Accélération de la fonte glaciaire en Antarctique // Glacier melting in Antarctica is speeding up

Comme je l’ai déjà écrit, les glaciers de l’Antarctique vêlent de plus en plus vite à cause d’une eau de mer de plus en plus chaude. Les scientifiques viennent de passer au crible les glaciers qui finissent leur course dans l’océan sur un tronçon de côte de 1000 km dans la région de Getz qui comprend 14 glaciers. Leur fonte est impressionnante : depuis 1994, ils ont perdu 315 gigatonnes de glace.

Si on se place dans le contexte de la contribution du continent antarctique à l’élévation globale du niveau des océans au cours de la même période, on remarque que la région de Getz représente un peu plus de 10% – soit un peu moins d’un millimètre – de l’élévation totale.

Dans leur étude, publiée dans la revue Nature Communications, les chercheurs expliquent qu’ils ont examiné 30 années de données radar satellitaires sur les variations de vitesse et d’épaisseur de la glace. À cette analyse, ils ont ajouté des informations sur les propriétés de l’océan au large de la région de Getz, ainsi que les résultats d’un modèle qui met le climat local en contexte au cours de la période.

Les résultats révèlent une tendance de fonte linéaire sans la moindre ambiguïté. En moyenne, la vitesse des 14 glaciers de la région a augmenté de près de 25% entre 1994 et 2018. La vitesse de trois glaciers centraux a même augmenté de plus de 40%. En 2018, une portion de glace avançait  à une vitesse annuelle supérieure de 391 m à 1994. Cela représente une augmentation de 59% en seulement 30 ans.

La cause probable de cette accélération est l’eau océanique relativement chaude qui pénètre sous la zone de flottaison des glaciers et la fait fondre par en dessous. Les scientifiques savaient déjà que les eaux océaniques plus chaudes érodent de nombreux glaciers de l’Antarctique occidental. Les dernières observations démontrent l’impact sur la région de Getz.

Grâce à la nouvelle étude, les scientifiques ont maintenant des données sur toutes les marges des calottes glaciaires du Groenland et de l’Antarctique. Ils sont en mesure de cartographier desévolutions très détaillées et très localisées.

Source: La BBC.

—————————————–

As I put it before, glaciers in Antarctica are calving faster and faster as they are being melted by warmer seawater. Scientists have just taken a detailed look at the ice streams flowing into the ocean along a 1,000km-stretch of the Getz region which incorporates 14 glaciers. Their melting is impressive. Since 1994, they have lost 315 gigatonnes of ice.

In the context of the Antarctic continent’s contribution to global sea-level rise over the same period, Getz accounts for just over 10% – a little under a millimetre – of the total  rise.

In their study, published in the journal Nature Communications, the researchers explain that they examined two and a half decades of satellite radar data on ice velocity and thickness. To this analysis, they added information about ocean properties immediately offshore of Getz – along with the outputs of a model that put the local climate in context over the period. The findings reveal an unambiguous linear trend.

On average, the speed of all 14 glaciers in the region increased by almost a quarter between 1994 and 2018, with the velocity of three central glaciers increasing by more than 40%.

One particular ice stream was found to be flowing 391m/year faster in 2018 than it was in 1994 – a 59% increase in just two and a half decades.

The probable cause is the relatively warm deep ocean water which is getting under the glaciers’ floating fronts and melting them from below. The scientists already knew that warmer ocean waters are eroding many of West Antarctica’s glaciers. The latest observations demonstrate the impact this is having on the Getz region.

Thanks to the new study, scientists have observations now around the whole margins of the Greenland and Antarctic ice sheets. They are able to map really detailed, localised patterns of change.

Source : The BBC.

Carte montrant la vitesse de progression des glaciers dans la région de Getz. Plus c’est rouge, plus la progression du glacier et sa fonte sont rapides. (Source : Université de Leeds)

Le changement climatique fait s’effondrer la Route n°1 à Big Sur (Californie) // Climate change causes Highway 1 to collapse in California’s Big Sur

Les événements extrêmes provoqués par le changement climatique peuvent avoir des conséquences désastreuses pour l’environnement et perturber les activités humaines. C’est ce qui s’est passé en Californie le 31 janvier 2021 lorsqu’une partie de la célèbre et spectaculaire route littorale, la Highway 1, s’est effondrée dans l’océan. L’événement a été provoqué par un glissement de terrain qui va entraîner la fermeture de 37 kilomètres de cette route pendant des mois.

Au cours de la dernière semaine de janvier, une violente tempête hivernale a provoqué l’ouverture d’une brèche de 45 mètres dans la route qui serpente le long de Big Sur. Des torrents d’eau ont emporté du béton, des arbres et de la boue qui se sont déversés dans la mer en contrebas. [NDLR: Big Sur fait référence à une partie du littoral californien qui s’étend sur environ 140 km entre Carmel-in-the-Sea et San Simeon.]

Les glissements de terrain sont fréquents le long de la Highway 1. Avec le changement climatique, l’afflux de véhicules et le tourisme de masse qui fragilisent les infrastructures et les écosystèmes dans la région côtière, les problèmes ne feront que s’aggraver. En raison de problèmes récurrents, il se dit que la route n’a jamais été pleinement opérationnelle du nord au sud depuis sa mise en service. Entre les dégâts causés par la mer et les effondrements des flancs de falaises, l’entretien de la route est devenu une tâche sans fin. En 2017, un glissement de terrain au niveau de Mud Creek a recouvert 400 mètres de chaussée avant de se déverser dans la mer. La reconstruction a duré plus d’un an et a coûté environ 54 millions de dollars.

Le glissement de terrain du 31 janvier a probablement été causée par un ensemble de circonstances environnementales : une saison d’incendies encore jamais observée suivie de puissantes tempêtes hivernales. Les incendies ont duré plusieurs mois et détruit la végétation qui protégeait les falaises abruptes le long de la côte. Puis vint la pluie. Une «rivière atmosphérique» qui déverse  de fortes quantités de pluie ou de neige lorsqu’elle touchele sol, a inondé la région avec 40 centimètres de pluie, soit près du double de la quantité que la région connaît en moyenne en janvier. Le sol n’a pas pu absorber cette quantité d’eau qui a provoqué l’écoulement de la boue sur la falaise mise à nu par les incendies. Cette boue a ensuite obstrué un tuyau de drainage sous la route qui  a été submergée et s’est effondrée sous le poids des matériaux.

Une telle combinaison de conditions météorologiques extrêmes n’est plus exceptionnelle. Ils s’inscrivent dans la lignée des modèles de crise climatique marqués par des étés chauds et secs, des incendies plus importants et de longues périodes de sécheresse entrecoupées de pluies intenses qui provoquent des inondations et des glissements de terrain.

Cependant, ce ne sont pas seulement les incendies, la pluie et les glissements de terrain qui menacent la Highway 1. La mer est également à prendre en compte. Des digues et des enrochements ont été rompus par les vagues le long du rivage. La Californie a dépensé des millions de dollars pour effectuer des réparations d’urgence alors que le littoral continue de s’éroder à raison d’environ 35 centimètres en moyenne chaque année. D’autres catastrophes se produiront. Selon certaines projections scientifiques alarmistes, le niveau de la mer pourrait s’élever de plus de 2,50 mètres en Californie d’ici la fin de ce siècle.

Il est clair que la route s’effondre parce que l’océan ronge les falaises. Une solution pourrait être d’anticiper les problèmes, sans attendre qu’ils surviennent. Pendant ce temps, les personnes qui vivent le long de la Highway 1 dans la région de Big Sur doivent s’adapter. Elles doivent être prêtes à vivre isolées pendant tout un hiver. Beaucoup d’entre elles ont stocké des aliments lyophilisés et des boîtes de conserve, ainsi que beaucoup de bois de chauffage. Ces habitants ont également acheté des groupes électrogènes. Malgré les dangers, ils ne veulent pas partir. L’un d’eux a déclaré: « C’est l’un des plus beaux endroits de la planète. C’est très isolé et ce n’est pas pour tout le monde, mais je ne partirai jamais. »

Source: The Guardian.

Voici un document qui montre une série d’effondrements sur la Highway 1 à Big Sur. Elle est magnifique, mais il est fortement déconseillé de l’emprunter en cas de très mauvais temps.

https://youtu.be/aG3fqYKR97U

——————————————–

Climate change has led to more and more extreme events that may have disastrous consequences for the environment and disrupt human activities. An example was given by California on January 31st, 2021 when a portion of the famed and dramatic coastal road, the Highway 1, collapsed into the ocean. Highway 1 has been ruptured by a landslide that is expected to keep 37 kilometres of the iconic road closed for months.

In the last week of January, a severe winter rain storm caused the opening of a 45-metre fissure along the picturesque thoroughfare tucked against Big Sur, with concrete, trees and mud falling into the sea below. [Personal note : Big Sur refers to a portion of the Californian coastline that stretches over about 140 km between Carmel-in-the-Sea and San Simeon.]

Landslides have been a longstanding feature of Highway 1. And with climate change and a deluge in tourism and traffic overwhelming both infrastructure and environmental ecosystems in the coastal region, the problems are only expected to get worse. Because of recurrent problems, it is rumoured the highway has never been fully operational from north to south for more than a year since its inauguration. Caught between rising tides and crumbling cliff sides, maintaining the highway has become somewhat of a sisyphean task. In 2017, the Mud Creek slide covered a 400-metre of the highway with a huge chunk of land falling into the sea. The rebuild took more than a year to complete, and cost roughly 54 million dollars.

The 31 January slide was probably caused by the disastrous environmental combination of a record-breaking fire season followed by big winter storms. The months-long fire destroyed the vegetation that no longer protected the steep cliff sides along the coast. Then came the rain. An “atmospheric river”, a flowing column of condensed water vapour that spills severe amounts of rain or snow when it makes landfall, flooded the region, dropping 40 centimetres of rainfall, nearly twice the amount the area has seen for the entire month on average. The soil was unable to absorb that amount of cascading water, causing mud and debris to flow, ultimately blocking and then overwhelming a drainage pipe under the highway.

Such severe weather combinations are no longer an anomaly. They fall in line with climate crisis trends and models marked by hot dry summers, bigger fires and long periods of drought peppered by intense rainstorms that cause floods and landslides.

However, it is not just fires, rain and landslides that threaten Highway 1. The sea is also an important threat. Smashed seawalls built to buy more time against the encroaching waves already line the shore. California sank millions into emergency restorations as the coastline continued to erode by roughly 35 centimetres on average each year. More dangers lie ahead. By some worst-case scientific projections, sea levels could rise more than 2.50 metres in California by the end of this century.

It is clear that the roadway is crumbling because the ocean is just eating away at the cliffs. One solution might be to anticipate the problems and not wait until they happen. Meanwhile, residents living along Highway 1 in the Big Sur area have been forced to adapt. They need to be prepared to be isolated for an entire winter. Many of them have stored dried and canned food, as well as lots of firewood. They also bought backup generators. Despite the dangers, they do not want to leave. One person said: “It is one of the most beautiful places on the planet. It is very isolated and it is not for everybody, but I am never going to leave.”

Source : The Guardian.

Here is a document showing collapses of Highway 1. The road is very beautiful but it is not advised to drive on it in very bad weather

https://youtu.be/aG3fqYKR97U

Exemple d’un effondrement de la Highway 1 à Big Sur (Source : CalTrans)

La disparition de la glace // Ice disappearance

Une étude réalisée par des glaciologues de l’Université de Leeds en Grande-Bretagne et publiée le 25 janvier 2021 dans la revue The Cryosphere confirme la fonte rapide de la glace dans le monde. Les auteurs de l’étude expliquent que la glace terrestre fond plus rapidement aujourd’hui qu’au milieu des années 1990. Au final, on estime que la glace de mer, les calottes glaciaires et les glaciers dans le monde ont perdu dans leur ensemble 28 000 milliards de tonnes de glace depuis le milieu des années 1990. La vitesse de fonte annuelle de la glace est actuellement environ 57% plus rapide qu’il y a trois décennies.

La fonte de la glace terrestre sur les glaciers de l’Antarctique, du Groenland et des montagnes en général a ajouté suffisamment d’eau aux océans au cours des trois dernières décennies pour faire monter leur niveau moyen de 3,5 centimètres dans le monde. La perte de glace sur les glaciers des montagnes a représenté 22 pour cent de la perte totale annuelle de glace. Ce chiffre est remarquable quand on sait que cette fonte ne représente qu’environ 1 pour cent de toute la glace à la surface des terres.

Dans l’ensemble de l’Arctique, la surface occupée par la glace de mer rétrécit à une vitesse incroyable. 2020 a connu la deuxième plus faible étendue de glace de mer depuis l’apparition des données satellitaires il y  40 ans. En disparaissant, la glace de mer expose des zones présentant une eau sombre qui absorbe le rayonnement solaire au lieu de le renvoyer vers l’espace. Cette «amplification arctique» accélère la hausse des températures dans la région.

La température atmosphérique dans le monde a augmenté d’environ 1,1 degré Celsius depuis l’époque préindustrielle. Ce qui est particulièrement inquiétant, c’est que dans l’Arctique, la vitesse de réchauffement a été plus du double de la moyenne mondiale au cours des 30 dernières années.

À l’aide de données satellitaires couvrant la période 1994 – 2017, des mesures sur sites et des simulations informatiques, les scientifiques britanniques qui ont rédigé l’étude ont calculé que le monde perdait en moyenne 0,8 billion de tonnes métriques de glace par an dans les années 1990. Aujourd’hui, ce chiffre atteint 1,2 billion de tonnes métriques par an. [1 billion = 1012]

Source: Reuters, Yahoo News.

——————————————-

 A study made by glaciologists at Leeds University in Britain and published on January 25th, 2021 in the journal The Cryosphere confirms tha fast melting of ice around the world. The authors of the study explain that Earth’s ice is melting faster today than in the mid-1990s. Altogether, an estimated 28 trillion metric tons of ice have melted away from the world’s sea ice, ice sheets and glaciers since the mid-1990s. Annually, the melt rate is now about 57 percent faster than it was three decades ago.

The melting of land ice on Antarctica, Greenland and mountain glaciers has added enough water to the ocean during the last three decades to raise the average global sea level by 3.5 centimetres. Ice loss from mountain glaciers accounted for 22 percent of the annual total ice loss, which is noteworthy considering it accounts for only about 1 percent of all land ice atop land.

Across the Arctic, sea ice is also shrinking at an incredible speed. 2020 was the second-lowest sea ice extent in more than 40 years of satellite monitoring. As sea ice vanishes, it exposes dark water which absorbs solar radiation, rather than reflecting it back out of the atmosphere. This ‘Arctic amplification’ boosts regional temperatures even further.

The global atmospheric temperature has risen by about 1.1 degrees Celsius since pre-industrial times. But in the Arctic, the warming rate has been more than twice the global average in the last 30 years.

Using 1994–2017 satellite data, site measurements and some computer simulations, the British scientists who wrote the study calculated that the world was losing an average of 0.8 trillion metric tons of ice per year in the 1990s, but about 1.2 trillion metric tons annually in recent years.

Source : Reuters, Yahoo News.

Photo : C. Grandpey

L’érosion littorale à la Martinique et à la Guadeloupe

Avec le réchauffement climatique, la fonte de  la banquise et des glaciers, la hausse du niveau des océans menace de plus en plus de zones littorales dans le monde. Au cours de ma conférence « Glaciers en Péril », je donne l’exemple de l’Alaska où la mer libre de glace ne protège plus la côte contre les assauts des vagues pendant les tempêtes. Plusieurs structures se sont déjà écroulées dans la mer ; des familles ont dû être relogées et on prévoit, pour des raisons de sécurité évidentes, de délocaliser certains villages vers l’intérieur de l’Etat, avec des conséquences dramatiques sur le mode de vie et l’économie de subsistance des habitants qui dépendent largement des ressources de la mer.

L’Alaska est loin d’être un cas exceptionnel. Aux Antilles, des enrochements ont été installés sur la côte caraïbe de la Martinique, au nord du Prêcheur pour freiner les élans de la mer. Par le passé, plusieurs maisons d’habitation ont disparu dans les flots dans cette zone de l’île.

Enrochements au nord du Prêcheur (Photo : C. Grandpey)

Une autre méthode consiste à végétaliser la côte avec la plantation d’espèces endémiques de la Martinique comme le raisinier bord de mer, l’aloé vera ou encore la patate bord de mer. Ces plantes, du fait de leur importante densité végétale et de leur système racinaire, composent une armature qui retient le sable.

La plage des Salines à Sainte-Anne est un autre exemple emblématique du recul du trait de côte à la Martinique. Chaque année la mer gagne en moyenne 1 mètre sur le littoral.

Effets de l’érosion littorale à la Martinique (Source : DEAL de la Martinique)

De Sainte-Anne au Prêcheur en passant par le Carbet, c’est toute la côte qui est touchée par ce phénomène. Au dire des scientifiques, c’est le désensablement intensif des mers et rivières et le réchauffement climatique qui sont responsables de l’érosion littorale. Le processus semble irréversible, redessine les côtes martiniquaises et obligera les citoyens et les autorités à revoir l’aménagement des communes en bord de mer.

Effets de l’érosion littorale à la Martinique (Source : DEAL de la Martinique)

Les habitants de la Guadeloupe sont inquiets eux aussi devant la montée des eaux. A Petit-Bourg, 80 maisons menacent de s’effondrer avec l’érosion côtière. Au total, 43 familles d’un quartier situé au-dessus d’une falaise doivent évacuer d’urgence. En fait, l’urgence dure depuis plusieurs années, mais les pluies diluviennes du mois de novembre 2020 en Guadeloupe où près de 200 ml sont tombés en quelques heures, ont encore amplifié le problème après l’effondrement d’un pan de falaise. Devant la gravité de la situation, certains habitants ont accepté d’être relogés.

Le Bureau de recherches géologiques et minières (BRGM) explique que « l’activité anthropique a fortement accéléré le recul naturel du trait de côte en Guadeloupe. ». Entre 1950 et 2013, les plages du Sud Grande Terre, ont reculé d’un à sept mètres par an, et certaines falaises reculent régulièrement.

Selon une étude de l’Observatoire régional Énergie-climat de 2019, « la côte qui s’érode sans présence humaine, c’est naturel, mais si cet espace est utilisé par les humains, cela change la donne et peut s’avérer dangereux. » C’est le cas à Sainte-Anne, Pointe-Noire ou Capesterre-Belle-Eau, où plusieurs habitations sont en première ligne.

Avis de démolition à la Guadeloupe (Source : Agence des 50 Pas Géométriques)

En Guadeloupe, selon les modélisations du BRGM, le niveau de la mer pourrait monter jusqu’à 1,4 m d’ici à 2100, avec des risques de submersions marines et des conséquences sur l’habitat privé et l’activité économique.

Lien entre réchauffement climatique et catastrophes naturelles // Link between global warming and natural disasters

2020 est en passe d’être l’une des années les plus chaudes de l’histoire, laissant dans son sillage un nombre élevé de catastrophes naturelles. Les ouragans dans l’Atlantique ont été si nombreux que les climatologues n’avaient plus assez de noms pour les baptiser et ont dû recourir à l’alphabet grec! Les incendies en Californie ont brûlé près de 20 000 kilomètres carrés, un record pour cet État en matière de terres brûlées en une seule saison. Au cours des neuf premiers mois de 2020, au moins 188 personnes ont été tuées dans 16 catastrophes météorologiques qui ont coûté un milliard de dollars ou plus.

Comme je l’ai écrit ci-dessus, 2020 a été une année particulièrement chaude. Au cours de l’un des hivers les plus chauds jamais enregistrés dans l’hémisphère nord, les Grands Lacs n’ont jamais gelé ; à Moscou, les autorités russes ont dû importer de la neige pour les vacances, et la saison des incendies en Californie a commencé avec plusieurs mois d’avance. Les températures ont grimpé en flèche dans l’Arctique sibérien ; elle ont fait  fondre le pergélisol et déclenché des incendies dévastateurs. Les vagues de chaleur ont battu des records de Phoenix à Hong Kong. La Terre dans son ensemble est en passe de connaître l’année la plus chaude ou la deuxième année la plus chaude de son histoire.

Il est fort probable que les catastrophes météorologiques de cette année soient liées au changement climatique. En voici quelques preuves.

En faisant fondre les calottes glaciaires polaires, le réchauffement climatique a fait monter le niveau moyen des océans de 20 à 22 centimètres depuis le début de l’ère industrielle. Plus le niveau de base de la mer est élevé, plus le risque est élevé de voir l’eau envahir l’intérieur des terres. Selon la NOAA, les inondations observées à marée haute ont doublé aux États-Unis au cours des 20 dernières années.

La montée des eaux augmente également le risque d’inondations lors des ouragans comme on peut l’observer dans le Golfe du Bengale où le niveau de la mer augmente deux fois plus vite que la moyenne à l’échelle de la planète.

L’une des raisons pour lesquelles les tempêtes deviennent plus puissantes est qu’elles tirent leur force de l’énergie de l’océan. Lorsque l’eau se réchauffe et s’évapore, elle peut interagir avec les perturbations météorologiques pour créer une cellule tourbillonnante d’air humide ascendant, avec de très fortes précipitations et de vents violents. Plus l’eau est chaude, plus la tempête est intense. C’est ce que l’on a observé dans le sud de la France au début du mois d’octobre 2020. Comme la température de la surface de la mer augmente rapidement chaque décennie, des études montrent que la probabilité qu’une tempête tropicale devienne un ouragan de catégorie 3 ou plus augmente de 8% tous les 10 ans.

La hausse de la température de l’océan augmente aussi la probabilité de voir les ouragans s’intensifier rapidement, prenant au dépourvu les prévisionnistes et les populations. Ainsi, aux Etats-Unis en août 2020, sur la côte du Golfe du Mexique, les vents de l’ouragan Laura ont augmenté de plus de 100 km par heure dans les 24 heures juste avant que la tempête touche les terres. Elle a tué 42 personnes et causé 14 milliards de dollars de dégâts.

L’air plus chaud augmente également le degré d’humidité des ouragans. C’est une conséquence d’un phénomène physique connu sous le nom d’équation de Clausius-Clapeyron qui montre que pour chaque degré Celsius de réchauffement, l’atmosphère peut contenir 7% d’humidité en plus. Comme la relation entre la température et l’humidité n’est pas linéaire, même un faible niveau de réchauffement peut créer des tempêtes exponentiellement plus destructrices. On a pu s’en rendre compte lors de l’ouragan Harvey qui, en 2017 a laissé échapper 150 centimètres de pluie sur le sud du Texas. De nombreuses études ont montré que le changement climatique a augmenté les précipitations d’au moins 15% pendant l’ouragan, et une étude a révélé que des événements comme celui-ci sont maintenant six fois plus probables qu’ils ne l’étaient il y a quelques décennies.

Une conséquence de l’équation de Clausius-Clapeyron est qu’une atmosphère plus chaude est capable d’assécher la végétation et des sols, ouvrant la voie à de spectaculaires incendies de forêt. Une étude de 2016 a révélé que le changement climatique était responsable de plus de la moitié de l’augmentation de l’assèchement de la végétation dans les forêts de l’ouest des États-Unis au cours des 50 dernières années.

Les événements observés en 2020 confirment que l’augmentation progressive de la température peut entraîner des catastrophes naturelles exponentiellement pires. La température moyenne de notre planète a augmenté d’un peu plus de 1 degré Celsius depuis l’ère préindustrielle. Cette hausse peut semble faible mais les études montrent que le réchauffement climatique causé par l’homme a déjà multiplié par deux le nombre de forêts détruites par le feu en Occident depuis 1984.

Source: Note inspirée d’un article paru dans le Washington Post.

———————————————

2020 is about to be one of the hottest years in history, leaving in its wake a high number of natural disasters.

Hurricanes in the Atlantic have been so numerous that climatologists did not have enough names for them and had to resort to lets of the Greek alphabet! Fires in California torched nearly 20,000 square kilometres, smashing the state’s record for land burned in a single season. In the first nine months of 2020, at least 188 people have been killed in a record-tying 16 weather disasters that cost one billion dollars or more.

As I put it above, 2020 has been a hot year. During one of the Northern Hemisphere’s warmest winters on record, the Great Lakes never froze, Russian officials in Moscow had to import fake snow for the holidays, and the fire season in California began months ahead of schedule. Temperatures soared in the Siberian Arctic, melting permafrost and fuelling devastating fires. Heat waves have smashed records from Phoenix to Hong Kong. Earth overall is on track to have its first or second hottest year on record.

It is highly likely that this year’s weather disasters are linked to climate change. Here is some evidence of this.

By melting polar ice sheets, global warming has raised the global average sea level by 20 – 22 centimetres since the start of the industrial era. The higher the baseline sea level, the easier it is for a simple high tide to send water surging into communities. According to NOAA, flooding during high tides has doubled in the United States in the past 20 years. Rising waters also increase the risk of flooding during hurricanes as can be observed in the Bay of Bengal, where sea levels are rising twice as fast as the global average.

A reason why storms are getting more powerful is that they draw strength from energy in the ocean. As water warms and evaporates, it can interact with weather disturbances to create a swirling cell of rising humid air, falling rain and raging winds. The warmer the water, the more intense the resulting storm. An example of this phenomenon was observed in the south of France in early October 2020. With global sea surface temperature increasing rapidly each decade, studies show the chance of a given tropical storm becoming a hurricane that is Category 3 or greater has grown 8 percent every 10 years.

Higher ocean temperatures also make hurricanes more likely to rapidly intensify, catching forecasters and communities off guard. The U.S. Gulf Coast saw the consequences of this pattern in August, when the winds of Hurricane Laura increased more than 100 km per hour in the 24 hours just before the storm made landfall. The storm killed 42 people and caused 14 billion dollars in damage.

The warmer air also allows for wetter hurricanes. This is a consequence of a physical phenomenon known as the Clausius-Clapeyron equation which shows that for every 1 degree Celsius of warming, the atmosphere can hold 7 percent more moisture. Because the relationship between temperature and moisture is not linear, even small amounts of warming can create exponentially more destructive storms. This was especially evident during Hurricane Harvey, which in 2017 dropped 150 centimetres of rain on South Texas. Multiple studies have shown that climate change increased precipitation during the storm by at least 15 percent, and one study found that events like it are now six times more likely than they were just a few decades ago.

The flip side of the Clausius-Clapeyron equation is that a warmer atmosphere is able to suck more moisture from vegetation and soils, setting the stage for worse wildfires. A 2016 study found that climate change was responsible for more than half of the increase in fuel dryness in western U.S. forests in the past 50 years.

The events recorded in 2020 are another sign of how incremental increases in temperature can lead to exponentially worse natural disasters. The global average temperature has increased a little more than 1 degree Celsius since the pre-industrial era, a number that may seem small. However, research shows that human-caused warming has already doubled the amount of western forest burned since 1984.

Source: After an article published in The Washington Post.

L’ouragan Harvey au pic de son intensité près de la côte texane le 25 août 2017 (Source : NOAA).

Mauvaises nouvelles de l’Arctique // Bad news from the Arctic

Nous sommes à la fin octobre et deux phénomènes inquiètent les scientifiques dans l’Arctique.

En raison des températures élevées qui ont régné sur l’Arctique ces derniers mois, la glace de mer est en train d’enregistrer sa surface la plus réduite pour la saison depuis 1978, début de la surveillance satellitaire. Selon le National Snow and Ice Data Center (NSIDC), le 24 octobre 2020, la banquise s’étalait sur seulement 5,685 millions de kilomètres carrés.

La situation, qui empire chaque année, ne surprend pas vraiment les climatologues. Les quatorze dernières années ont été, sans exception, les pires années enregistrées parmi les quarante-trois années de données à la disposition des scientifiques.

Autre mauvaise nouvelle : pour la première fois depuis le début des relevés, la mer de Laptev en Sibérie n’a pas encore commencé à geler fin octobre. Ce retard du gel a été causé par une période de chaleur anormalement longue dans le nord de la Russie et par l’intrusion d’eaux plus chaudes en provenance de l’Atlantique, ce qui rompt la stratification habituelle entre les eaux profondes chaudes et la surface fraîche Les climatologues mettent en garde contre d’éventuels effets d’entraînement dans la région polaire.

La température de l’océan dans la région a récemment grimpé à plus de 5°C au-dessus de la moyenne, à la suite d’une vague de chaleur record et de la réduction inhabituellement précoce de la glace de mer de l’hiver dernier. Il y a en ce moment 4 millions de kilomètres carrés de glace de mer de moins que prévu par rapport aux années 1980. Il manque une superficie de glace équivalente à dix fois la taille de l’Allemagne.

Ce manque de glace de mer arctique va forcément avoir des conséquences pour le bilan énergétique de la Terre. Quand la région arctique est couverte de neige, elle devient la surface naturelle la plus brillante de la planète. Par effet albédo, elle renvoie vers l’espace environ 80 % du rayonnement solaire. En revanche, l’océan situé en dessous représente la surface la plus sombre de la planète et il absorbe 90 % du rayonnement solaire. En conséquence, les changements qui interviennent dans la couverture de glace de mer ont un impact important sur la quantité de lumière solaire absorbée par la planète et sur la vitesse à laquelle elle se réchauffe. Les scientifiques craignent que le retard du gel de la glace de mer amplifie la boucle de rétroaction qui accélère le déclin de la glace de mer.

Source : Presse scientifique.

—————————————–

We are at the end of October and two phenomena are worrying scientists in the Arctic.
Due to the high temperatures that prevailed over the Arctic in recent months, the sea ice is registering its smallest surface area for the season since 1978, when satellite monitoring began. According to the National Snow and Ice Data Center (NSIDC), on October 24th, 2020, the sea ice spread over just 5.685 million square kilometres.
The situation, which gets worse every year, does not really come as a surprise to climatologists. The last fourteen years have been, without exception, the worst years on record of the forty-three years of data available to scientists.

More bad news: For the first time since surveys began, the Laptev Sea in Siberia has yet to start freezing in late October. The delay in freezing was caused by an unusually long period of heat in northern Russia and the intrusion of warmer Atlantic waters. Climatologists warn of possible ripple effects in the polar region.
Ocean temperatures in the region recently climbed more than 5 ° C above average, following a record-breaking heat wave and the unusually early decline in sea ice last winter . Global warming is also pushing milder Atlantic currents towards the Arctic and breaking the usual stratification between warm deep water and the cool surface, making it difficult for ice to form. There is currently 4 million square kilometers of sea ice less than expected compared to the 1980s. An area of ​​ice ten times the size of Germany is missing.

This lack of arctic sea ice will inevitably have consequences with the energy balance of the Earth. When the Arctic region is covered in snow, it becomes the brightest natural surface on the planet. By albedo effect, it reflects back to space about 80% of solar radiation. In contrast, the ocean below is the darkest surface on the planet and absorbs 90% of solar radiation. As a result, changes in sea ice cover have a significant impact on the amount of sunlight absorbed by the planet and the rate at which it heats up. Scientists fear that the delay in freezing sea ice amplifies the feedback loop that accelerates the decline of sea ice.
Source: Scientific press.

Océan Arctique et Mer de Laptev (Source : Wikipedia)

Photo : C. Grandpey

Fonte de l’Arctique : une inquiétante boucle de rétroaction // Melting of the Arctic : a worrisome feedback loop

Au train où vont les choses, 2020 a toutes les chances de prendre l’une des premières places du podium du réchauffement climatique, voire la première et devancer ainsi l’année 2016 qui détient le flambeau jusqu’à présent, en grand partie grâce au phénomène El Niño qui était particulièrement fort cette année-là, alors qu’il est relativement neutre en ce moment. Comme je l’ai souligné à plusieurs reprises, les cinq dernières années ont été les cinq plus chaudes jamais enregistrées.

Ces anomalies de chaleur constatées au cours du premier semestre 2020 ont fait fondre la glace arctique beaucoup plus tôt que d’habitude. Cette fonte de la glace est due au fait que la zone arctique et toute l’Eurasie ont connu un hiver très chaud, avec de nombreux records de température. Ce qui est inhabituel et inquiétant, c’est que ces anomalies thermiques continuent.

Après avoir enregistré son hiver le plus doux depuis 140 ans, Moscou a enregistré une température record pour un 17 juin. De plus, la vague de chaleur qui touche la Sibérie a entraîné en mai une hausse de 7°C par rapport à la moyenne. On vient de voir une conséquence de cette vague de chaleur avec le dégel du pergélisol à Norilsk (nord de la Sibérie) et l’effondrement d’une cuve de diesel qui n’était plus maintenue en place par ses supports, ce qui a généré une pollution catastrophique.

Les climatologues estiment que sur cette hausse de 7°C,  2 ou 3° sont dus au réchauffement climatique anthropique, autrement dit lié aux activités humaines. 4 ou 5° sont attribuables à des variations naturelles du système climatique, la principale étant « l’oscillation nord-atlantique » – North Atlantic Oscillation (NAO). Il s’agit d’un phénomène atmosphérique et océanique, qui concerne principalement l’Atlantique Nord. On parle d’oscillation parce qu’il y a un va-et-vient, dans la direction nord-sud, d’air au-dessus des régions arctiques et islandaises vers la ceinture subtropicale près des Açores et de la péninsule ibérique. Tout le monde connaît le fameux anticyclone des Açores, avec ses fortes pressions atmosphériques. Son opposé est la dépression d’Islande avec ses tempêtes.

Cette « oscillation nord-atlantique » va contrôler en partie s’il fait plus ou moins chaud sur toute l’Europe et une partie du continent eurasiatique. Cette année, l’oscillation a été marquée dès décembre et est restée forte jusqu’en début avril, avec un anticyclone fort et une dépression très creusée, ce qui a injecté un air océanique plutôt doux à l’intérieur du continent européen jusqu’en Sibérie.

Ce phénomène météorologique s’est atténué en avril, mais les températures record subsistent ! Elles sont partiellement dues à la fonte plus précoce de la neige sur toute l’Europe de l’est et la Sibérie. Depuis mai, on assiste à une fonte rapide de la banquise près des côtes de Sibérie, ce qui entraîne une hausse de température de l’océan, mais aussi une fonte plus importante. C’est ce qu’on appelle une “boucle de rétroactions positives”, un cercle vicieux climatique qui permet de comprendre comment  – selon le GIEC – un réchauffement de 1,5°C au lieu de 2°C pourrait sauver la banquise arctique.

Le réchauffement des zones arctiques est deux fois plus rapide que le réchauffement global de la planète à cause de rétroactions positives. L’explication principale réside dans l’effet d’albédo. La neige ou la glace réfléchit le rayonnement solaire présent 24 heures sur 24 en cette saison et joue un rôle d’isolant. Si cette neige et cette glace disparaissent, le rayonnement est absorbé par la terre ou l’océan qui se réchauffe. Si l’océan est plus chaud, la glace fond plus, donc l’océan se réchauffe, donc la glace fond plus, etc. On obtient une espèce de boucle de rétroaction perpétuelle.

Pour se résumer, à cause de cet hiver très doux, les réserves de glace et de neige sont restées plus faibles que d’habitude le long des côtes sibériennes et sur tout le continent eurasiatique. On a donc une fonte des glaces précoce quand le soleil revient au printemps et au début de l’été. Cette fonte est inquiétante pour tout l’Arctique, avec le risque d’un triste record.

Il faut attendre de voir l’évolution des conditions météorologiques cet été pour savoir à quel point l’Océan Arctique sera privé de glace à la fin de la saison estivale en septembre.

Ces boucles de rétroactions montrent parfaitement pourquoi une petite hausse de la température peut avoir beaucoup d’impacts sur des vastes zones de la planète.

Note inspirée d’un article paru sur le site web du Huffington Post.

———————————————-

As things are going, 2020 will probably take one of the first places on the global warming podium, if not the first place, and thus taking the lead before the year 2016 which holds the torch so far, largely thanks to the El Niño phenomenon which was particularly strong that year, while it is relatively neutral at the moment. As I have repeatedly pointed out, the past five years have been the hottest five years on record.
These thermal anomalies recorded in the first half of 2020 caused the Arctic ice to melt much earlier than usual. This melting of the ice is due to the fact that the Arctic zone and all of Eurasia experienced a very hot winter, with many temperature records. What is unusual and worrisome is that these thermal anomalies continue.
After recording its mildest winter in 140 years, Moscow recorded a record temperature for June 17th. In addition, the heat wave that hit Siberia led to an increase of 7°C in May compared to the average. We have just seen a consequence of this heat wave with the thawing of the permafrost in Norilsk (northern Siberia) and the collapse of a diesel tank which was no longer held in place by its supports, which generated catastrophic pollution.
Climatologists estimate that of this increase of 7°C, 2 or 3° are due to anthropogenic global warming, in other words linked to human activities. 4 or 5° are due to natural variations in the climate system, the main one being the North Atlantic Oscillation (NAO). It is an atmospheric and oceanic phenomenon, which mainly concerns the North Atlantic. It is an oscillation because there is a back and forth movement, in the north-south direction, of air over the Arctic and Icelandic regions towards the subtropical belt near the Azores and the Iberian peninsula. Everyone knows the famous Azores high, with its strong atmospheric pressures. Its opposite is the Icelandic depression with its storms.
This « North Atlantic oscillation » partly controls whether it is more or less hot throughout Europe and part of the Eurasian continent. This year, the oscillation was strong from December and remained so until the beginning of April, with a strong high pressure and a very deep depression, which injected a rather soft oceanic air inside the European continent, as far as Siberia.
This phenomenon eased in April, but record temperatures still remain! They are partially due to the earlier melting of snow all over Eastern Europe and Siberia. Since May, there has been a rapid melting of the ice sheet near the coasts of Siberia, which leads to an increase in ocean temperature, but also a greater melting. This is known as a « positive feedback loop », a vicious climate circle that helps understand how – according to the IPCC – warming by 1.5°C instead of 2°C could save the Arctic sea ice.
Global warming in the Arctic is twice as fast as global warming due to positive feedbacks. The main explanation lies in the albedo effect. Snow or ice reflects the solar radiation present 24 hours a day during this season and acts as an insulator. If this snow or ice disappears, the radiation is absorbed by the earth or the warming ocean. If the ocean is warmer, the ice melts more, so the ocean warms up, so the ice melts more, etc. We get a kind of perpetual feedback loop.
To sum up, because of this very mild winter, the ice and snow reserves remained lower than usual along the Siberian coast and throughout the Eurasian continent. So there is an early melting of the ice when the sun comes back in the spring and early summer. This melting is worrisome for the entire Arctic, with the risk of a sad record.
We’ll have to wait to see how the weather changes this summer to find out how ice-free the Arctic Ocean will be at the end of the summer season in September.
These feedback loops are a perfect illustration of why a minor rise in temperature can have a large impact on large areas of the planet.
Note inspired by an article on the Huffington Post website.

Anomalies thermiques par rapport à la période 1951-1980 (Source : NASA.)