Prochaines conférences

Voici les dates de mes prochaines conférences, avec un rappel dans la colonne de gauche de ce blog :

  • 14 août 2019à 15h45 : Maison du Volcan de Morne-Rouge (Martinique) – Volcans de subduction : la Chaîne des Cascades (Etats-Unis)

 

  • 16 août 2019 à 18h30 : CDST de Saint Pierre (Martinique) – Points chauds, méga volcans et Yellowstone (Etats-Unis)

 

  • 15 octobre 2019 à 17h30 Amphithéâtre de l’IUT de Rodez (Aveyron) – Volcans et risques volcaniques

 

  • 17 octobre 2019 Pôle Nature ZA du Moulin Cheyroux, Aixe-sur-Vienne (Haute Vienne) –  Glaciers en péril, les effets du réchauffement climatique 

 

  • 14 janvier 2020 à 14h15 Auditorium du Musée des Beaux Arts, 1 rue Fernand Rabier Orléans – Volcans et risques volcaniques

 

  • 3 février 2019 Le Blanc (Indre) – Volcans et risques volcaniques

 

  • 11 mars 2020 à 20h30 au Centre Culturel, Place du Champ de Mars de Ruelle (Charente) – Glaciers en péril, les effets du réchauffement climatique

 

  • 8 avril 2020 à 19 heures Salle Charles Brillaud à Argenton-sur-Creuse (Indre) – Volcans et risques volcaniques

 

  • 9 avril 2020 à 18 heures à l’IUT d’Issoudun (Indre), rue Georges Brassens: Glaciers en péril, les effets du réchauffement climatique 

Photos: C. Grandpey

Sous la menace du Nevado del Ruiz… // Under the threat of Nevado del Ruiz…

On peut lire ces jours-ci dans The Guardian un article très intéressant sur Manizales, une ville du centre de la Colombie, qui, selon le journal anglais, est «la plus dangereuse au monde». L’expression est tout à fait justifiée, car Manizales a été confrontée à des situations graves, voire désespérées. Ainsi, dans la soirée du 13 novembre 1985, les habitants ont entendu un grondement qu’ils ont d’abord attribué à un camion qui venait de se renverser. Puis, des cris se sont fait entendre. Les habitants du fond de la vallée venaient de se faire emporter par une coulée de boue en provenance du Nevado del Ruiz, un volcan à 15 kilomètres à l’est. Il a fallu des mois pour nettoyer et évacuer les matériaux laissés par le lahar et récupérer les corps.
A l’est du volcan, les dégâts ont été catastrophiques. Lorsqu’un pilote a téléphoné au président d’alors, Belisario Betancur, pour lui dire que la ville d’Armero avait été «rayée de la carte», le président lui a dit qu’il exagérait. Le pilote disait la vérité: les deux tiers des 29 000 habitants avaient péri dans la coulée de boue, la pire catastrophe naturelle de l’histoire de la Colombie.
Répartie sur une série de crêtes montagneuses dominée par le Nevado del Ruiz, cette zone urbaine est confrontée à une série de catastrophes naturelles, comme nulle part ailleurs dans le monde.

La ville de Manizales, la capitale du département de Caldas, a été secouée par six séismes majeurs au 20ème siècle, dont un avec une magnitude de M 6,2 qui a causé la mort de 2 000 personnes dans la ville voisine d’Armenia. Les violentes éruptions du Nevado del Ruiz, comme celle de 1985, sont rares mais le volcan crache souvent des nuages de cendre qui recouvre la ville et ferme l’aéroport. En outre, le relief montagneux de la région crée un microclimat propice aux pluies diluviennes et donc à des conditions idéales pour les glissements de terrain.
Les 400 000 habitants de Manizales ont appris à cohabiter avec cette situation précaire. Ils ont tiré les leçons de la tragédie d’Armero et sont connus pour leur bonne politique de gestion des risques. Manizales est devenu une référence mondiale dans ce domaine.

Sur les murs du Colombian Geological Survey, une douzaine d’écrans montrent en direct l’activité sismique, les images satellite et celles diffusées par la webcam orientée vers le volcan tout proche. Avec près de 150 capteurs et autres points de données, le Nevado del Ruiz est l’un des volcans les plus surveillés au monde.
Dans les banlieues les plus pauvres de la ville, des travaux sont en cours pour stabiliser les pentes herbeuses des collines avec du béton et pour creuser des canaux d’évacuation des eaux pluviales afin de limiter le risque d’inondations. La ville dispose d’une carte qui évalue les risques aux infrastructures, y compris les bâtiments individuels. Des capteurs fournissent également une analyse automatisée en temps réel des inondations et des séismes.

La ville de Manizales est connue dans le monde entier pour son approche innovante en matière de prévention et de réaction aux catastrophes. Cette approche repose sur la politique plutôt que sur la technologie. Le gouvernement colombien exige que toutes les municipalités entreprennent des activités d’évaluation et de prévention des risques naturels, mais ces initiatives souffrent souvent d’un manque de volonté politique. Les maires préfèrent donner la priorité à des projets visibles de tous, tels que les écoles ou les stades, qui sont de meilleurs investissements pour leur propre avenir politique, plutôt que de dépenser de l’argent pour des mesures de protection de la population qui sont moins spectaculaires.
Manizales finance ses projets de différentes façons. Il y a une taxe environnementale. Une prime d’assurance solidaire est perçue sur les biens immobiliers, ce qui signifie que les quartiers où les habitants ont les revenus les plus élevés viennent en aide à ceux habités par les personnes les plus démunies. Des allégements fiscaux sont également accordés aux propriétaires qui réduisent la vulnérabilité de leurs biens.
Chaque mois d’octobre, la ville organise une «semaine de prévention» au cours de laquelle des exercices d’urgence sont prévus, non seulement pour les catastrophes naturelles, mais également pour les accidents de la route et les incendies. En avril 2017, des précipitations intenses ont provoqué plus de 300 glissements de terrain et tué 17 personnes. Pourtant, en l’espace d’une semaine, grâce à une organisation bien huilée, les routes ont été nettoyées et la ville a retrouvé une vie normale.
Néanmoins, les dangers liés au manque de préparation de la population sont omniprésents. Ainsi, dans la ville de Mocoa, dans le sud du pays, une tempête a provoqué l’un des désastres les plus meurtriers de la dernière décennie en Colombie, avec des glissements de terrain qui ont tué plus de 250 personnes. 30 000 autres ont été évacuées et la remise en ordre de la ville a pris près de six mois.
Source: The Guardian.

—————————————————

One can read these days in The Guardian a very interesting article about Manizales in central Colombia which, the English newspaper says, is “the world’s riskiest.” The expression is quite justified as Manizales has been confronted with serious and even desperate situations. On the evening of November 13th1985, the inhabitants heard a roar which they believed first was a truck overturning. Then screams could be heard. The people living in the lower part of the valley were swept to their deaths by the water and rocks propelled by the eruption of Nevado del Ruiz, 15 kilometres to the east. It took months to clear the debris and recover the bodies.

On the volcano’s eastern side, the damage was catastrophic. When a pilot telephoned then-president Belisario Betancur to tell him the town of Armero had been “wiped from the map”, the president told him not to exaggerate. But he wasn’t: two-thirds of the 29,000 inhabitants had died in the mudslide, the worst natural disaster in Colombia’s history.

Sprawled over a series of mountain ridges in the shadow of Nevado del Ruiz, this urban area faces a panoply of natural disaster risks that are unmatched anywhere else in the world.

The city of Manizales, the capital of Caldas, experienced six major earthquakes in the 20th century, including one with an M 6.2 event which killed 2,000 people in the neighbouring town of Armenia. Powerful eruptions of Ruiz like the one in 1985 are rare, but the volcano frequently belches ash that coats the city and closes the airport. Besides, the region’s mountainous terrain creates a microclimate prone to torrential rains and ideal conditions for mudslides.

The city’s 400,000 citizens have learned to live with their precarious situation. Spurred on by the bitter lessons of the Armero tragedy, they have now earned a new reputation for good public policy. Manizales has become a global reference for disaster-risk reduction.

On the walls of the Colombian Geological Survey office, a dozen plasma screens relay seismic activity, satellite imagery and webcam footage of the nearby volcano. With nearly 150 sensors and data points, Ruiz is one of the most closely monitored volcanoes in the world.

In the city’s outlying poorer neighbourhoods, work is in progress to stabilise the grassy hillside slopes with concrete, and to dig runoff channels to mitigate floods. The city has a map that evaluates risk down to individual buildings. Sensors also provide automated, real-time analysis of floods and earthquakes.

Manizales is recognised around the world for its innovative approach to preventing and responding to disasters. The city’s particular success is based on policy, rather than technology. Colombia requires all municipalities to undertake risk assessments and mitigation activities, but these initiatives often suffer from a lack of political will. Governors and mayors tend to view visible projects, such as schools or sports stadiums, as better investments for their own political prospects rather than spending on less visible disaster resilience.

Manizales funds its projects through a variety of methods. There is an environmental tax. A cross-subsidised collective insurance premium is charged on properties, meaning higher-income sectors cover poorer groups. Tax breaks are also offered to homeowners who reduce the vulnerability of their properties.

Each October the city holds “prevention week”, in which emergency drills are practised, not just for natural disasters, but for traffic accidents and fires, too. In April 2017, intense rainfall caused more than 300 landslides and killed 17 people. Yet within a week, thanks to accurate warning and response systems, blocked roads were cleared and the city was functioning again.

Nevertheless, reminders of the perils of unpreparedness are everywhere. In the city of Mocoa in the country’s south, a storm resulted in one of the most deadly disasters in Colombia of the last decade, when landslides killed more than 250 people. Another 30,000 were evacuated and recovery efforts took close to six months.

Source: The Guardian.

Carte à risques du Nevado del Ruiz avec, en rouge, les coulées de boues de l’éruption de 1985. La ville de Manizales se trouve au NO du volcan (Source: Colombian Geological Survey)

 

Les effets du changement climatique dans les Alpes (3) : Gestion de l’eau et des risques naturels

Le réchauffement climatique et la fonte des glaciers impliqueront forcément une nouvelle gestion de l’eau qui ne se bornera plus à un simple ajustement aux modifications de l’environnement naturel. Elle devra aussi tenir compte des changements socio-économiques. Dans les régions où l’irrigation agricole est pratiquée, la demande en eau pourrait dépasser les ressources lors d’étés caniculaires et très secs. De nouvelles réglementations sur l’allocation de la ressource hydrique à différents usagers, l’installation de nouveaux réservoirs, et des améliorations techniques devront être mises en place.

Les grands barrages alpins seront affectés dès la deuxième moitié du 21èmesiècle, par le fort retrait attendu des glaciers, les eaux de fonte ne remplissant plus autant les lacs de retenue qu’actuellement. De ce fait, les capacités de stockage pourraient être réduites, avec pour conséquence une diminution de la production hydroélectrique. Il en résultera des difficultés à répondre à une demande en électricité qui se décalera progressivement depuis l’hiver vers l’été, en raison des besoins en climatisation. Cela nécessitera de mettre en place une gestion optimale de l’eau dans le réseau interconnecté des grands barrages, ainsi que des mécanismes économiques permettant d’influencer l’offre et la demande.

++++++++++

En termes de risques naturels dans les Alpes, l’effet cumulé de précipitations intenses dans les régions de basse et moyenne altitude conduirait à de forts taux d’érosion des pentes. L’augmentation attendue  de précipitations extrêmes devrait entraîner une augmentation de la fréquence et de la sévérité des crues. Ce genre de situation a prévalu dans un proche passé, par exemple en février 1995 lorsque la fonte précoce du manteau neigeux dans les Alpes, associée à des pluies abondantes en Allemagne, ont mené à des crues tout au long du parcours du Rhin.

Il faudra aussi prendre en compte le risque d’effondrements et de lahars provoqués par la fonte du permafrost rocheux en haute altitude. Plusieurs exemples ont récemment été observés en Suisse et en Italie.

Source : Encyclopédie de l’Environnement.

Barrage de Roselend (Savoie) [Crédit photo: Wikipedia]

Eboulement en Suisse (image YouTube)

Les volcans à Libourne (Gironde) le 9 février!

Je présenterai le vendredi 9 février 2018 une conférence intitulée « Volcans et risques volcaniques » dans le cadre de l’UTL de Libourne (Gironde). Elle aura lieu à 15h45 à la Salle du Verdet, 12 rue de Toussaint. (Entrée: 4 € pour les non-adhérents).
Le but de cette conférence est de faire le point sur la situation en volcanologie. Les statistiques montrent que les volcans ont souvent été meurtriers dans le passé. Les techniques modernes permettent-elles d’en savoir plus sur les humeurs des monstres de feu ? Sommes-nous capables aujourd’hui d’éviter que les volcans tuent ? Ce sont quelques unes des questions auxquelles j’essaierai de répondre.

Mon exposé se poursuivra avec deux diaporamas (une vingtaine de minutes chacun) en fondu-enchaîné sonorisé destinés à illustrer deux grands types de volcans. « La Java des Volcans » conduira le public auprès des volcans gris d’Indonésie tandis que « Hawaii le Feu de la Terre » fera côtoyer les coulées de lave rouge du Kilauea.

A l’issue de la séance, les spectateurs pourront se procurer les ouvrages Terres de Feu et Mémoires Volcaniques. Pour rappel, Volcanecdotes et Killer Volcanoes sont épuisés.

Lave hawaiienne

Séquence éruptive sur le Krakatau

(Photos: C. Grandpey)

Ambae (Vanuatu): Les risques liés à l’éruption // The risks related to the eruption

Un article paru dans le Vanuatu Daily Post explique les dangers liés à l’éruption en cours à Ambae. L’activité volcanique se poursuit avec le niveau d’alerte à 3. Il s’agit de petites explosions continues et de projections de matériaux à haute température, comme cela se produit sur le Yasur, sur l’île de Tanna.
La cendre et les gaz émis par le volcan sont un premier danger pour la population d’Ambae, en particulier pour les habitants exposés aux alizés car ce sont eux qui subiront le plus souvent les retombées de cendre.
Avec la saison des pluies (de novembre 2017 à avril 2018), la cendre volcanique tombée au sol sera emportée par l’eau sur les flancs du volcan, ce qui peut provoquer des lahars. Ils peuvent endommager les lieux de franchissement des rivières tels que les ponts et les gués. C’est un nouveau problème pour Ambae, mais il a été observé à Gaua après les éruptions de 2009-2010. Il n’est pas possible d’arrêter les coulées de boue, donc les gens doivent être vigilants. Pour minimiser leur impact, les personnes vivant à proximité des ruisseaux et des rivières ont intérêt à dégager les débris tels que les branches ou les pierres qui obstruent les cours d’eau, afin que l’eau de crue puisse s’évacuer plus facilement.
Le mélange de gaz volcanique et de pluie peut provoquer des pluies acides. On les détecte par un goût inhabituel de l’eau et l’irritation de la gorge. Ces pluies acides peuvent endommager les cultures et affecter les réserves d’eau douce qui peuvent être polluées et changer d’apparence et de goût. Les animaux élevés en eau douce tels que les crevettes peuvent également être affectés. Pendant les pluies acides, les gens doivent fermer les accès d’eau de leurs réservoirs et de leurs puits afin d’éviter de recueillir cette eau impropre à la consommation.

———————————

An article in the Vanuatu Daily Post explains the dangers related to the ongoing eruption at Ambae. Volcanic activity is continuing with the alert level at 3. It consists of ongoing small explosions and ejection of hot rocks, similar to what is seen and experienced at Yasur on Tanna Island.

The ash and gas emitted by the volcano are the first danger to the Ambae population, mainly those exposed to trade wind direction as they will undergo ashfall more often.

With the wet season (November 2017 to April 2018), volcanic ash that has fallen to the ground will be washed off the volcano, causing muddy floods. These can damage river crossing locations such as bridges and fords. This is a new problem for Ambae, but has been seen at Gaua after the eruptions in 2009-2010. It is not possible to stop muddy floods, so people need to be aware. To minimise their impact, people living near creeks and streams should clear the channels of debris such as branches, stones, etc. so that flood water can pass easily.

Volcanic gas mixing with rain may cause acid rain. It is detected by unusual taste and irritating eyesA lot of acid rain may damage crops and affect water reservoirs. Fresh water supplies may be polluted and change appearance and taste. Fresh water animals such as prawns may also be affected. During acid rain, people should make sure to remove the water spout from their tanks and wells and avoid collecting this water into the tanks.

Carte à risques d’Ambae (Source: Geohazards)

Cartes à risques du Mauna Loa (Hawaii) // Risk maps of Mauna Loa Volcano (Hawaii)

Les  scientifiques du HVO ont publié des cartes du Mauna Loa qui aideront les responsables de la Protection Civile et d’autres gestionnaires de services d’urgence à identifier les personnes, les biens et les installations à risque lors de futures éruptions de ce volcan.
La plupart des fractures et bouches éruptives du Mauna Loa se trouvent au sommet du volcan et le long de deux zones de rift qui s’étendent au nord-est et au sud-ouest de Mokuaweoweo, la caldeira sommitale. Cependant, des émissions de lave se produisent parfois le long des fractures radiales qui s’étendent principalement au nord et à l’ouest du sommet.
Les parois du Mokuaweoweo forment des barrières naturelles qui devraient protéger les zones situées au sud-est et à l’ouest de la caldeira contre les coulées de lave provenant de l’intérieur de la caldeira. Toutefois, la paroi du côté ouest est rendue inefficace par les bouches susceptibles de s’ouvrir sur les flancs du volcan.
Grâce à une cartographie géologique détaillée et une modélisation du comportement de la lave en fonction de la topographie, l’USGS-HVO a mis au point neuf cartes représentant 18 zones susceptibles d’être recouvertes par la lave du Mauna Loa. Chaque zone identifie un segment du volcan où la lave pourrait sortir et donner naissance à des coulées vers l’aval.
Les zones en couleur sont celles qui pourraient potentiellement être recouvertes par les coulées produites par les futures éruptions du Mauna Loa. Ces éruptions pourraient provenir du sommet du volcan, des zones de rift, ou des bouches radiales. Il est probable, cependant, que seule une partie d’une zone soit affectée par chaque éruption.
Lorsqu’une éruption commencera sur le Mauna Loa, les cartes aideront les décideurs à identifier rapidement les localités, les infrastructures et les routes situées entre les bouches éruptives éventuelles et la côte, ce qui facilitera les interventions des secours. Le public pourra également utiliser les cartes pour déterminer la direction des coulées de lave une fois que l’éruption aura commencé.
L’ensemble de cartes “Lava inundation zone maps for Mauna Loa, Island of Hawaii,” publié par l’USGS sous l’appellation Scientific Investigations Map 3387, comprend 10 feuilles (cartes) et une brochure explicative. La carte 1 (voir ci-dessous) est une carte de l’ensemble de l’île d’Hawaï avec des contours montrant les zones englobées par les neuf autres cartes. Ces neuf cartes représentent les 18 zones sous la menace de la lave du Mauna Loa. Des instructions sur la façon d’interpréter les cartes sont fournies dans la brochure d’accompagnement.
Les zones menacées sur les cartes sont: Kaumana, Waiakea et Volcano-Mountain View (feuille 2); Kapapala (feuille 3); Pahala, Punaluu et Wood Valley (feuille 4); Naalehu (feuille 5); Kalae (feuille 6); Hawaiian Ocean View Estates, Kapua et Milolii (feuille 7); Hookena, Kaohe et Kaapuna (feuille 8); Honaunau et Kealakekua (feuille 9); et Puako (feuille 10). Les échelles cartographiques varient de 1: 45 000 à 1: 85 000.
Toutes ces cartes ainsi que les fichiers connexes sont disponibles en ligne :

https://doi.org/10.3133/sim3387

Le HVO prévoit également de distribuer des copies papier des cartes aux bibliothèques de l’île d’Hawaii au cours du mois prochain.
Source: USGS / HVO.

——————————————-

Researchers at HVO have produced maps that will help Hawaii County Civil Defence and other emergency managers identify people, property, and facilities at risk during future eruptions.

Most of Mauna Loa’s eruptive fissures and vents are located at the summit of the volcano and along two rift zones that extend northeast and southwest from Mokuaweoweo, the volcano’s summit caldera. A few vents, however, occur along radial fissures that extend primarily north and west from the summit.

The bounding walls of Mokuaweoweo create topographic barriers that should protect areas southeast and west of the caldera from lava flows erupted from within the caldera. But the barrier on the west side is rendered ineffective by the radial vents on the flanks of the volcano.

Using detailed geologic mapping and modeling of how lava responds to surface topography, USGS-HVO have constructed nine maps depicting 18 inundation zones on Mauna Loa. Each zone identifies a segment of the volcano where lava could erupt and send flows downslope.

Coloured regions on these maps show areas on the volcano’s flank that could potentially be covered by flows from future Mauna Loa eruptions. These eruptions could originate from the volcano’s summit, rift zones, or radial vents. It’s likely, however, that only part of a zone would be covered in a single eruption.

When a Mauna Loa eruption starts, the maps can help decision makers quickly identify communities, infrastructure, and roads between possible vent locations and the coast, facilitating more efficient and effective allocation of response resources. The public can also use the maps to consider where lava flows might go once an eruption starts.

Lava inundation zone maps for Mauna Loa, Island of Hawaii,” published by the U.S. Geological Survey as Scientific Investigations Map 3387, comprises 10 sheets and an explanatory pamphlet. Sheet 1 is a map of the entire Island of Hawaii with outlines showing the areas encompassed by the nine other maps. These nine sheets depict the 18 inundation zones for Mauna Loa. Guidelines on how to interpret the maps are provided in the accompanying pamphlet.

The inundation zones identified on the maps are: Kaumana, Waiakea and Volcano-Mountain View (Sheet 2); Kapapala (Sheet 3); Pahala, Punaluu and Wood Valley (Sheet 4); Naalehu (Sheet 5); Kalae (Sheet 6); Hawaiian Ocean View Estates, Kapua and Milolii (Sheet 7); Hookena, Kaohe and Kaapuna (Sheet 8); Honaunau and Kealakekua (Sheet 9); and Puako (Sheet 10). Map scales vary from 1:45,000 to 1:85,000.

The Mauna Loa lava flow inundation maps and related GIS files are also available online:

https://doi.org/10.3133/sim3387

HVO also plans to distribute paper copies of the maps to public libraries around the island in the next month or so.

Source: USGS / HVO.

Vue de la carte n°1 montrant l’ensemble des zones susceptibles d’être menacées par la lave du Mauna Loa (Source: USGS)

Volcans et risques volcaniques // Volcanoes and volcanic risks

Une nouvelle étude menée par des chercheurs de l’Université de Bristol et publiée récemment dans le Journal of Applied Volcanology, permet de mieux comprendre les risques volcaniques et la menace des volcans pour ceux qui les fréquentent. L’étude est intitulée: “Volcanic fatalities database: analysis of volcanic threat with distance and victim classification.” – «Base de données sur les accidents mortels sur les volcans: analyse de la menace volcanique en fonction de la distance et classification des victimes».
Un dixième de la population mondiale vit dans des zones potentiellement exposées aux risques volcaniques et plus de 800 millions de personnes vivent à moins de 100 km de volcans actifs.
Entre 1500 et 2017, plus de 278 000 personnes sont mortes sur ou autour des volcans, ce qui correspond à une moyenne d’environ 540 personnes par an.
Les volcans sont source de danger en fonction de la distance, que ce soit en période d’éruption ou lorsque le volcan est calme. Les chercheurs de Bristol ont mis à jour d’anciennes bases de données concernant les décès causés par les volcans. Pour ce faire, ils ont ajouté des événements et inclus des informations sur le lieu des décès en fonction de la distance par rapport au volcan. Le lieu des accidents mortels a été déterminé à partir de rapports officiels, bulletins d’activité volcanique, rapports scientifiques et de récits dans les médias.

On aboutit aux statistiques suivantes :
– Près de la moitié de tous les accidents mortels ont été enregistrés dans un rayon de10 km des volcans, mais il faut aussi noter que certaines victimes se trouvaient jusqu’à 170 km de distance.
– À proximité des volcans (à moins de 5 km), les projections de matériaux comme les bombes volcaniques sont les principales causes de mortalité.
– Les coulées pyroclastiques sont la cause principale de décès à des distances moyennes, de l’ordre de 5 à 15 km.
– Les coulées de boue (lahars), les tsunamis et les retombées de cendre sont les principales causes de décès à de plus grandes distances.
En plus des distances, les chercheurs ont également fourni un classement plus détaillé des victimes que les études précédentes. Alors que la plupart d’entre elles sont des personnes qui vivent sur ou à proximité d’un volcan, plusieurs groupes ont été identifiés comme n’appartenant pas à des régions volcaniques. Il s’agit de touristes, de médias, de personnel d’intervention d’urgence et de scientifiques (principalement des volcanologues).
– 561 accidents mortels ont été enregistrés, principalement lors de petites éruptions ou en période de repos lorsque le volcan n’était pas vraiment en éruption. La plupart de ces décès ont eu lieu près du volcan (à moins de 5 km) ; dans ce cas, les projections de matériaux sont la cause la plus fréquente des décès.
Un exemple récent de décès parmi des touristes a été l’éruption de l’Ontake en 2014 au Japon, lorsque des randonneurs ont été surpris par une éruption soudaine qui a tué 57 d’entre eux.
Il y a quelques semaines, un enfant et ses parents sont morts dans les Champs Phlégréens en Italie, probablement asphyxiés par des gaz mortels lorsque le sol s’est effondré sous leur poids dans une zone interdite d’accès.
– 67 scientifiques (principalement des volcanologues et des personnes qui leur viennent en aide) sont morts, avec plus de 70% d’entre eux à moins de 1 km du sommet du volcan. Cette statistique met en évidence le danger auquel sont confrontés les scientifiques de terrain qui visitent le sommet des volcans actifs.
– Les personnels de prévention et d’intervention en cas de catastrophe, les services militaires et d’urgence venus évacuer, sauver ou retrouver les victimes d’éruptions volcaniques ont malheureusement également perdu la vie, avec 57 décès recensés.
– On enregistre également les décès de 30 journalistes. Ils relataient des éruptions et se trouvaient souvent dans les zones de danger.
Les chercheurs font remarquer que, alors que les volcanologues et le personnel d’intervention d’urgence ont des raisons valables de se trouver dans des zones dangereuses, les risques concernant les autres catégories doivent être soigneusement évalués. Les médias et les touristes auraient intérêt à respecter les zones d’exclusion et suivre les directives des autorités et des observatoires volcanologiques. Les accidents mortels pourraient également être réduits avec des restrictions d’accès appropriées, des mises en garde et une meilleure éducation.
Source: Université de Bristol.

—————————————–

A new study by University of Bristol researchers, published recently in the Journal of Applied Volcanology, will help increase our understanding of volcanic hazards and the subsequent threat to life. The study is entitled “Volcanic fatalities database: analysis of volcanic threat with distance and victim classification.”

A tenth of the world’s population lives within areas of potential volcanic hazards, and more than 800 million people are living within 100 km of active volcanoes.

Between 1500 and 2017 more than 278,000 people died as a result of volcanic hazards, which corresponds to an average of about 540 people per year.

Volcanoes produce numerous hazards which affect different distances, in both times of eruption and when the volcano is quiet. The Bristol researchers updated previous databases of volcanic fatalities by correcting data, adding events and including information on the location of the fatalities in terms of distance from the volcano. The location of fatal incidents was identified from official reports, volcano activity bulletins, scientific reports and media stories.

– Nearly half of all fatal incidents were recorded within 10 km of volcanoes but fatalities are recorded as far away as 170 km.

– Close to volcanoes (within 5 km) ballistics or volcanic bombs dominate the fatality record.

– Pyroclastic flows are the dominant cause of death at more medial distances (5-15 km).

– Volcanic mudflows (lahars), tsunami and ashfall are the main cause of death at greater distances.

As well as the distances, the researchers were also able to classify the victims in more detail than any previous studies. While most victims were people who live on or near the volcano, several groups were identified as common victims. These were tourists, media, emergency response personnel and scientists (mostly volcanologists).

– 561 tourist fatalities were recorded, mostly during small eruptions or in times of quiescence when the volcano was not actively erupting. Most of these fatalities occurred close to the volcano (within 5 km), with ballistics being the most common cause of death in eruptions.

A recent example of tourist fatalities was the 2014 Ontake eruption in Japan when hikers on the volcano were caught out by a sudden eruption which tragically killed 57 people.

And, just a few weeks ago, a child and his parents died in Campi Flegri in Italy, likely overcome by deadly gases when the ground collapsed beneath them in a restricted area.

– The fatalities of 67 scientists (mostly volcanologists and those supporting their work) were recorded with more than 70 per cent of these within 1 km of the volcano summit, highlighting the danger to field scientists visiting the summit of active volcanoes.

– Disaster prevention and response personnel, military and emergency services working to evacuate, rescue or recover victims of volcanic eruptions have unfortunately also lost their lives, with 57 fatalities of emergency response personnel.

– The deaths of 30 media employees are also recorded; they were reporting on eruptions and were often within the declared danger zones.

The researchers indicate that while volcanologists and emergency response personnel might have valid reasons for their approach into hazardous zones, the benefits and risks must be carefully weighed. The media and tourists should observe exclusion zones and follow direction from the authorities and volcano observatories. Tourist fatalities could be reduced with appropriate access restrictions, warnings and education.

Source : University of Bristol.

++++++++++

« Volcans et risques volcaniques » est le titre de l’une de mes conférences. Les statistiques montrent que les volcans ont souvent été meurtriers dans le passé. Les techniques modernes permettent-elles d’en savoir plus sur les humeurs des monstres de feu ? Sommes-nous capables aujourd’hui d’éviter que les volcans tuent ? Ce sont quelques unes des questions auxquelles j’essaye de répondre.

Comme indiqué dans la colonne de gauche de ce blog, mon exposé se poursuit avec deux diaporamas (une vingtaine de minutes chacun) en fondu-enchaîné sonorisé destinés à illustrer les deux grands types de volcans. La Java des Volcans conduit le public auprès des volcans gris d’Indonésie tandis que Hawaii le Feu de la Terre fait côtoyer les coulées de lave rouge du Kilauea.

Si votre commune ou votre comité d’entreprise est intéressé, merci de me contacter par courrier électronique (grandpeyc@club-internet.fr) pour définir les modalités de mon intervention.

Vue du Mont Ontake (Japon) dont l’éruption soudaine en 2014 a tué 57 randonneurs (Crédit photo: JMA)