Tungurahua (Equateur): Risque d’effondrement du flanc occidental // The western flank may collapse

Le dernier rapport de l’Institut de Géophysique, relayé par la Smithsonian Institution, remonte à septembre-octobre 2016. L’activité sismique sur le Tungurahua (Équateur) se situait alors à un niveau modéré. Des fumerolles étaient observées au niveau du cratère. Le rapport de l’IG a été diffusé à la fin de la dernière période éruptive du volcan (VEI 3) qui avait commencé en novembre 2011.
Aujourd’hui, ce n’est pas l’activité éruptive qui inquiète les autorités équatoriennes, mais le risque d’effondrement d’un flanc du volcan. C’est la conclusion d’une étude récente publiée dans Science Direct. Une éruption du Tungurahua, il y a environ 3 000 ans, avait provoqué un effondrement partiel du flanc ouest, provoquant une avalanche de débris qui avait couvert une superficie de 80 kilomètres carrés. Les auteurs de l’étude recommandent une surveillance étroite du volcan.
S’appuyant sur des données satellitaires, les scientifiques expliquent que l’activité récente du volcan a entraîné une déformation rapide du flanc ouest, augmentant ainsi le risque de son effondrement, ce qui causerait des dégâts importants dans les environs. Cette déformation peut s’expliquer par une accumulation de magma à faible profondeur. Si cet apport de magma se poursuit, le phénomène pourrait provoquer une accumulation de contraintes à l’intérieur du cône volcanique, entraîner une instabilité du flanc ouest, avec un risque d’effondrement.
Le  Tungurahua a une longue histoire d’effondrements de ses flancs et est fréquemment actif depuis 1999, année où une éruption a conduit à l’évacuation de 25 000 personnes. Au rythme des éruptions, le volcan s’est progressivement reconstruit au fil du temps. Le cône aux pentes abruptes atteint maintenant plus de 5 000 m de hauteur.
Source: The Watchers.

—————————————–

IG’s latest report, relayed by the Smithsonian Institution, dates back to September – October 2016 when seismic activity at Tungurahua (Ecuador) was at moderate levels. Minor fumarolic emissions were rising above the crater. The report was released at the end on the volcano’s last eruptive period which had started in November 2011, with a VEI 3.

Today, it is not the volcanic activity that worries Ecuadorian authorities, but a potential flank collapse mentioned by a new research paper published in Science Direct. A previous eruption of Tungurahua, around 3 000 years ago, had caused a partial collapse of the west flank, leading to an avalanche of debris that covered an area of 80 square kilometres. The authors of the study recommend a close monitoring of the volcano.

Relying on satellite data, the new research explains that the volcano’s recent activity has led to significant rapid deformation on the western flank, increasing the risk of its collapse, which would cause significant damage to the surrounding area. This deformation can be explained by shallow, temporary magma storage beneath the west flank. If this magma supply is continued, the sheer volume can cause stress to accumulate within the volcanic cone and trigger new instability of the west flank and its potential collapse.

 Tungurahua has a long history of flank collapse and has also been frequently active since 1999, when its activity led to the evacuation of 25 000 people from nearby communities. Since then, the volcano has steadily been rebuilt over time. The steep-sided cone is now more than 5 000 m high.

Source: The Watchers.

Eruption du Tungurahua en avril 2011 (Crédit photo :Wikipedia)

Risque d’effondrement du glacier de Planpincieux (Val d’Aoste / Italie)

Suite à l’alerte lancée ce matin sur Facebook, voici quelques informations supplémentaires fournies par les autorités italiennes à propos du glacier de Planpincieux, sur le versant italien du Mont-Blanc, qui risque de s’écrouler et d’emporter avec lui des routes et des maisons habitées. Le risque a conduit le maire de Courmayeur à signer dans l’urgence un décret qui interdit la circulation la circulation et oblige l’évacuation de plusieurs maisons dans le secteur du Val Ferret, l’une des régions les plus fréquentées par les touristes du Val d’Aoste. Le premier magistrat a pris cette décision suite à une concertation avec les services techniques de la région, et après avoir constaté que la partie « dangereuse » du glacier accélérait son déplacement, qui atteint une vitesse de 50 à 60 centimètres par jour. La masse qui menace de tomber a un volume d’environ 250 000 mètres cubes.
Le maire de Courmayeur explique que « les rapports reçus des structures régionales et de la Fondazione Montagna Sicura montrent que la vitesse de glissement du glacier de Planpincieux a considérablement augmenté au cours de ces derniers temps. Le scénario d’un possible effondrement du glacier concerne le fond de vallée habité, en particulier la route d’accès locale à Planpincieux. Ce qui se passe actuellement révèle une fois de plus que la montagne est entrée dans une phase de profonds changements provoqués par les facteurs climatiques. Elle est donc particulièrement vulnérable. Dans le cas présent, il s’agit d’un glacier tempéré particulièrement sensible aux températures élevées.  »
Certains événements récents témoignent de la fragilité géologique du Val Ferret. Le dernier remonte au 7 août 2018 quand un glissement de terrain a tué un couple de touristes milanais qui circulait en voiture. Là aussi, il a fallu évacuer environ 250 personnes. Le glacier de Planpincieux fait l’objet d’une surveillance étroite par les glaciologues du CNR depuis 2013 en raison de sa vulnérabilité.

Source : Presse italienne.

Vue du glacier de Planpincieux, sur la face sud des Grandes Jorasses (Crédit photo: Wikipedia)

Vers une désintégration de l’Antarctique occidental ? // Toward a disintegration of West Antarctica ?

De nos jours, avec le réchauffement climatique, on craint de plus en plus que l’Antarctique occidental s’effondre et disparaisse dans l’océan. Cela déclencherait inévitablement une augmentation rapide du niveau des mers. Ce ne serait pas la première fois qu’une telle situation se produirait. Il y a 125 000 ans, au cours de la dernière brève période chaude – baptisée Eémien – entre les périodes glaciaires, les températures étaient à peine plus élevées qu’aujourd’hui et le niveau de la mer était de 6 à 9 mètres plus élevé que de nos jours, recouvrant d’immenses étendues de terres sèches aujourd’hui.
Les scientifiques ont révélé que la source de toute cette eau était un effondrement de l’inlandsis antarctique occidental et les glaciologues s’inquiètent de la stabilité fragile de cette énorme masse de glace. Sa base, située au-dessous du niveau de la mer, risque d’être minée par le réchauffement des océans. Les glaciers qui se trouvent en amont et qui sont retenus par cette masse de glace, accéléreraient leur course vers l’océan si la plateforme ouest antarctique disparaissait. J’ai décrit ce phénomène dans les notes précédentes. Lors d’une réunion de l’American Geophysical Union à Washington, D.C., des scientifiques de l’Oregon State University ont prouvé, au moyen de carottes de sédiments, que la calotte glaciaire avait disparu dans un passé géologique récent et dans des conditions climatiques analogues à celles d’aujourd’hui.
La forte perte de masse observée en Antarctique occidental au cours des deux ou trois dernières décennies pourrait marquer le début d’une nouvelle désintégration de la calotte glaciaire de l’Antarctique occidental. Si tel est le cas, le monde devra se préparer à une hausse du niveau des mers plus importante et plus rapide que prévu. En effet, après l’effondrement de l’ancienne calotte glaciaire de l’Ouest Antarctique, certains relevés sur le terrain montrent que la hausse de la mer atteignait 2,5 mètres par siècle.
Au cours de l’Eémien, les températures globales étaient supérieures de 2°C à celles observées avant l’ère industrielle (contre 1°C aujourd’hui). Cependant, le réchauffement n’était pas dû aux gaz à effet de serre, mais à de légers changements dans l’orbite et l’axe de rotation de la Terre. L’Antarctique était probablement plus froid qu’aujourd’hui. La cause de la montée du niveau de la mer, enregistrée par les coraux fossiles situés aujourd’hui bien au-dessus de la marée haute, est longtemps restée un mystère.
Les scientifiques ont commencé par accuser la fonte de la calotte glaciaire du Groenland. Cependant, en 2011, des chercheurs ont disculpé le Groenland après avoir identifié des empreintes isotopiques de son substrat rocheux dans des sédiments provenant d’une carotte océanique forée au large de son extrémité sud. Les isotopes ont montré que la glace continuait à éroder le substrat rocheux au cours de l’Eémien. Si la calotte glaciaire du Groenland n’avait pas disparu et ne contribuait donc pas à la hausse du niveau de la mer, la suspicion se dirigeait vers calotte glaciaire de l’Antarctique occidental.
Les chercheurs de l’Université de l’Oregon ont décidé d’appliquer leur technique isotopique à l’Antarctique. Ils ont d’abord analysé les carottes de sédiments marins extraites le long de la partie occidentale de la banquise. Ils ont examiné 29 carottes et identifié des signatures géochimiques pour trois régions sources différentes du substrat rocheux: la partie montagneuse de la Péninsule Antarctique; la province d’Amundsen, près de la mer de Ross; et la zone intermédiaire, autour du glacier Pine Island, particulièrement vulnérable.
Avec ces empreintes à leur disposition, ils ont ensuite analysé les sédiments marins contenus dans une carotte prélevée au large dans la mer de Bellingshausen, à l’ouest de la Péninsule Antarctique. Un courant marin continu longe la plateforme continentale de l’Ouest Antarctique et transporte les sédiments provenant de l’érosion glaciaire en cours de route. Le courant fait s’accumuler une grande partie de ces sédiments près du site où la carotte a été prélevée. Ces sédiments s’accumulent rapidement et piègent des microorganismes à coquilles appelées foraminifères, protozoaires unicellulaires qui peuvent être datés en comparant leurs rapports isotopes d’oxygène à ceux des carottes avec des dates connues. Sur une longueur de 10 mètres, la carotte contient 140 000 ans d’accumulation de sédiments. Pendant la majeure partie de cette période, les sédiments contiennent les signatures géochimiques des trois régions du socle rocheux de l’Antarctique occidental, ce qui révèle une érosion continue provoquée par la glace. Toutefois, dans une section datant du début de l’Eémien, les empreintes disparaissent en deux endroits  tout d’abord au niveau du glacier de Pine Island, puis de la province d’Amundsen. Il ne subsiste que des sédiments de la partie montagneuse de la péninsule où les glaciers ont peut-être persisté. La datation de la carotte n’est pas très précise, ce qui signifie que la pause dans l’érosion glaciaire n’a peut-être pas eu lieu pendant l’Eémien. Il se peut aussi que la pause proprement dite soit illusoire, ou que les courants marins se soient temporairement déplacés, avec un transfert des sédiments vers un autre site.
D’autres recherches sont en cours. Le mois prochain, un navire de recherche entamera une mission de trois mois avec comme but l’extraction d’au moins cinq carottes au large de l’Antarctique occidental. Dans le même temps, le chercheur responsable de l’étude mentionnée dans cet article espère la faire publier à temps pour qu’elle fasse partie du prochain rapport des Nations Unies sur le climat. Dans les rapports de 2001 et 2007, le risque de désintégration de l’Antarctique occidental n’a pas été pris en compte dans le cadre des estimations de hausse du niveau de la mer dans les prochaines années. Ce n’est qu’en 2013 que les auteurs du rapport ont commencé à mentionner l’Antarctique.
Source: Science.

————————————————————–

Today, with global warming, there are increasing fears that West Antarctica might collapse and disappear in the ocean. This would inevitably trigger a rapid increase of ocean levels. This would not be the first time such a situation happened. Some 125,000 years ago, during the last brief warm period between ice ages – it was called the Eemian – ttemperatures were barely higher than in today’s and sea levels were 6 to 9 metres higher than they are today, drowning huge areas of land that is dry today.

Scientists have revealed that the source of all that water was a collapse of the West Antarctic Ice Sheet and glaciologists worry about the present-day stability of this formidable ice mass. Its base lies below sea level, at risk of being undermined by warming ocean waters, and the glaciers behind it would accelerate their forward movement of this mass of ice disappeared. I described this phenomenon in previous notes. Scientists from Oregon State University at a meeting of the American Geophysical Union in Washington, D.C., have provided evidence, by means of a sediment core, that the ice sheet disappeared in the recent geological past under climate conditions similar to today’s.

The big increase in mass loss observed in West Antarctica in the past decade or two might be the start of a new collapse of the West Antarctic Ice Sheet. If so, the world may need to prepare for sea level to rise farther and faster than expected: Once the ancient ice sheet collapse got going, some records show that ocean waters rose as fast as some 2.5 metres per century.

During the Eemian, global temperatures were some 2°C above preindustrial levels (compared with 1°C today). But the cause of the warming was not greenhouse gases, but slight changes in Earth’s orbit and spin axis, and Antarctica was probably cooler than today. What drove the sea level rise, recorded by fossil corals now marooned well above high tide, was a mystery.

Scientists once blamed the melting of Greenland’s ice sheet. But in 2011, researchers exonerated Greenland after identifying isotopic fingerprints of its bedrock in sediment from an ocean core drilled off its southern tip. The isotopes showed ice continued to grind away at the bedrock through the Eemian. If the Greenland Ice Sheet didn’t vanish and push up sea level, the vulnerable West Antarctic Ice Sheet was the obvious suspect.

The Oregon University researchers set out to apply their isotope technique to Antarctica. First, they analysed archived marine sediment cores drilled from along the edge of the western ice sheet. Studying 29 cores, they identified geochemical signatures for three different bedrock source regions: the mountainous Antarctic Peninsula; the Amundsen province, close to the Ross Sea; and the area in between, around the particularly vulnerable Pine Island Glacier.

Armed with these fingerprints, they then analyzed marine sediments from a core drilled farther offshore in the Bellingshausen Sea, west of the Antarctic Peninsula. A stable current runs along the West Antarctic continental shelf, picking up ice-eroded silt along the way. The current dumps much of this silt near the core’s site, where it builds up fast and traps shelled microorganisms called foraminifera, which can be dated by comparing their oxygen isotope ratios to those in cores with known dates. Over a stretch of 10 metres, the core contained 140,000 years of built-up silt. For most of that period, the silt contained geochemical signatures from all three of the West Antarctic bedrock regions, suggesting continuous ice-driven erosion. But in a section dated to the early Eemian, the fingerprints winked out: first from the Pine Island Glacier, then from the Amundsen province. That left only silt from the mountainous peninsula, where glaciers may have persisted. The dating of the core is not precise, which means the pause in erosion may not have taken place during the Eemian. It is also possible that the pause itself is illusory, that ocean currents temporarily shifted, sweeping silt to another site.

More research is on the way. Next month, a research ship will begin a 3-month voyage to drill at least five marine cores off West Antarctica. Meanwhile, the head of the research hopes to get his own study published in time to be included in the next United Nations climate report. In the 2001 and 2007 reports, West Antarctic collapse was not even considered in estimates of future sea level; only in 2013 did authors start mentioning Antarctica.

Source: Science.

Anak Krakatau (Indonésie): Nouvelles fractures // New fissures

Selon l’Agence indonésienne de météorologie, climatologie et géophysique (BMKG), l’activité volcanique se poursuit sur Anak Krakatau et deux nouvelles fractures ont été observées au travers de l’île volcanique. En conséquence, les autorités craignent un autre glissement de terrain et un tsunami de grande ampleur. Le public est invité à faire preuve de vigilance dans une zone des 500 mètres de largeur le long de la côte.
Le BMKG indique que la partie actuelle du volcan susceptible de s’effondrer présente un volume d’environ 60 millions de mètres cubes, contre les 90 millions de mètres cubes qui ont glissé dans le Détroit de la Sonde le 22 décembre 2018 en déclenchant un tsunami meurtrier.
Selon le VAAC de Darwin, le 5 janvier 2019 l’Anak Krakatau a émis des panaches de cendre jusqu’à 10 km de hauteur.
Le niveau d’alerte de l’Anak Krakatau est maintenu à 3 sur une échelle de 4. Les habitants et les touristes ne doivent pas s’approcher à moins de 5 kilomètres du cratère.

Source: BMKG, The Watchers, presse indonésienne.

———————————————–

According to the Indonesian Meteorology, Climatology and Geophysics Agency (BMKG), volcanic activity continues at Anak Krakatau and two new cracks have been observed across the volcanic island. As a consequence, authorities fear another large-scale landslide and tsunami could be produced. Tthe public is asked to be vigilant in the 500-metre zone along the coast.

BMKG indicates that the current part of the volcano likely to collapse has a volume of about 60 million cubic metres, compared with the 90 million cubic metres that collapsed into the Sunda Strait on December 22nd, 2018 and triggered a deadly tsunami.

According to the Darwin VAAC, on January 5th, 2019, Anak Krakatau emitted ash up to 10 km high. .

The alert level for Anak Krakatau is kept at 3 on a scale of 4. Residents and tourists should not approach within 5 kilometres of the crater.

Source: BMKG, The Watchers, Indonesian news media.

Anak Krakatau (Indonésie) : Une étude visionnaire ! // Anak Krakatau (Indonesia) : A visionary study !

S’agissant de la prévision des éruptions volcaniques, je dis souvent que nous ne sommes pas encore en mesure de les prévoir correctement. Certes, notre capacité à analyser le comportement d’un volcan est bien meilleure qu’il y a cent ans, mais il reste encore beaucoup à faire.
Pourtant, certains scientifiques sont plus optimistes que moi et affirment qu’ils sont capables de faire des prévisions volcaniques à long terme. Un chercheur de l’Université de l’Oregon a déclaré que ses collègues et lui-même avaient anticipé ce qui s’est passé le 22 décembre 2018. En janvier 2012, ces scientifiques ont publié les résultats de simulations numériques d’un effondrement du flanc de l’Anak Krakatau et du tsunami que le glissement de terrain avait déclenché. Ils ont mis en garde contre les effets dévastateurs pour les côtes. Dans leur étude, ils ont « simulé numériquement une déstabilisation soudaine vers le sud-ouest d’une grande partie de l’Anak Krakatau, ainsi que la formation et la propagation du tsunami qui résulterait ».
Les chercheurs rappellent à la communauté scientifique que l’Anak Krakatau a grandi rapidement depuis sa première apparition à la surface de la mer en 1928. Depuis cette époque, en moins de 100 ans, il a édifié un cône par accumulation de matériaux au cours de plusieurs éruptions, dont celle qui a commencé en mai 2018 et continue encore aujourd’hui. L’île est particulièrement sujette aux ruptures gravitationnelles car elle s’est édifiée à proximité et au-dessus d’une pente sous-marine abrupte qui représente la limite nord-est de la caldeira laissée par l’éruption cataclysmale de 1883.
En raison de cette topographie sous-marine combinée à de forts courants marins, le versant ouest de l’Anak Krakatau est devenu beaucoup plus escarpé que le côté est. L’étude explique que le volcan continue de croître de préférence vers le sud-ouest, de sorte que « les glissements de terrain le long du flanc sud-ouest ne peuvent pas être exclus. Un tel glissement de terrain serait dirigé vers le sud-ouest à l’intérieur de la caldeira de 1883 et déclencherait des vagues qui se propageraient dans le Détroit de la Sonde et menaceraient les côtes indonésiennes « .
La hauteur des vagues modélisée dans l’étude des universitaires correspond assez bien à ce qui a été observé le 22 décembre. Dans la mesure où les systèmes d’alerte aux tsunamis locaux ont été conçus uniquement en fonction des séismes terrestres, aucune alerte n’a pu être émise à l’attention des populations vivant sur la côte. En outre, l’effondrement du flanc du volcan s’est produit pendant la nuit. Le volumineux panache de cendre ainsi que les violentes explosions de vapeur résultant de l’interaction soudaine de l’eau avec le magma ont entravé la visibilité. Lorsque les vagues du tsunami sont arrivées, elles ont surpris tout le monde.
Cette étude est fort intéressante. Le problème est qu’il existe encore un grand fossé entre la modélisation et les simulations d’une part et la réalité sur le terrain d’autre part. Anticiper un processus éruptif est une chose ; convaincre les autorités de mettre en place les mesures adéquates pour y faire face est une autre chose! C’est un peu la même chose aujourd’hui avec le réchauffement climatique : les climatologues préviennent que les événements extrêmes avec vents violents et inondations vont se multiplier, mais les autorités n’ont pas encore pris les mesures qui s’imposent pour y faire face.
Le style de l’éruption de l’Anak Krakatau a radicalement changé depuis l’effondrement du flanc sud-ouest. L’éruption ne se produit plus au sommet du cône, mais au niveau de la mer ou en dessous. Cela explique les violentes explosions que l’on observe actuellement. L’eau de mer interagit avec le magma, un processus qui donne lieu à des explosions phréatomagmatiques avec projections de vapeur, de débris et de cendre, souvent de forme cypressoïde et typiques de l’activité surtseyenne.

Source : Tsunami hazard related to a flank collapse of Anak Krakatau Volcano, Sunda Strait, Indonesia (T. Giachetti, R. Paris, K. Kelfoun and B. Ontowirjo) – 2012.

————————————————

As far as the prediction of volcanic eruptions is concerned, I often say we are not yet able to predict them properly. Our ability to analyse the behaviour of a volcano is much better than a century ago, but a lot of progress needs to be made.

However, some scientists are more optimistic than me and affirm they are able to make long term volcanic predictions. A University of Oregon researcher said he and his colleagues had anticipated what happened on December 22nd, 2018. In January 2012, these scientists published the results of numerical simulations a flank collapse and associated tsunami at Anak Krakatau and warned about the devastating effects it would have on nearby coasts:
In their study, they « numerically simulated a sudden southwestwards destabilization of a large part of the Anak Krakatau Volcano, and the subsequent tsunami formation and propagation. »
They also remind the scientific community that Anak Krakatau island has been growing rapidly growing since it first breached the surface of the sea in 1928. Since then, in less than 100 years, it built an overlapping cone during several eruptions, the latest being the one that started in May 2018 and still continues. What makes the island particularly prone to gravitational flank failure is that it has been constructed close and above a steep submarine slope, the NE margin of the caldera basin left by the massive 1883 eruption.
As a consequence of this underwater topography, combined with strong sea currents, the western slope of Anak Krakatau has developed to be much steeper than the eastern side. The study explains that the volcano continues to grow preferably towards the south-west, so that « landslides along its southwestern flank cannot be excluded. Such a landslide would be directed southwestwards into the 1883 caldera and would trigger waves that would propagate into the Sunda Strait, possibly affecting the Indonesian coasts ».
The modelled wave heights in various location correspond quite well with what had been observed. Since the local tsunami warning systems in place was built only with earthquakes as trigger in mind, no warning could be given to the people on the beaches. In addition, the flank collapse occurred at night and the resulting large ash plume and violent steam explosions as result of sudden interaction of water with magma and hot rocks could not be seen by people. When the tsunami waves arrived they caught everyone by surprise.

The problem is that there is still a wide gap between modelling and simulations and on-the-field reality. Anticipating an eruption process is one thing; convincing the authorities to enforce the right measures to face it is another thing! It is like saying that today, with global warming, extreme events with high winds and floodings will be more and more frequent, but authorities have not yet really taken the measures to face such events.
The eruption style changed drastically right after the flank collapse occurred. It is no longer located at the summit of the cone, but at or below sea level. This accounts for the violent explosions which are currently observed. As seawater interacts with hot rocks and the ascending magma, the process gives birth to phreatomagmatic explosions ejecting dense jets of steam, debris and ash, with cypress-shaped ejections typical of this kind of Surtseyan activity.

Source : Tsunami hazard related to a flank collapse of Anak Krakatau Volcano, Sunda Strait, Indonesia (T. Giachetti, R. Paris, K. Kelfoun and B. Ontowirjo) – 2012.

Photos de l’éruption de l’Anak Krakatau parues dans la presse internationale

Anak Krakatau (Indonésie)

Selon le Centre indonésien de gestion des catastrophes (PVMBG), l’Anak Krakatau a perdu près d’un tiers de sa hauteur initiale qui est passée de 338 mètres à 110 mètres, après la série d’éruptions et un effondrement du volcan qui a provoqué un tsunami la semaine dernière, faisant plus de 400 morts et des milliers de blessés. Après l’effondrement du flanc du volcan, on estime que son volume est passé de 150-180 millions de mètres cubes à 40-70 millions de mètres cubes.
En conséquence, le PVMBG pense que le risque d’un nouveau tsunami est relativement faible, à moins que des failles se réactivent dans le Détroit de la Sonde. Les autorités pensent que maintenant le plus grand danger est une éruption de type surtseyen au niveau de la surface de la mer, suite au contact de l’eau de mer et de la lave. Ce type d’éruption produit beaucoup de cendre mais ne déclenche pas de tsunami. Les dernières photos publiées dans la presse confirment cette hypothèse (voir image ci-dessous). Il est probable que cette activité persistera jusqu’à ce que les matériaux issus de l’éruption se soient suffisamment accumulés pour constituer une nouvelle structure émergée. Depuis le poste d’observation de Pasauran, on se rend compte que le cône du volcan se trouve actuellement plus bas que l’île de Sertung et l’île de Panjang, qui se dressent respectivement à 182 mètres et 132 mètres au dessus du niveau de la mer.
Certains géologues américains font toutefois remarquer que le volcan est toujours instable et pourrait s’effondrer à nouveau. Ils expliquent que l’édifice volcanique est instable car il repose en bordure de la caldeira émergée de 1883, profonde de 150 à 200 mètres. À ce jour, le volume et la forme exacts du glissement de terrain de la semaine dernière sont inconnus, ce qui ne permet pas de modéliser avec précision les glissements de terrain et les tsunamis associés. Ces mêmes scientifiques pensent que l’aléa tsunami lié à l’activité volcanique n’a pas disparu. Le volcan doit être surveillé en permanence et les observations effectuées sur le volcan doivent aller de pair avec un système d’alerte aux tsunamis.
Le niveau d’alerte pour Anak Krakatau est maintenu à 3.
Source: The Jakarta Post.

——————————————————

According to the Volcanology and Geological Disaster Mitigation Center (PVMBG), Anak Krakatau has shrunk to almost a third its original height, from 338 meters to 110 metres, after the series of eruptions and a collapse that triggered a tsunami last week, killing more than 400 people and injuring thousands. Following last week’s collapse, it is estimated that the volcano has reduced to between 40 million and 70 million cubic metres in size from a mass of about 150 million to 180 million cubic metres.

As a consequence, PVMBG thinks that the potential for another tsunami is relatively small, unless there is a reactivation of faults or fault structure in the Sunda Strait. Authorities think the greatest potential danger from Anak Krakatau is a Surtseyan eruption, which takes place on the surface of the sea, with the contact between sea water and lava. This kind of eruption produces a lot of ash but cannot trigger a tsunami. The latest photos released in the press confirm this hypothesis (see image below). It is likely that this activity will persist until the lava accumulated enough to build another emerged platform. Based on the view from the Pasauran Volcano Observation Post, the cone of the volcano is currently situated lower than Sertung Island and Panjang Island, which are 182 metres and 132 metres above sea level, respectively.

However, some American geologists think that the volcano is still unstable and might collapse again. They say that the cone of the volcano is particularly unstable because it was built on the rim of the emerged 1883 caldera, 150 to 200 metres deep. To date, the exact volume and shape of last week’s landslide is still unknown, preventing accurate modelling of landslides and related tsunamis. These scientists believe that the tsunami hazard related to volcanic activity has not passed; the volcano should be watched almost permanently, and observations at the volcano should be linked to a tsunami alert system.

The alert level for Anak Krakatau is kept at 3.

Source: The Jakarta Post.

Les images satellitaires montrent que l’effondrement du 22 décembre a considérablement réduit la taille de l’Anak Krakatau

Les cypressoïdes confirment la présence d’une activité de type surtseyen, nom donné par référence à la naissance de l’île Surtsey au sud de l’Islande en 1963.

Tsunami du Krakatau: Une prévision difficile, voire impossible // A difficult, even impossible prediction

Après le tsunami dévastateur (dernier bilan de 429 morts, 1485 blessés et 154 disparus) provoqué pat un effondrement partiel de l’Anak Krakatau, les commentaires se multiplient sur les réseaux sociaux pour expliquer ce qui s’est passé. Malheureusement, si nous sommes en mesure d’analyser l’événement, nous ne sommes toujours pas capables de le prévoir. Il faut bien reconnaître qu’il en va de même pour un grand nombre d’événements naturels.

On peut lire un certain nombre de prévisions gratuites. Certains indiquent qu’un nouvel effondrement latéral du Krakatau peut se produire à nouveau car l’édifice est déstabilisé. Bien sûr, mais il se peut qu’un tel événement ne se produise que dans plusieurs mois, voire plusieurs années, et les populations littorales seront toujours autant démunies pour y faire face.

Il faut bien admettre que l’on ne peut pas faire grand-chose pour anticiper un effondrement ou un glissement de terrain sur un volcan actif et, qui plus est, qui se dresse au milieu de la mer. Installer des capteurs sur les pentes ? A quoi bon ? Ils seront vite recouverts par les projections éruptives et donc inutilisables. A l’occasion du tsunami de ces derniers jours, j’ai rappelé qu’un événement semblable, mais de moindre ampleur, avait eu lieu sur le Stromboli le 30 décembre 2002 quand un morceau de la Sciara del Fuoco avait glissé au fond de la mer, déclenchant un tsunami. Connaissant la Sciara del Fuoco, je ne vois pas comment on pourrait y installer des capteurs étant donné qu’elle reçoit toutes les projections du volcan.

Il faut malheureusement se rendre à l’évidence : nous ne sommes pas capables de prévoir le tsunami déclenché par un effondrement brutal sur un volcan, de la même façon que nous ne savons pas prévoir la vague provoquée par un événement sismique en mer. Si un tel événement se produit très loin des côtes, des balises en mer permettent de suivre sa progression et d’alerter les populations. En revanche, si le décrochement de faille a lieu à quelques encablures du rivage, toute forme de prévention devient impossible.

De temps à autre, on  voit apparaître des articles à propos du basculement du flanc E de l’Etna (Sicile) vers la Mer Ionienne. Certains scientifiques redoutent, à juste titre, une catastrophe majeure si un tel événement se produisait. Le flanc E du volcan est parcouru de failles qui sont bien connues et surveillées. Malgré cela, serons-nous en mesure d’anticiper suffisamment à temps un tel effondrement ? La question reste posée !

—————————————————

After the devastating tsunami (latest toll: 429 dead, 1,485 injured and 154 missing) caused by a partial collapse of Anak Krakatau, comments are multiplying on social networks to explain what happened. Unfortunately, if we are able to analyze the event, we are still not able to predict it. We should admit that the same goes for a large number of natural events.
A number of forecasts can be read. Some say that a new lateral collapse of Krakatau can happen again because the volcanic edifice is destabilized. Of course, but such an event may happen in a few months or even years, and the seashore populations will still be destitute to deal with it.
We must admit that we can not do much to anticipate a collapse or a landslide on an active volcano and, what is more, that stands in the middle of the sea. Should we install sensors on the slopes? What’s the point ? They will be quickly covered by eruptive projections and therefore unusable. Concerning the tsunami of recent days, I recalled that a similar but smaller event took place at Stromboli on December 30th, 2002, when a chunk of the Sciara del Fuoco slid into the depths of the sea, triggering a tsunami. Knowing the Sciara del Fuoco, I do not see how we could install sensors because it receives all projections of the volcano.
Unfortunately, we are not able to predict the tsunami triggered by a sudden collapse on a volcano, in the same way that we do not know how to predict the wave caused by a seismic event at sea. If such an event occurs very far from the coasts, beacons at sea make it possible to follow its progress and to alert the populations. On the other hand, if the fault slip occurs a few miles from shore, any form of prevention becomes impossible.
From time to time, articles appear about the tilting of the eastern flank of Mt Etna (Sicily) towards the Ionian Sea. Some scientists fear, rightly, a major disaster if such an event occurred. The E flank of the volcano is slashed by faults that are well known and monitored. In spite of this, will we be able to anticipate enough in time such a collapse? The question remains!

Carte montrant les zones affectées par le tsunami du 22 décembre 2018 (Source: Jakarta Globe)