaciers atteignent l’océan, ils contribueront à l’augmentation du niveau de la mer dans le monde entier. Au cours des dernières années, les scientifiques ont attiré l’attention du public sur les glaciers Thwaites et Pine Island, deux immenses rivières de glace de l’Antarctique occidental.

Selon une étude publiée le 11 juin 2021 dans la revue Science Advances, la plateforme qui retient le glacier de Pine Island se désintègre beaucoup plus vite qu’auparavant et laisse échapper d’énormes icebergs. Sa fonte s’est accélérée en 2017 et fait craindre aux scientifiques qu’avec le réchauffement  climatique, la fonte du glacier se produise plus rapidement que les siècles mentionnés dans les prévisions.

La plateforme glaciaire devant le Pine Island a reculé d’environ 20 kilomètres entre 2017 et 2020. Cette situation a été confirmée en visionnant en accéléré les images collectées par un satellite européen qui prend des photos tous les six jours.

Entre 2017 et 2020, il y a eu trois grands événements de dislocation de la plateforme glaciaire, avec vêlage de monstres de glace de plus de 8 kilomètres de long et 36 kilomètres de large qui se sont ensuite morcelée en icebergs plus petits. On a également observé beaucoup de petits vêlages.

Les scientifiques craignent que la plateforme glaciaire dans son ensemble lâche prise et disparaisse en quelques années. Ils ont observé le comportement de deux repères sur le glacier principal et ont découvert qu’ils avaient accéléré leur progression de 12% à partir de 2017. Comme je l’ai écrit plus haut, le glacier de Pine Island est l’un des deux glaciers de l’Antarctique occidental que les glaciologues craignent de voir disparaître à brève échéance. L’autre glacier est le Thwaites. Si le Pine Island fondait dans sa totalité, cette eau entraînerait une élévation du niveau de la mer de 50 centimètres. Le glacier est responsable d’environ un quart de la perte de glace sur ce continent. Tous les modèles montrent que si le Pine Island et le Thwaites disparaissent, le reste de l’Antarctique occidental suivra, car tous les glaciers de cette partie du continent sont interconnectés.

Source : Yahoo News.

—————————————-

As I put it several times before, if the ice shelves in West Antarctica melt and collapse, they will no longer hold back the glaciers that are pushing behind them. Should these glaciers reach the ocean, they will contribute to increasing sea level rise around the globe. In the past years, scientists have drawn public attention to the Thwaites and Pine Island glaciers, two massive rivers of ice in West Antarctica.

According to a study published on June 11th, 2021 in the journal Science Advances, the ice shelf that holds back the Pine Island glacier is breaking up much faster than before and spawning huge icebergs. Its melting accelerated in 2017, causing scientists to worry that with climate change the glacier’s collapse could happen quicker than the many centuries predicted.

That ice shelf has retreated by about 20 kilometres between 2017 and 2020. The confirmation of this event was given by a time-lapse video from a European satellite that takes pictures every six days.

Between 2017 and 2020, there were three large breakup events, creating icebergs more than 8 kilometres long and 36 kilometres wide, which then split into lots of smaller pieces. There also were many smaller calvings.

Scientists fear that the whole shelf could give way and go within a few years. They have tracked two points on the main glacier and found they were moving 12% faster toward the sea starting in 2017.

As I put it above, the Pine Island Glacier is one of two side-by-side glaciers in western Antarctica that ice scientists worry most about losing on that continent. The other is the Thwaites Glacier. Should Pine Island melt, this water would lead to a 50-centimetre sea level rise. The glacier is responsible for about a quarter of the continent’s ice loss.

All model show that if Pine Island and Thwaites fall apart, the rest of West Antarctica will follow as all glaciers in that part of the Antarctic continent are interconnected.

Source : Yahoo News.

 

Source : National Snow and Ice Data Center (NSIDC)