Manque de neige sur nos montagnes

Je l’ai toujours dit : c’est quand les gens ne pourront plus skier qu’ils prendront réellement conscience du réchauffement climatique. Beaucoup de mes compatriotes affichent un certain sourire et pas mal de scepticisme quand je leur mets sous le nez les statistiques à propos de la fonte de la banquise et des glaciers car ils ne se sentent pas vraiment concernés. L’Arctique c’est loin, et c’est fatigant de grimper les flancs d’une montagne pour aller observer un glacier.

Par contre, quand ces mêmes personnes vont se rendre compte qu’elles se peuvent plus aller se faire bronzer en hiver sur les pistes de poudreuse des Alpes, elles vont commencer à se poser des questions.

La situation en cette fin novembre 2020 n’est guère réjouissante dans les Alpes pour les passionnés de ski.

A cause de la pandémie de Covid-19 les stations de ski n’ouvriront pas pour Noël.

De plus, la persistance actuelle des conditions anticycloniques empêche la neige de tomber, sans oublier la rareté des chutes de pluie qui risque fort de poser des problèmes d’alimentation en eau l’été prochain. On va bien sûr me dire que c’est encore loin et qu’on a le temps d’y penser…

Toujours est-il que la station savoyarde de Val d’Isère est inquiète. Elle devait accueillir les 5 et 6 décembre 2020 son traditionnel Critérium de la Première Neige avec deux slaloms géants hommes dans le cadre de la Coupe du monde de ski alpin, puis un super-G et une descente hommes les 12 et 13 décembre, et enfin deux descentes et un super-G femmes du 18 au 20 décembre.

La situation actuelle n’incite pas à l’optimisme, avec en particulier le manque d’enneigement sur la piste Oreiller-Killy et les perspectives peu favorables des prochains jours. Il n’est pas prévu de précipitations neigeuses abondantes et les températures trop élevées à cause d’un phénomène d’inversion thermique (il fait plus chaud en haute altitude que dans les vallées)  restreignent la production de neige de culture.

La Fédération Internationale de Ski est consciente de ces incertitudes et étudie des solutions de repli à l’étranger – probablement à Santa Caterina (Italie) – pour les deux géants hommes.

A noter que la situation de l’enneigement  est également délicate à Courchevel où sont programmés deux géants dames  les 12 et 13 décembre.

Le manque de neige est aussi criant dans les Pyrénées où les températures incitent plus à se promener en t-shirt qu’en anorak.

Inutile d’ajouter que, si le manque de neige se poursuit pendant l’hiver, la situation sera encore plus délicate pour les stations de moyenne et basse altitude. Je ne voudrais pas être un oiseau de mauvaise augure, mais au vu de l’évolution climatique actuelle, je déconseillerais aux responsables des stations de se lancer dans des investissements coûteux en enneigeurs et remontées mécaniques supplémentaires.

Image webcam de la célèbre Face de Bellevarde à Val d’Isère le 26 novembre 2020. Les enneigeurs ont bien du mal à compenser le manque de neige naturelle.

Octobre 2020 4ème mois d‘octobre le plus chaud dans le monde // October 2020 4th hottest October in the world

Selon les dernières données de la NASA et de la NOAA qui reposent sur 141 années d’archives, la température globale à la surface des terres et des océans en octobre 2020 arrive en quatrième position pour un mois d’octobre avec 0,85°C au-dessus de la moyenne du 20ème siècle. Les dix mois d’octobre les plus chauds ont eu lieu depuis 2005. Octobre 2020 est le 44ème mois d’octobre consécutif et le 430ème mois consécutif avec des températures supérieures à la moyenne du 20ème siècle.

La température à la surface des terres et des océans dans l’hémisphère Nord en octobre 2020 a également été la quatrième de tous les temps, tandis que l’hémisphère sud a connu son neuvième mois d’octobre le plus chaud en 141 ans.

L’Europe a connu son mois d’octobre le plus chaud, avec un écart de température de + 2,17°C, ce qui dépasse le record précédent établi en 2001 de 0,06°C.

L’Amérique du Sud a connu son deuxième mois d’octobre le plus chaud depuis le début des relevés dans cette région en 1910.

Les hausses de température en octobre 2020 en Afrique, en Asie, dans les Caraïbes et à Hawaï se classent parmi les 10 plus élevées jamais enregistrés en octobre.

Dans le même temps, l’Amérique du Nord a eu des températures d’octobre proches de la moyenne.

Comme je l’ai indiqué précédemment, l’étendue moyenne de glace de mer dans l’Arctique en octobre a été la plus faible pour un mois d’octobre. Octobre 2020 a été le 20ème mois d’octobre consécutif avec une étendue de glace de mer inférieure à la moyenne dans l’Arctique. Selon le NSIDC, une étendue de glace de mer inférieure à la moyenne a été observée dans tous les secteurs de la bordure eurasienne de l’Océan Arctique et dans la Baie de Baffin.

En revanche, l’étendue de la glace de mer en Antarctique en octobre 2020 a été la plus vaste observée en octobre depuis 2015 et elle occupe la 12ème position dans les 42 années de relevés satellitaires.

Au moment où ces statistiques sont divulguées, la température globale à la surface des terres et des océans pour l’année 2020 arrive en deuxième position dans les 141 années d’archives avec 1,00°C au-dessus de la moyenne du 20ème siècle (14,1°C). Cette valeur n’est inférieure que de 0,03°C au record établi en 2016. L’année 2020 figurera très probablement parmi les trois années les plus chaudes jamais enregistrées.

Source: NASA et NOAA.

——————————————————–

According to the latest NASA and NOAA data, the October 2020 global land and ocean surface temperature was the fourth highest for October in the 141-year record at 0.85°C above the 20th-century average. The ten warmest Octobers have occurred since 2005.

October 2020 marked the 44th consecutive October and the 430th consecutive month with temperatures above the 20th-century average.

The Northern Hemisphere land and ocean surface October 2020 temperature was also the fourth highest on record, while the Southern Hemisphere had its ninth-warmest October in the 141-year record.

Europe had its warmest October on record, with a temperature departure of +2.17°C. This surpassed the previous record set in 2001 by 0.06°C.

South America had its second-warmest October since regional records began in 1910.

Africa, Asia, and the Caribbean and Hawaiian regions’ October 2020 temperature departures ranked among the 10 highest for October on record.

Meanwhile, North America had a near-average October temperature.

The October average Arctic sea ice extent was the smallest for October. October 2020 marked the 20th consecutive October with below-average Arctic sea ice extent. According to the NSIDC, below-average sea ice extent was observed in all of the sectors of the Eurasian side of the Arctic Ocean and in the Baffin Bay.

Antarctic sea ice extent during October 2020 was the largest October Antarctic sea ice extent since 2015 and the 12th-largest October Antarctic sea ice extent in the 42-year satellite record.

At this moment of 2020, global land and ocean surface temperature is the second highest in the 141-year record at 1.00°C above the 20th-century average of 14.1°C. This value is only 0.03°C shy of tying the record set in 2016.

The year 2020 is very likely to rank among the three warmest years on record.

Source: NASA & NOAA.

Source: NOAA

La fonte des glaciers chinois // The melting of Chinese glaciers

Le réchauffement climatique fait fondre les glaciers de la planète et la Chine ne fait pas exception. S’étendant sur plus de 18 kilomètres carrés, le glacier Laohugou n°12 est le plus grand glacier de la chaîne des Monts Qilian, dans le nord de la Chine, mais la hausse des températures le fait reculer à une vitesse record. Par exemple, depuis 2005, le glacier a reculé de plus de 150 mètres et l’avenir est sombre pour l’ensemble des 2 684 glaciers des Monts Qilian. La température moyenne a augmenté de façon vertigineuse depuis les années 1950. La neige a aussi été plus abondante, mais elle n’a pas suffi pour compenser la fonte des glaciers sous les coups de boutoir du réchauffement climatique.

Comme dans la plupart des autres endroits du monde, le glacier Laohugou a accéléré sa fonte au milieu des années 1980. À la fin des années 1990, il a commencé à reculer à un rythme encore plus rapide. Ensuite, le processus de fonte s’est poursuivi au même rythme tout au long du 21ème siècle.

Les mesures montrent que le glacier recule à raison d’une dizaine de mètres par an depuis l’an 2000. Pour le glacier, ce n’est pas une bonne nouvelle, mais la fonte du glacier présente un avantage : elle permet une bonne alimentation en eau de la région. Dans le cours d’eau à proximité du Laohugou, le débit a pratiquement doublé en 60 ans. Dans une région sèche et aride comme le nord-ouest de la Chine, l’eau est essentielle pour les agriculteurs. Mais cette abondance d’eau de fonte ne durera pas éternellement. Les glaciologues chinois pensent que les glaciers de la région pourraient disparaître d’ici 2050, entraînant avec eux une inévitable crise de l’eau.

Source: Yahoo News.

——————————————–

Global warming is melting glaciers around the world and China is no exception. Spanning over 18 square kilometres, the Laohugou No.12 glacier is the largest glacier in the Qilian mountain range of northern China. But rising temperatures are causing it to shrink at a record pace. For instance, since 2005 the glacier has shrunk by more than 150 metres, and the outlook is grim for all of the 2,684 glaciers in the Qilian mountain range. Average temperatures have risen incredibly since the 1950s. Snowfall has increased too, but it has not been nearly enough to compensate for the loss to the glaciers caused by global warming.

Like in most other places of the world, the Laohugou glacier accelerated its melting in the mid 1980s. By the end of the 1990s it started shrinking at an even faster rate. Then the melting process continued a rapid rate through the 21st century.

Initial monitoring results suggest that the glacier has been shrinking at a rate of about 10 or so metres per year since the year 2000. For the glacier this is not a healthy sign because the rate that it is shrinking just keeps getting faster. At present however, glacial melt is a temporary bonus for the water supply in the region. In the stream near the Laohugou No.12, runoff is around double what it was 60 years ago. In a dry and arid region like north-western China, water is a lifeline for local farmers. But this bounty of extra melting water will not go on forever. Chinese glaciologists predict the glaciers might disappear by 2050, leading to a future water crisis.

Source: Yahoo News.

Localisation du glacier Laohugou No.12 (LHG)

Mauvaises nouvelles de l’Arctique // Bad news from the Arctic

Nous sommes à la fin octobre et deux phénomènes inquiètent les scientifiques dans l’Arctique.

En raison des températures élevées qui ont régné sur l’Arctique ces derniers mois, la glace de mer est en train d’enregistrer sa surface la plus réduite pour la saison depuis 1978, début de la surveillance satellitaire. Selon le National Snow and Ice Data Center (NSIDC), le 24 octobre 2020, la banquise s’étalait sur seulement 5,685 millions de kilomètres carrés.

La situation, qui empire chaque année, ne surprend pas vraiment les climatologues. Les quatorze dernières années ont été, sans exception, les pires années enregistrées parmi les quarante-trois années de données à la disposition des scientifiques.

Autre mauvaise nouvelle : pour la première fois depuis le début des relevés, la mer de Laptev en Sibérie n’a pas encore commencé à geler fin octobre. Ce retard du gel a été causé par une période de chaleur anormalement longue dans le nord de la Russie et par l’intrusion d’eaux plus chaudes en provenance de l’Atlantique, ce qui rompt la stratification habituelle entre les eaux profondes chaudes et la surface fraîche Les climatologues mettent en garde contre d’éventuels effets d’entraînement dans la région polaire.

La température de l’océan dans la région a récemment grimpé à plus de 5°C au-dessus de la moyenne, à la suite d’une vague de chaleur record et de la réduction inhabituellement précoce de la glace de mer de l’hiver dernier. Il y a en ce moment 4 millions de kilomètres carrés de glace de mer de moins que prévu par rapport aux années 1980. Il manque une superficie de glace équivalente à dix fois la taille de l’Allemagne.

Ce manque de glace de mer arctique va forcément avoir des conséquences pour le bilan énergétique de la Terre. Quand la région arctique est couverte de neige, elle devient la surface naturelle la plus brillante de la planète. Par effet albédo, elle renvoie vers l’espace environ 80 % du rayonnement solaire. En revanche, l’océan situé en dessous représente la surface la plus sombre de la planète et il absorbe 90 % du rayonnement solaire. En conséquence, les changements qui interviennent dans la couverture de glace de mer ont un impact important sur la quantité de lumière solaire absorbée par la planète et sur la vitesse à laquelle elle se réchauffe. Les scientifiques craignent que le retard du gel de la glace de mer amplifie la boucle de rétroaction qui accélère le déclin de la glace de mer.

Source : Presse scientifique.

—————————————–

We are at the end of October and two phenomena are worrying scientists in the Arctic.
Due to the high temperatures that prevailed over the Arctic in recent months, the sea ice is registering its smallest surface area for the season since 1978, when satellite monitoring began. According to the National Snow and Ice Data Center (NSIDC), on October 24th, 2020, the sea ice spread over just 5.685 million square kilometres.
The situation, which gets worse every year, does not really come as a surprise to climatologists. The last fourteen years have been, without exception, the worst years on record of the forty-three years of data available to scientists.

More bad news: For the first time since surveys began, the Laptev Sea in Siberia has yet to start freezing in late October. The delay in freezing was caused by an unusually long period of heat in northern Russia and the intrusion of warmer Atlantic waters. Climatologists warn of possible ripple effects in the polar region.
Ocean temperatures in the region recently climbed more than 5 ° C above average, following a record-breaking heat wave and the unusually early decline in sea ice last winter . Global warming is also pushing milder Atlantic currents towards the Arctic and breaking the usual stratification between warm deep water and the cool surface, making it difficult for ice to form. There is currently 4 million square kilometers of sea ice less than expected compared to the 1980s. An area of ​​ice ten times the size of Germany is missing.

This lack of arctic sea ice will inevitably have consequences with the energy balance of the Earth. When the Arctic region is covered in snow, it becomes the brightest natural surface on the planet. By albedo effect, it reflects back to space about 80% of solar radiation. In contrast, the ocean below is the darkest surface on the planet and absorbs 90% of solar radiation. As a result, changes in sea ice cover have a significant impact on the amount of sunlight absorbed by the planet and the rate at which it heats up. Scientists fear that the delay in freezing sea ice amplifies the feedback loop that accelerates the decline of sea ice.
Source: Scientific press.

Océan Arctique et Mer de Laptev (Source : Wikipedia)

Photo : C. Grandpey

Dernières nouvelles de Io, la lune de Jupiter // Latest news of Io, Jupiter’s moon

 CNN a publié un article très intéressant sur les dernières observations d’Io, la lune volcanique de Jupiter. Cette lune a été nommée ainsi en référence à une mortelle transformée en vache lors d’un combat entre Zeus et Hera dans la mythologie grecque
Plus de 400 volcans ornent la surface de Io, en faisant le monde volcanique le plus actif de notre système solaire. Certains de ces volcans sont si puissants que leurs éruptions peuvent être vues à l’aide de grands télescopes sur Terre.
De nouvelles images recueillies par un réseau de télescopes ALMA (Atacama Large Millimeter / submillimeter Array) au Chili ont permis de voir pour la première fois l’effet direct de cette activité volcanique sur la mince atmosphère de la lune. Une étude incluant ces données devrait être publiée prochainement  dans le Planetary Science Journal.
Les images capturées le réseau de télescopes offrent une nouvelle perspective sur la lune et sa palette de couleurs, avec du jaune, du blanc, de l’orange et du rouge. Ces couleurs sont dues aux gaz sulfureux émis par les nombreux volcans, et qui gèlent lorsqu’ils rencontrent les températures froides de la surface.

Une lune couverte de volcans pourrait faire penser que Io est un corps céleste chaud, mais il n’en est rien ; la surface d’Io est  froide en permanence, avec une température d’environ moins 145°C (- 230°F).
L’atmosphère d’Io est si ténue qu’elle est environ un milliard de fois plus mince que celle de la Terre. Des observations et études antérieures de la lune ont révélé que cette atmosphère est en grande partie composée de dioxyde de soufre (SO2).
Cependant, on ne sait pas quel processus entraîne la dynamique dans l’atmosphère d’Io. Il se peut qu’il s’agisse d’une activité volcanique ou d’un gaz qui se sublime au contact de la surface glacée lorsque Io est au soleil. Les chercheurs ont utilisé ALMA pour capturer des images de la lune alors qu’elle se déplaçait dans et hors de l’ombre de Jupiter afin de mieux comprendre son atmosphère. Lorsque Io passe dans l’ombre de Jupiter et qu’elle n’est pas exposée directement à la lumière du soleil, le SO2 condense à la surface de Io. Pendant ce temps, on ne peut voir que du SO2 d’origine volcanique. On peut donc mesurer exactement quelle proportion de l’atmosphère est affectée par l’activité volcanique. Par la suite, dès que Io reçoit le lumière du soleil, la température augmente, son atmosphère se reforme en 10 minutes environ, plus vite que l’avaient prédit les modèles précédents. Cependant, les dernières données montrent que tout le SO2 ne gèle pas pendant les périodes de baisse de température quand Io se trouve dans l’ombre de Jupiter. En fait, ALMA a pu détecter les émissions de SO2 en provenance de ce que les chercheurs appellent des « volcans furtifs », qui n’émettent pas de gaz ou de particules détectables, mais qui émettent leur gaz dans une atmosphère suffisamment chaude pour éviter leur condensation et le gel.
Les scientifiques sont désormais en mesure d’expliquer le déroulement de ces processus chauds. L’attraction de Jupiter, Ganymède et Europa chauffe l’intérieur d’Io, ce qui donne naissance à des volcans qui émettent du dioxyde de soufre sous forme de gaz. Finalement, le gaz se condense et gèle pour former une épaisse couche de glace à la surface d’Io. Cette couche est recouverte de poussière volcanique, ce qui fait apparaître les couleurs caractéristiques de la lune.
Les images ALMA ont révélé des panaches distincts de SO et de SO2 émis par les volcans, et contribuant pour 30% à 50% à l’atmosphère de la lune. Les scientifiques ont également détecté du chlorure de potassium gazeux (KCl), un composant observé dans le magma des volcans. Les chercheurs pensent que cela montre qu’il existe des réservoirs de magma diffèrents entre les volcans.
Io est à peine plus grande que notre Lune, mais elle est très différente. De plus, son environnement ne ressemble à rien de ce que l’on trouve sur Terre. À côté des volcans, la surface d’Io est également recouverte de lacs de lave silicatée en fusion. Avec un tel paysage, les scientifiques affirment qu’il serait totalement impossible d’y vivre.
Io est coincée entre la puissante gravité de Jupiter et le tiraillement des orbites des autres lunes comme Europa et Ganymède, ce qui participe à l’activité sur Io. Certains volcans sont imposants, comme Loki Patera, qui mesure 200 kilomètres de diamètre. La lune est sur une orbite verrouillée autour de Jupiter, ce qui signifie que c’est toujours la même face de la lune qui est orientée vers la planète.
Les images ALMA ont révélé que l’atmosphère d’Io devient incroyablement instable lorsqu’elle traverse l’ombre de Jupiter. Cela se produit toutes les 42 heures pendant l’orbite d’Io autour de sa voisine.
Les observations et études futures permettront aux chercheurs de déterminer la température de la basse atmosphère d’Io, qui reste inconnue pour le moment.
Source: CNN.

————————————————-

CNN has released a very interesting article about the latest observations of IO, Jupiter’s volcanic moon. The moon was named with reference to a mortal woman who is transformed into a cow during a fight between Zeus and Hera in Greek mythology

Io is covered by more than 400 active volcanoes, and it is the most volcanically active world in our solar system. Some of Io’s volcanoes are so powerful that their eruptions can be seen using large telescopes on Earth.

New images collected by an array of telescopes on Earth have observed for the first time the direct effect of this volcanic activity on the moon’s thin atmosphere. A study including this data is expected to be published in the Planetary Science Journal.

The images captured by ALMA, or the Atacama Large Millimeter/submillimeter Array of telescopes in Chile, provide a new perspective on the moon and its colour palette of yellow, white, orange and red. These colours are due to the sulphurous gases spewing from the moon’s many volcanoes that freeze when they meet the cold temperatures of the icy surface.

Although the idea of a moon covered in volcanoes suggests Io would be a hot celestial body, Io’s surface is always cold at about – 145°c (- 230°F)..

Io’s atmosphere is so faint that it is about a billion times thinner than Earth’s. Previous observations and studies of the moon revealed that this atmosphere is largely comprised of sulphur dioxide gas (SO2).

However, it is not known which process drives the dynamics in Io’s atmosphere. It might be volcanic activity, or gas that has sublimated from the icy surface when Io is in sunlight. Researchers used ALMA to capture images of the moon as it moved into and out of Jupiter’s shadow to understand more about the moon’s atmosphere. When Io passes into Jupiter’s shadow, and is out of direct sunlight, it is too cold for SO2, and it condenses onto Io’s surface. During that time one can only see volcanically-sourced SO2. One can therefore see exactly how much of the atmosphere is impacted by volcanic activity. Then, as soon as Io gets into sunlight, the temperature increases, its atmosphere reforms in about 10 minutes’ time, faster than what models had predicted. However, the researchers’ data show that not all of the SO2 freezes during the temperature drop Io experiences while in Jupiter’s shadow. In fact, ALMA was able to detect global radio SO2 emissions from what the researchers call “stealth volcanoes”, which don’t emit smoke or detected particles, but release the gas into the atmosphere that is warm enough to keep from condensing and freezing.

Scientists are now able to explain these hot processes unfold. The tug of Jupiter, Ganymede and Europa heat the interior of Io, which creates volcanoes that release hot sulphur dioxide gas. Eventually, the gas condenses and freezes in a thick layer of SO2 ice on Io’s surface. That layer is covered over by volcanic dust, which creates Io’s signature colours.

The clarity of the ALMA images revealed distinct plumes of SO and SO2 coming from the volcanoes, contributing between 30% to 50% of the moon’s atmosphere. The scientists also saw potassium chloride gas (KCl), a common component of magma, emerging from the volcanoes. The researchers believe that this suggests that the magma reservoirs differ between volcanoes.

Io is only slightly larger than our moon, but it is very different. What’s more, its environment is unlike anything found on Earth. Beside the volcanoes, Io’s surface is also covered with lakes of molten silicate lava. With such a dramatic landscape, scientists say it would be totally impossible to live there.

Io is caught between Jupiter’s massive gravity and the tug of orbits from the planet’s other moons like Europa and Ganymede, which contributes to the activity on Io. Some of its volcanoes are massive, like Loki Patera, which is 200 kilometres across. The moon is in a tidally locked orbit around Jupiter, meaning that the same side of the moon always faces the planet.

The ALMA images revealed that Io’s atmosphere becomes incredibly unstable when it passes through Jupiter’s massive shadow. This occurs every 42 hours during Io’s orbit around its neighbour.

Future observations and studies will allow researchers to determine the temperature of Io’s lower atmosphere, which remains unknown for now.

Source: CNN.

Les images ALMA d’Io montrent pour la première fois des panaches de dioxyde de soufre (en jaune) s’élevant des volcans. Jupiter est visible en arrière-plan (image de la sonde Cassini). [Source : ALMA, NASA, Space Science Institute]

Réchauffement climatique et stratification des océans // Climate change and ocean stratification

Vous ne vous en rendez pas compte quand vous faites trempette dans l’Océan Atlantique ou la Mer Méditerranée, mais les océans et les mers de la planète sont devenus plus stratifiés et plus stables au cours des dernières décennies à cause du réchauffement climatique.

Il faut savoir que les océans présentent une stratification verticale selon trois couches principales : 1) eaux de surface, 2) thermocline, et 3) eaux profondes. La thermocline est la couche d’eau qui organise la transition entre les deux autres couches.

L’augmentation de la stratification des océans est importante. D’une part, elle a des conséquences majeures pour la vie dans l’océan en réduisant les échanges de nutriments et d’oxygène. D’autre part, la stratification est une rétroaction positive qui risque en retour d’aggraver le réchauffement climatique.

Une nouvelle étude publiée dans  Nature Climate Change  montre que l’océan mondial est devenu plus stratifié, ce qui implique des différences de densité, avec une eau plus chaude, plus légère et moins salée qui se superpose à une eau plus lourde, plus froide et plus salée. Le mélange entre ces couches se produit lorsque la chaleur s’infiltre lentement plus profondément dans l’océan, phénomène qui se combine à l’action des courants, des vents et des marées. Le problème, c’est que plus la différence de densité entre les couches est grande, plus le mélange est lent et difficile et plus l’océan devient stratifié et stable.

La densité de l’eau de mer ne dépend pas seulement de la température ; elle dépend aussi de la salinité. L’eau douce est plus légère que l’eau salée, et la fonte des glaces entraîne une accumulation d’eau douce et légère à la surface, en particulier aux latitudes plus élevées.

Cette configuration stratifiée stable agit comme une barrière. Elle tend à empêcher le mélange avec des eaux froides plus profondes. Cela a donc un impact sur l’efficacité des échanges verticaux de chaleur, de carbone, d’oxygène et d’autres constituants.

La dernière étude montre que la stratification de l’océan a augmenté de 5,3% depuis 1960 pour les 2000 m supérieurs. De 1960 à 2018, les données IAP (Institute of Atmospheric Physics) montrent un renforcement de la stratification de 5 à 18% dans les 150 premiers mètres.

La stratification, cependant, n’a pas augmenté uniformément dans tous les bassins océaniques. La plus forte augmentation a été observée dans l’océan Austral (9,6%), suivi de l’océan Pacifique (5,9%), de l’océan Atlantique (4,6%) et de l’océan Indien (4,2%).

La modification de la stratification va avoir des conséquences importantes. En effet, avec une stratification accrue, la chaleur du réchauffement climatique ne peut pas pénétrer aussi facilement dans l’océan profond, ce qui contribue à augmenter la température de surface. Le phénomène réduit également la capacité de stockage du carbone dans l’océan, exacerbant le réchauffement climatique dans une boucle de rétroaction. L’eau de surface chaude n’absorbe pas le dioxyde de carbone aussi efficacement que l’eau froide et ne l’enfouit pas en profondeur.

Enfin, la stratification contrarie les échanges verticaux de nutriments et d’oxygène et impacte l’approvisionnement alimentaire de l’ensemble des écosystèmes marins. Les régions avec l’augmentation maximale de la stratification correspondent aux régions où la désoxygénation a été observée. Une eau plus chaude peut absorber moins d’oxygène, et l’oxygène qui est absorbé ne peut pas se mélanger aussi facilement avec les eaux océaniques plus froides du dessous. Plus de 80% du déclin mondial observé en oxygène des océans est associé à une stratification accrue et à un affaiblissement consécutif de la ventilation en eau profonde.

Source : Nature Climate Change, global-climat.

————————————————-

You don’t realize it when you take a dip in the Atlantic Ocean or the Mediterranean Sea, but the oceans and seas of the planet have become more stratified and more stable in recent decades due to global warming.
It should be noted that the oceans have a vertical stratification according to three main layers: 1) surface water, 2) thermocline, and 3) deep water. The thermocline is the layer of water that organizes the transition between the other two layers.
The increase in ocean stratification is significant. On the one hand, it has major consequences for life in the ocean by reducing the exchange of nutrients and oxygen. On the other hand, stratification is positive feedback that in turn mau make global warming worse.
A new study published in Nature Climate Change shows that the global ocean has become more stratified, implying differences in density, with warmer, lighter and less salty water superimposed on heavier, colder and more salty water. The mixing between these layers occurs as heat slowly seeps deeper into the ocean, a phenomenon that combines with the action of currents, winds and tides. The problem is, the greater the difference in density between the layers, the slower and more difficult the mixing and the more layered and stable the ocean becomes.
The density of seawater is not just a function of temperature; it also depends on the salinity. Fresh water is lighter than salt water, and melting ice results in a buildup of fresh, light water on the surface, especially at higher latitudes.
This stable layered configuration acts as a barrier. It tends to prevent mixing with colder deeper waters. This therefore has an impact on the efficiency of the vertical exchanges of heat, carbon, oxygen and other constituents.
The latest study shows that ocean stratification has increased by 5.3% since 1960 for the top 2000 m. From 1960 to 2018, IAP (Institute of Atmospheric Physics) data shows an increase in stratification of 5 to 18% in the first 150 meters.
Stratification, however, did not increase uniformly in all ocean basins. The largest increase was observed in the Southern Ocean (9.6%), followed by the Pacific Ocean (5.9%), the Atlantic Ocean (4.6%) and the Indian Ocean ( 4.2%).
The modification of the stratification will have important consequences. This is because with increased stratification, the heat from global warming cannot penetrate as easily into the deep ocean, which helps to increase the surface temperature. The phenomenon also reduces carbon storage capacity in the ocean, exacerbating global warming in a feedback loop. Hot surface water does not absorb carbon dioxide as effectively as cold water and does not bury it deeply.
Finally, stratification thwarts the vertical exchange of nutrients and oxygen and impacts the food supply of all marine ecosystems. The regions with the maximum increase in stratification correspond to the regions where deoxygenation was observed. Warmer water can absorb less oxygen, and the oxygen that is absorbed cannot mix as easily with the cooler ocean waters below. More than 80% of the observed global decline in ocean oxygen is associated with increased stratification and the consequent weakening of ventilation in deep water.
Source: Nature Climate Change, global-climat.

Evolution de la stratification entre 0 et 2000 mètres de 1960 à 2018 (Source : Nature Climate Change)

Accélération de la fonte du Groenland // Greenland’s melting is accelerating

Selon une nouvelle étude parue dans la revue Nature Climate Change, la contribution des calottes glaciaires à l’élévation du niveau de la mer suit le pire scénario Le niveau de la mer a augmenté de 3,6 millimètres par an entre 2006 et 2015. C’est 2,5 fois le taux moyen de 1,4 millimètre par an observé pendant la majeure partie du 20ème siècle. Il s’agit d’une élévation due à un ensemble de facteurs, principalement l’expansion thermique des océans, la fonte des glaciers et la perte de masse de l’Antarctique et du Groenland.

Depuis que les calottes glaciaires sont surveillées par satellite (dans les années 1990), la fonte de l’Antarctique a fait monter le niveau de la mer de 7,2 mm, tandis que le Groenland a contribué à hauteur de 10,6 mm.

La nouvelle étude compare les observations de fonte des deux inlandsis aux modèles climatiques. Il ressort que la tendance récente à la fonte du Groenland et de l’Antarctique suit les pires scénarios modélisés dans le dernier rapport du GIEC.

Au Groenland, plus de la moitié des pertes de glace est due à la fonte de surface provoquée par la hausse de la température de l’air. Le reste est dû à l’augmentation du débit des glaciers, déclenchée par la hausse des températures océaniques.

Entre 2002 et 2019, le Groenland a perdu 4550 milliards de tonnes de glace, avec une moyenne de 268 milliards de tonnes par an. En 2019, les pertes ont atteint 600 milliards de tonnes sur une seule saison.

Un article paru en septembre 2020 sur le site web de la BBC nous apprend qu’une grosse masse de glace vient de se séparer de la plus grande plate-forme glaciaire encore présente dans l’Arctique – la 79N, ou Nioghalvfjerdsfjorden – dans le nord-est du Groenland. La section de la plateforme qui vient de partir dans l’océan couvre environ 110 kilomètres carrés; les images satellites montrent qu’elle s’est brisée en plusieurs morceaux. Selon les scientifiques, cet événement est une preuve supplémentaire des effets rapides du changement climatique au Groenland.
La plateforme Nioghalvfjerdsfjorden mesure environ 80 km de long sur 20 km de large ; elle constitue la partie frontale du Northeast Greenland Ice Stream. Dans sa partie terminale, la plateforme 79N se divise en deux branches, dont la plus petite est orientée vers le nord. C’est cette dernière, baptisée Spalte Glacier, qui s’est désintégrée. La plateforme était déjà fortement fracturée en 2019; la chaleur de l’été 2020 lui a porté le coup de grâce. Le Spalte Glacier est devenu une flottille d’icebergs.
Comme je l’ai déjà expliqué, la fonte des plateformes est accélérée par la présence de lacs de fonte. Cela signifie que l’eau sous forme liquide s’infiltre dans les crevasses et facilite leur ouverture. L’eau continue son chemin jusqu’à la base de la plateforme, processus connu sous le nom d’hydrofracturation. De plus, la glace de la plateforme a tendance à fondre par en dessous, suite à la hausse de la température de l’océan..
Dans une note précédente, j’ai indiqué qu’en juillet 2020, une vaste section de la plateforme glaciaire Milne sur l’île d’Ellesmere au Canada avait pris le large. Une surface de 80 kilomètres carrés s’est détachée de la plateforme principale qui couvrait 8600 km2 au début du 20ème siècle.
La fonte rapide du Groenland a été confirmée par une étude parue en août 2020 et qui analyse les données fournies par les satellites de la mission Grace-FO. Ces données ont montré que 2019 avait été une année record ; la calotte glaciaire a perdu quelque 530 milliards de tonnes. Il s’agit d’une masse d’eau suffisante pour faire s’élever de 1,5 mm le niveau de la mer dans le monde.
Source: BBC.

——————————————————

According to a new study in the journal Nature Climate Change, the contribution of ice sheets to sea level rise follows the worst case scenario Sea level increased by 3.6 millimeters per year between 2006 and 2015. C This is 2.5 times the average rate of 1.4 millimeters per year observed during most of the 20th century. This is a rise due to a combination of factors, primarily thermal expansion of the oceans, melting glaciers and the loss of mass from Antarctica and Greenland.
Since the ice sheets were monitored by satellite (in the 1990s), the melting of Antarctica has raised the sea level by 7.2 mm, while Greenland has contributed 10.6 mm.
The new study compares the melting observations of the two ice sheets with climate models. It appears that the recent melting trend in Greenland and Antarctica follows the worst-case scenarios modeled in the latest IPCC report.
In Greenland, more than half of the ice loss is due to surface melting caused by rising air temperature. The remainder is due to increased flow from glaciers, triggered by rising ocean temperatures.
Between 2002 and 2019, Greenland lost 4,550 billion tonnes of ice, with an average of 268 billion tonnes per year. In 2019, losses reached 600 billion tonnes in a single season.
A September 2020 article on the BBC website informs us that a big chunk of ice has just broken away from the Arctic’s largest remaining ice shelf – 79N, or Nioghalvfjerdsfjorden – in north-east Greenland. The ejected section covers about 110 square kilemetres; satellite imagery shows it to have shattered into many small pieces. Scientisis say the loss is further evidence of the rapid climate changes taking place in Greenland.

Nioghalvfjerdsfjorden is roughly 80km long by 20km wide and is the floating front end of the Northeast Greenland Ice Stream. At its leading edge, the 79N glacier splits in two, with a minor offshoot turning directly north. It’s this offshoot, or tributary, called Spalte Glacier, that has now disintegrated. The ice feature was already heavily fractured in 2019; this summer’s warmth has been its final undoing. Spalte Glacier has become a flotilla of icebergs.

As I put it before, the melting of the platforms is accelerated by the presence of melt ponds. This means liquid water fills crevasses and can help to open them up. The water then pushes down on the fissures, driving them through to the base of the shelf. This process is known as hydrofracturing and it weakens an ice shelf. Oceanographers have also documented warmer sea temperatures which mean the shelf ice is almost certainly being melted from beneath as well.

In a previous post, I indicated that July 2020 witnessed another large ice shelf structure in the Arctic lose significant area. Eighty square kilometres broke free from Milne Ice Shelf on Canada’s Ellesmere Island. Milne was the largest intact remnant from a wider shelf feature that covered 8,600 sq km at the start of the 20th century.

The fast pace of melting in Greenland was underlined in a study last month that analysed data from the US-German Grace-FO satellites. The Grace mission found 2019 to have been a record-breaking year, with the ice sheet shedding some 530 billion tonnes. That’s enough meltwater running off the land into the ocean to raise global sea-levels by 1.5mm.

Source : The BBC.

  Source : Copernicus Data / ESA / Sentinel 2B