La fonte du permafrost ferme un aéroport en Alaska // Melting permafrost closes an airport in Alaska

Tununak (320 habitants) est un petit village isolé sur la côte ouest de l’Alaska. Le seul lien avec le monde extérieur est l’avion. Il y a environ un an, Tununak a ouvert un aéroport ultramoderne qui a coûté 19 millions de dollars. Le problème, c’est qu’aujourd’hui, les compagnies aériennes refusent de l’utiliser. La fonte du permafrost a endommagé la piste et les pilotes ne peuvent pas atterrir en toute sécurité. Le tiers inférieur de la piste est criblé de nids de poule, et maintenant elle commence à s’affaisser. En fait, en raison du changement climatique, c’est tout le site qui s’affaisse sous le poids de l’aéroport.
L’aéroport est fermé depuis le 5 octobre mais on n’a jamais vraiment donné d’explications aux habitants.
Comme la plupart des communautés de l’Alaska qui ne sont pas reliées au réseau routier, Tununak dépend du transport aérien pour son approvisionnement en biens et pour ses services. La fermeture de l’aéroport signifie que l’épicerie ne reçoit plus de marchandise et les gens n’ont pas reçu de courrier depuis plus d’une semaine. Plusieurs personnes âgées s’inquiètent de ne pas recevoir leurs médicaments.
Pour l’instant, les habitants de Tununak traversent la toundra en 4×4 pour aller faire leurs courses et chercher leur courrier à Toksook Bay, à quelques dizaines de kilomètres au sud.
Le Ministère des Transports a décidé d’envoyer un technicien de génie civil à Tununak pour évaluer la situation, mais son vol a été retardé par le mauvais temps. Comme cette visite d’évaluation des dégâts a été retardée, le Ministère des Transports est dans l’incapacité de dire quand la piste de Tununak sera réparée.
Source: Alaska Dispatch News.

————————————–

Tununak (pop. 320) is a small and remote village on the western coast of Alaska. The only link with the outside world is the plane. About a year ago, Tununak opened a $19 million, state-of-the-art airport. But now, local airlines are refusing to fly there. The village’s shifting permafrost is buckling the runway, and it is too dangerous for pilots to land on it safely. The lower third of the runway is riddled with potholes, and now it is starting to sink. Beecause of climate change, the melting permafrost is moving under the airport’s weight.

The airport has been effectively shut down since October 5th but residents were not really told what was happening.

Like most Alaska communities off the road system, Tununak relies on air travel for goods and services. The closure of the airport means that groceries are no longer arriving in the local shop and êople have not received mail in over a week or so. Several elderly residents are concerned about receiving their medications.

For now, Tununak residents are driving across the tundra on four-wheelers to pick up groceries and mail in Toksook Bay, a few tens of kilometres to the south.

The Department of Transportation is sending a grader operator to Tununak to assess the situation, but their flights have been delayed by storms. Because their assessment has been delayed, the Department of Transportation does not have a timetable yet for when Tununak’s runway will be fixed.

Source: Alaska Dispatch News.

 

Publicités

Le réchauffement climatique fait s’effondrer les flancs des montagnes // Mountain slopes collapse because of global warming

Dans une note mise en ligne le 11 septembre, j’indiquais que sous l’effet du réchauffement climatique dans les Alpes, la langue terminale du glacier suisse de Trift, dans le Valais s’était effondrée, sans faire de victimes ni de dégâts.

En juin 2016, tout un pan de montagne de 1 200 mètres de hauteur s’est effondré dans le Parc National de Glacier Bay en Alaska, répandant des matériaux sur environ 20 kilomètres carrés sur le Glacier Lamplugh, et en générant un signal sismique aussi puissant qu’un séisme de magnitude M 5,2.
En 2015, la paroi d’une autre montagne du Parc s’est effondrée elle aussi, avec quelque 220 millions de tonnes de roches qui sont allées d’écraser sur un autre glacier et dans le fjord en dessous. Ce fut le plus grand glissement de terrain non volcanique jamais observé en Amérique du Nord. Il a déclenché un tsunami avec une vague de 180 mètres de hauteur qui a dépouillé de leurs feuilles tous les arbres des montagnes autour. Les scientifiques disent que ces glissements de terrain majeurs doivent être pris au sérieux car ils pourraient devenir une menace pour les navires de croisière et les kayaks qui fréquentent parfois ces fjords.
Une étude des avalanches de roches dans la partie occidentale du Parc National de Glacier Bay a révélé que la probabilité de glissements de roches couvrant environ 5 kilomètres carrés a doublé au cours des cinq dernières années. Au fur et à mesure que le climat s’est réchauffé, les caractéristiques des avalanches de roches dans la région ont changé. Elles sont de plus grande  ampleur et parcourent de plus longues distances. L’étude a examiné les 24 avalanches de roches qui se sont produites de 1984 à 2016 dans la partie ouest du Parc National de Glacier Bay en utilisant des images satellitaires pour la cohérence des mesures au cours des 30 années écoulées.
Selon l’étude, la cause de ces avalanches de roches est le dégel de la glace qui remplit les fissures, les crevasses et les fractures des roches des montagnes. C’est ce qu’on appelle le «permafrost de roche». Ce permafrost aide à maintenir les pentes escarpées dans leur état, de sorte que la fonte, ou seulement l’amollissement, de cette glace déstabilise la roche.
La perte d’épaisseur des glaciers est probablement un autre facteur de déstabilisation. En effet, les glaciers moins épais soutiennent moins bien les pentes des montagnes.
L’étude met en parallèle la taille croissante des avalanches de roches à Glacier Bay et la tendance au réchauffement climatique sur le long terme. Les grandes avalanches ont commencé environ deux ans après que la température maximale annuelle de la zone se soit élevée au-dessus du point de congélation.
La tendance ne se limite pas aux limites du Parc National de Glacier Bay. On observe de tels événements dans toute la région montagneuse du sud-est de l’Alaska et les régions voisines du Canada. Ils sont suivis de près par un système sismique créé par des scientifiques  du Lamont-Doherty Earth Observatory.de l’Université de Columbie Britannique.
Au Groenland en juin 2017, quatre personnes ont été tuées par un tsunami qui a été déclenché par une avalanche de roches dans un fjord. L’événement a généré un signal sismique semblable à celui d’un tremblement de terre de magnitude M 4.1, et une vague de plus de 90 mètres de hauteur a frappé un village de pêcheurs.
Source: Alaska Dispatch News.

———————————————

In a note released on September 11th, I indicated that because of global warming in the Alps, the front of the Trift Glacier, in the Swiss province of Valais, had collapsed without killing anybody, nor causing major damage.

In June 2016, a 1,200 metre mountain slope in Glacier Bay National Park collapsed in Alaska, spreading rock over about 20 square kilometres over the Lamplugh Glacier and creating a seismic signal as powerful as a magnitude-5.2 earthquake.

The year before, the face of another park mountain peeled off and sent about 220 million tons of rock and debris crashing onto another glacier and into the fjord below. The biggest non-volcanic North American landslide on record, it triggered a local tsunami that rose to 180 metres and stripped alders off high hillsides. Scientists say these massive rock slides should be taken seriously as they may become a threat to cruise ships and kayakers that sometimes head into wilderness bays.

A study of rock avalanches in the western part of Glacier Bay National Park found that the likelihood of large slides covering about 5 square kilometres has at least doubled in the last five years. As the climate has warmed, characteristics of the region’s rock avalanches have changed. They are bigger, and travelling farther. The study examined the 24 rock avalanches that happened from 1984 to 2016 in western Glacier Bay National Park, and used satellite imagery for consistency in measurements over the three decades.

The likely reason of the rock avalanches, says the study, is thaw of the ice that fills the mountains’ rock cracks, crevices and fractures, referred to as « rock-permafrost. » The rock-permafrost helps hold steep slopes intact, so thaw or even softening of that ice destabilizes the rock.

Glacial thinning is likely a secondary factor. Thinned glaciers are less effective at propping up mountain faces.

The study correlates the increasing size of Glacier Bay rock avalanches to a long-term warming trend. The large avalanches began about two years after the area’s annual maximum temperature shifted above freezing.

The trend extends beyond park boundaries. The whole mountainous region of Southeast Alaska and neighbouring parts of Canada has emerged as a hot spot for such events – now closely tracked by a seismic system created by scientists at Columbia University’s Lamont-Doherty Earth Observatory.

In Greenland in June 2017, four people were killed by a tsunami that was triggered when a rockslide dropped from a mountain slope into a fjord. There, the rockslide creating a seismic signal similar to that of a magnitude-4.1 earthquake, and a wave rising more than 90 metres struck a fishing village.

Source: Alaska Dispatch News.

Vue de l’avalanche de roches dans le Parc national de Glacier Bay le 28 juin 2016, avec la masse de matériaux qui est venue s’échouer à la surface du Lamplugh Glacier.

La photo a été prise par Paul Swanstrom, propriétaire de l’agence Mountain Flying Service, que je salue ici. C’est un pilote hors pair avec lequel j’ai effectué plusieurs survols de la région.

L’avenir du permafrost en Alaska // The future of Alaska’s permafrost

Comme je l’ai écrit à plusieurs reprises sur ce blog, le permafrost (ou pergélisol) fond à une vitesse incroyable dans l’Arctique, avec des conséquences importantes pour l’environnement. Un article récemment publié dans le New York Times apporte plus de détails sur le phénomène.
L’Arctique se réchauffe environ deux fois plus vite que d’autres parties de la planète, et la hausse des températures est fortement ressentie en Alaska. La glace de mer et certains biotopes disparaissent; la hausse du niveau de la mer menace les villages côtiers. Pour les scientifiques du Woods Hole Research Center qui sont allés en Alaska étudier les effets du changement climatique, le problème le plus sérieux réside dans la fonte du permafrost.
Logé entre quelques dizaines de centimètres et quelques mètres sous la surface, le permafrost contient de grandes quantités de carbone dans la matière organique ; ce sont des plantes qui ont absorbé du dioxyde de carbone de l’atmosphère il y a des siècles, sont mortes et ont gelé avant de pouvoir se décomposer. Sur la planète, on pense que le permafrost contient aujourd’hui deux fois plus de carbone que l’atmosphère. Une fois que cette matière organique décongèle, les microbes en transforment une partie en dioxyde de carbone et en méthane qui peuvent passer dans l’atmosphère et accélérer son réchauffement.
En juillet 2017, les scientifiques du Woods Hole Research Center ont installé une station temporaire au bord d’un lac à 90 km au nord-ouest de Bethel, une ville située près de la côte ouest de l’Alaska, à environ 640 km d’Anchorage. Ils ont prélevé des carottes de permafrost, ainsi que des échantillons de sédiments et d’eau et enfoncé des sondes thermiques dans le sol gelé. Plus tard, dans le laboratoire de l’institution, ils ont entrepris le processus d’analyse des échantillons pour déterminer la teneur en carbone et en nutriments. L’objectif est de mieux comprendre comment la fonte du permafrost affecte le paysage et, en fin de compte, quelle quantité de gaz à effet de serre est évacuée dans l’atmosphère.
Même dans le nord de l’Alaska où le climat est plus froid et où le permafrost dans la région de North Slope descend à plus de 600 mètres sous la surface, les scientifiques voient des changements importants. La température à deux mètres de profondeur a augmenté de 3 degrés Celsius au cours des dernières décennies. Les changements à la surface ont été encore plus importants. Sur l’un des sites de mesures, la température du permafrost en surface est passée de moins 8 degrés Celsius à moins 3. A ce rythme, cette température deviendra positive vers le milieu du siècle. En plus des émissions de gaz à effet de serre, la fonte du permafrost a une incidence sur les infrastructures et provoque des affaissements de terrain lorsque la glace perd de son volume en fondant. J’ai précédemment donné l’exemple de la rue principale de Bethel, une agglomération où les bâtiments s’enfoncent et se fissurent.
La fonte du permafrost est un processus graduel. Le sol est totalement gelé en hiver et commence à décongeler de haut en bas lorsque la température de l’air augmente au printemps. À mesure que les températures moyennes augmentent, cette couche décongelée ou active en subit les effets en profondeur. Les chercheurs s’intéressent à la manière dont les feux de forêt affectent le permafrost. Comme les incendies font disparaître en surface une partie de la végétation qui agit comme un isolant, on pense que le feu et la combustion qu’il entraîne peuvent accélérer la fonte du pergélisol.
La fonte du permafrost sous un lac ou en bordure de celui-ci peut provoquer l’évacuation de l’eau, un peu comme une baignoire qui fuit. Cette fonte peut aussi entraîner des variations de niveau du sol, ce qui peut entraîner des changements dans l’écoulement de l’eau ; ainsi, certaines parties de la toundra peuvent s’assécher et d’autres être transformées en tourbières. Au-delà des effets sur la vie végétale et animale, les changements apportés au paysage peuvent avoir un impact important sur le changement climatique en modifiant la quantité de dioxyde de carbone et de méthane qui est émise. Bien que le méthane ne persiste pas dans l’atmosphère aussi longtemps que le dioxyde de carbone, il a une capacité de piégeage thermique beaucoup plus grande et peut contribuer à un réchauffement plus rapide. Si le permafrost en décomposition est humide, il y aura moins d’oxygène disponible pour les microbes, de sorte qu’ils produiront plus de méthane. Si le pergélisol est sec, la décomposition entraînera plus de dioxyde de carbone.
Les estimations varient en ce qui concerne la quantité de carbone émise lors de la fonte du permafrost dans le monde, mais on estime que les émissions d’ici la fin du siècle pourraient atteindre environ 1,5 milliard de tonnes par an, soit environ les émissions annuelles actuelles provenant de combustibles fossiles aux États-Unis.
La hausse des émissions de carbone dans la toundra de l’Alaska est tenue pour responsable de la hausse des températures et de la fonte du permafrost. Dans une étude publiée au début de cette année, les chercheurs ont constaté que la décomposition bactérienne du permafrost décongelé, ainsi que le dioxyde de carbone produit par la végétation vivante, se poursuit plus tard dans l’automne parce que le gel en surface est retardé. Selon les chercheurs, la hausse des émissions de CO2 a été si importante que l’Alaska pourrait passer du stade de simple réserve à celui de véritable source de carbone.
Source: The New York Times.

————————————–

As I put it several times in this blog, permafrost is thawing at an incredible speed in the Arctic, with significant consequences for the environment. An article recently published in The New York Times brings more details about the phenomenon.

The Arctic is warming about twice as fast as other parts of the planet, and even in sub-Arctic Alaska the rate of warming is high. Sea ice and wildlife habitat are disappearing; higher sea levels threaten coastal native villages. To the scientists from Woods Hole Research Center who have gone to Alaska to study the effects of climate change, the most urgent is the fate of permafrost.

Starting just a few tens of centimetres below the surface and extending a few metres down, it contains vast amounts of carbon in organic matter, plants that took carbon dioxide from the atmosphere centuries ago, died and froze before they could decompose. Worldwide, permafrost is thought to contain about twice as much carbon as is currently in the atmosphere. Once this ancient organic material thaws, microbes convert some of it to carbon dioxide and methane, which can flow into the atmosphere and cause more warming.

In July, Woods Hole scientists set up a temporary field station on a lake 90 km northwest of Bethel, a city located near the west coast of Alaska, approximately 640 km from Anchorage. They drilled permafrost cores, took other sediment and water samples and embedded temperature probes in the frozen ground. Later, back in the lab at Woods Hole, they began the process of analyzing the samples for carbon content and nutrients. The goal is to better understand how thawing permafrost affects the landscape and, ultimately, how much and what mix of greenhouse gases is released.

Even in colder northern Alaska, where permafrost in some parts of the North Slope extends more than 600 metres below the surface, scientists are seeing stark changes. Temperatures at a depth of 2 metres have risen by 3 degrees Celsius over decades. Near-surface changes have been even greater. At one northern site, permafrost temperatures at shallow depths have climbed from minus 8 degrees Celsius to minus 3. If emissions and warming continue at the same rate, near-surface temperatures will rise above freezing around the middle of the century. In addition to greenhouse-gas emissions, thawing wreaks havoc on infrastructure, causing slumping of land when ice loses volume as it melts. I previously gave the example of the main road in Bethel where building foundations move and crack.

The thawing of permafrost is a gradual process. Ground is fully frozen in winter, and begins to thaw from the top down as air temperatures rise in spring. As average temperatures increase, this thawed, or active, layer can increase in depth. The researchers are especially interested in how wildfires affect the permafrost. Because burning removes some of the vegetation that acts as insulation, the theory is that burning should cause permafrost to thaw more.

Thawing permafrost underneath or at the edge of a lake can cause it to drain like a leaky bathtub. Thawing elsewhere can bring about small elevation changes that can in turn lead to changes in water flow through the landscape, drying out some parts of the tundra and turning others into bogs. Beyond the local effects on plant and animal life, the landscape changes can have an important climate change impact, by altering the mix of carbon dioxide and methane that is emitted. Although methane does not persist in the atmosphere for as long as carbon dioxide, it has a far greater heat-trapping ability and can contribute to more rapid warming. If the decomposing permafrost is wet, there will be less oxygen available to microbes, so they will produce more methane. If the permafrost is dry, the decomposition will lead to more carbon dioxide.

Estimates vary on how much carbon is released from thawing permafrost worldwide, but by one calculation emissions over the rest of the century could average about 1.5 billion tons a year, or about the same as current annual emissions from fossil-fuel burning in the United States.

Already, thawing permafrost and warmer temperatures are being blamed for rising carbon emissions in the Alaskan tundra. In a study earlier this year, researchers found that bacterial decomposition of thawed permafrost, as well as carbon dioxide produced by living vegetation, continues later into the fall because freezing of the surface is delayed. The rise in emissions has been so significant, the researchers found, that Alaska may be shifting from a sink, or storehouse, of carbon, to a net source.

Source: The New York Times.

Carte montrant (en bleu) l’étendue du permafrost en Alaska en 2010

Projection montrant (en orange) la perte probable de permafrost en 2050

 (Source : Woods Hole Research Center)

Petite éruption du Bogoslof (Alaska) // Minor eruption of Bogoslof Volcano (Alaska)

L’AVO indique qu’une éruption d’une durée de 4 minutes s’est produite sur le Bogoslof le 26 août à 16h29 (heure locale – 00:29 le 27 août TU). Aucune sismicité n’a été détectée depuis les îles voisines depuis cet événement qui n’a provoqué aucun éclair. Les images satellites ne montrent pas d’autre émission de cendre. Le nuage éruptif s’est élevé à 7 200 mètres d’altitude. L’AVO ajoute que le Bogoslof reste très actif et que d’autres éruptions peuvent se produire sans prévenir.

———————————

AVO indicates that a 4-minute eruption occurred at Bogoslof Volcano on August 26th at 16:29 (local time – 00:29 on August 27th UTC). Seismicity as detected on neighbouring islands has been quiet since this event during which no lightning has been detected. Satellite images show no additional emission from the volcano.The cloud produced by the eruption rose to as high as 7,200 metre a.s.l. AVO adds that Bogoslof volcano remains at a heightened state of unrest and additional explosions producing high-altitude volcanic clouds could occur at any time.

Vue du Bogoslof le 15 août 2017 – Crédit photo: Janet Schaefer (USGS / AVO)

Nouveaux records de température en Alaska // New record-high temperatures in Alaska

Les services météorologiques de l’Alaska indiquent qu’un système de hautes pressions établi dans le sud-est de l’Alaska a permis d’enregistrer de nouveaux records de température le samedi 5 août 2017.
Ainsi, à Skagway le mercure a atteint 33,8°C, la plus haute température jamais enregistrée dans cette ville qui se trouve juste à l’ouest de la frontière canadienne. Le minimum ce même jour a été de 12,7 ° C. La température moyenne en août à Skagway est de 23,3°C. Le record précédent était de 33,3°C. Le record précédent pour un 5 août était de 26,6°C.
Des records de 31,1°C, 30,5°C et 30°C ont également été établis le 5 août à Haines, Hyder et Annette Island.
L’aéroport de Juneau et la vallée de Mendenhall ont enregistré une température record de 27,2°C. De telles températures vont sans aucun doute accélérer la fonte du glacier Mendenhall.

+++++++++++++++

La ville de Skagway a joué un rôle stratégique majeur dans les années 1880 au moment de la Ruée vers l’Or, surtout après la découverte d’importants dépôts le long de la rivière Klondike. Les articles de journaux relatant la découverte de l’or engendrèrent une hystérie collective et beaucoup quittèrent leurs emplois pour partir vers le Klondike en tant que prospecteurs.

La plupart rejoignirent les champs aurifères par les ports de Dyea et de Skagway, avant de franchir la chaîne côtière par le White Pass et le Chilkoot Pass et de descendre les cours d’eau jusqu’au Klondike.

Le gouvernement canadien imposa à chaque prospecteur d’emporter de quoi manger pendant un an et la plupart transportaient seuls leur équipement dont le total atteignait fréquemment la tonne. Le terrain montagneux et le climat glacial firent que ceux qui n’abandonnèrent pas ou ne périrent pas durant le voyage n’arrivèrent qu’à l’été 1898. Une fois sur place, les meilleures concessions avaient été prises et beaucoup quittèrent la région.

Les dépôts d’or étaient riches mais inégalement répartis et leur extraction était rendue difficile par le pergélisol qui ne fondait pas à cette époque. Des villes champignons poussèrent le long des pistes menant à Dawson City fondée au confluent de la rivière Klondike avec le fleuve Yukon à proximité du lieu de la première découverte. La population de la ville passa de 500 habitants en 1896 à 30 000 à l’été 1898. Aujourd’hui, elle ne compte que 1300 âmes. On en recense environ 800 à Skagway, mais beaucoup plus lorsque les bateaux de croisière y font escale. Il est très intéressant de visiter la région où l’on trouve de nombreuses traces de la Ruée vers l’Or. Le trajet en train le long du White Pass est extraordinaire et la visite des cimetières met en évidence la rudesse de la vie au cours des années 1890.

——————————————————-

The National Weather Service indicates that a high-pressure system in Southeast Alaska broke or tied many high temperature records on Saturday, August 5th, 2017.

Skagway set an all-time record high temperature of 33.8°C. The town, which lies just west of the Canadian border, saw a low of 12.7°C on the same day; its average temperature in August is 23.3°C. Skagway’s previous record was 33.3°C. The previous daily high record for August 5th was 26.6°C.

Daily records of 31.1°C, 30.5°C and 30°C were set in Haines, Hyder and Annette Island, respectively.

The Juneau International Airport and the Mendenhall Valley recorded a daily record of 27.2°C. Such high temperatures will no doubt accelerate the melting of the Mendenhall Glacier.

++++++++++++++++

 Skagway played a major strategic role in the 1880s at the time of the Gold Rush, especially after the discovery of important deposits along the Klondike River. Newspaper articles about the discovery of gold led to a collective hysteria and many left their jobs to go to the Klondike as prospectors.
Most joined the gold fields through the ports of Dyea and Skagway before crossing the coastal mountain range through the White Pass and Chilkoot Pass and down the streams to the Klondike.
The Government of Canada compelled each prospector to carry food for one year, and most prospectors carried their own equipment which frequently weighed a tonne. Because of thehe mountainous terrain and the very cold climate, those who did not abandon or perish during the journey arrived in the summer of 1898. The best claims were oalradu occupied and many left the region.
The gold deposits were rich but unevenly distributed and their extraction was made difficult by the permafrost which was not melting at that time. Mushroom towns grew along the trails leading to Dawson City founded at the confluence of the Klondike River with the Yukon River near the site of the first discovery. The population of the city rose from 500 inhabitants in 1896 to 30 000 in the summer of 1898. Today it has a population of 1300. There are about 800 inhabitants in Skagway, but many more when cruise ships stop there. It is very interesting to visit the region where there are many traces of the Gold Rush. The train ride along the White Pass is extraordinary and the visit to the cemeteries highlights the harshness of life in the 1890s.

Le site de Dyea a été abandonné par les prospecteurs….

L’ascension du White Pass et du Chilkoot Pass était très difficile et périlleuse….

Tous ne sont pas arrivés à destination, victimes du froid, d’avalanches …ou d’autres prospecteurs…

Aujourd’hui, Skagway attire surtout les touristes…

Le train fait escalader le White Pass plus facilement qu’autrefois….

Dawson City accueille toujours des prospecteurs espérant faire fortune…

L’or est omniprésent dans la région….

Les récits de Jack London occupent tous les esprits…

Photos: C. Grandpey

La fonte des glaciers d’Alaska (suite) // The melting of Alaskan glaciers (continued)

A l’intérieur du Kenai Fjords National Park dans le sud de l’Alaska, le glacier Exit est l’un des plus populaires de cet Etat. C’est l’un des plus accessibles, mais aussi l’un de ceux qui reculent le plus vite.
Sur le chemin qui conduit au pied du glacier, on peut voir des panneaux montrant 195 années de recul de la masse de glace. Lorsque j’ai visité le glacier en 2013, ces panneaux ont fait ressurgir dans ma mémoire ceux qui jalonnent l’accès au Glacier Athabasca au Canada ou à la Mer de Glace en France. Là aussi, le recul est impressionnant. A l’extrémité du sentier de l’Exit Glacier, le dernier panneau indique l’année 2010. On se trouve alors devant un vaste espace montrant à quel point le glacier a continué à reculer vers le haut de la vallée.
Le recul au cours de l’été 2016 a été de 76 mètres. C’est le plus important jamais enregistré au cours d’un seul été. Le 1er octobre de cette même année, les mesures effectuées par le National Park Service ont indiqué un recul de 88 mètres.
L’Exit Glacier est une langue de glace en provenance de l’Harding Icefield qui est beaucoup plus grand. Bien qu’il soit petit (36 kilomètres carrés), l’Exit Glacier est très populaire et symbolise le changement climatique. Il a été visité par le président Barack Obama lors de son voyage en Alaska en 2015.
D’autres glaciers d’Alaska reculent eux aussi de façon spectaculaire. C’est le cas du Mendenhall, près de Juneau. Les images d’archives exposées au Visitor Center montrent l’étendue du désastre.  Le Columbia, que j’ai visité à deux reprises dans le Prince William Sound, est l’un des glaciers les mieux étudiés au monde. Son recul l’a fait se diviser en deux branches, avec une glace moins épaisse qu’auparavant. Le glacier d’Eklutna, source de l’eau potable pour la ville d’Anchorage, est l’un des glaciers du Chugach State Park. Lui aussi est étroitement contrôlé, mais il perd une quantité importante de glace chaque année. Le glacier de Portage, à 80 kilomètres d’Anchorage, reste une destination touristique, même si les visiteurs doivent maintenant prendre un bateau et traverser le lac Portage pour atteindre le front du glacier.
L’Exit Glacier, qui a reçu 181 500 visiteurs en 2016, n’est pas le seul glacier de montagne de l’Alaska que l’on peut atteindre à pied, même si la marche d’approche se fait de plus en plus longue au fur et à mesure que le glacier recule. Il reste toutefois facilement accessible au sein d’un parc national. C’est un exemple parfait d’un recul glaciaire et il joue le rôle de laboratoire en temps réel du changement climatique. Les glaciers terrestres comme l’Exit, bien qu’ils ne représentent qu’un petit pourcentage de la glace mondiale, contribuent de manière significative à l’élévation mondiale du niveau de la mer et les visiteurs des fjords du Kenai peuvent observer ce phénomène de leurs propres yeux.
Chaque printemps et chaque automne, les employés du Kenai Fjords National Park se rendent au chevet du glacier Exit pour effectuer des mesures précises de la position de son front. Le glacier recule maintenant aussi bien en hiver qu’en été, phénomène observé depuis 2006. Depuis 2011, les températures quotidiennes moyennes d’octobre à mai au niveau du point le plus bas du glacier restent supérieures à zéro la moitié du temps.
Les photos aériennes et les archives historiques sont également utilisées pour suivre l’évolution du glacier. L’USGS, l’Université de l’Alaska et l’Université de Washington ont collecté les données altimétriques pour calculer les changements intervenus au cours des cinquante dernières années sur le glacier Exit et ailleurs en Alaska. La reconstruction d’un passé lointain nécessite également une analyse des données géologiques et des cernes de croissance des arbres de la région.
Le sentier d’accès de 2 kilomètres au glacier Exit se terminait par une boucle, mais les employés du Parc ont dû ajouter deux extensions, respectivement en 2006 et 2010, pour permettre d’atteindre le glacier. Il n’y aura pas d’autre extension parce que la langue glaciaire est maintenant entourée d’un terrain jugé abrupt et dangereux. Beaucoup de visiteurs du parc craignent que le glacier se retire trop loin et ne soit bientôt plus visible depuis le sentier d’accès.
Certains glaciers du Kenai Fjords National Park perdent davantage de glace que l’Exit. Ainsi, le Pedersen reculait en moyenne de 20 mètres par an entre 1951 et 1986, mais ce recul est passé à 123 mètres par an de 1994 à 2015. La petite mare que l’on observait il y a une vingtaine d’années devant le front du glacier est devenue un vaste lac. Un lac semblable s’est formé suite au recul du Bear Glacier, au sud de l’Exit. Le Bear Glacier est plus de cinq fois plus grand que l’Exit et il perd plus de 10 fois plus de glace chaque année.
Source: Alaska Dispatch News.

——————————————–

One of the most popular glaciers of Alaska, one of the most accessible, is Exit Glacier in the Kenai Fjords National Park. It is also one of those which are retreating very fast.

On the road to the glacier’s toe, one can see signs marking 195 years of accelerating pullback. When I visited the glacier, I could rememberthe Athabasca Glacier in Canada or the Mer de Glace in France, whose access includes these signs of the past history of the glaciers. Beyond the last sign at Exit Glacier, which marks the 2010 edge, is a chasm of open space showing how Exit Glacier has continued its retreat up the valley.

The loss measured during the summer 2016 summer, 76 metres, was the biggest in any single summer on record. Over the year ending October 1st, after fall measurements were taken by the National park Service, the retreat was 88 metres.

Exit Glacier is a finger of ice that drops out of the much larger Harding Icefield. Even though it is small (36 square kilometres), it is highly popular and symbolic of climate change. It was visited by President Barack Obama during his 2015 trip to Alaska.

Other well-known and much-visited Alaska glaciers are shrinking noticeably. Mendenhall near Juneau is shedding ice. The archives at the Visitor Center show the extent of the disaster Columbia, which I visited twice in Prince William Sound, is one of the world’s best-studied glaciers. Its retreat has caused the terminus to split into two thinner branches. Eklutna Glacier, source of Anchorage’s drinking water and one of several glaciers in Chugach State Park, is well-studied and losing mass. Portage Glacier, 80 kilometres from Anchorage, remains a big tourist draw even though visitors now have to take a boat ride across Portage Lake to see its face.  .

Exit Glacier, which the Park Service says got over 181,500 visitors last year, is not Alaska’s only walk-up glacier, albeit with a walk that has been getting longer as the glacier shrivels. But it stands out for its location in an easily accessible national park, the in-your-face documentation of its retreat and its role as a real-time climate change laboratory. Land-terminating Alaska glaciers like Exit, though they make up only a tiny percentage of the world’s ice, are significant contributors to global sea-level rise, and visitors to Kenai Fjords are able to see that process up close.

Each spring and fall, park workers go to the glacier to get detailed measurements of its terminus position. The glacier is now retreating in winter as well as in summer, a pattern that has been consistent since 2006. Since 2011, average October-to-May daily temperatures at the glacier’s low elevations have been above freezing about half the time.

Aerial photography and historic photographic records are also used to track the glacier’s changes. The USGS and researchers from the University of Alaska and University of Washington have crunched altitude data to calculate changes in the past half century at Exit and elsewhere. Reconstructing the more distant past requires analysis of data from the region’s geology and tree rings.

On the 2-kilometre-long Exit Glacier trail, which once ended in a loop, the Park Service has had to make two significant extensions in 2006 and in 2010. There will be no more extensions because the toe of the glacier is now surrounded by steep and treacherous terrain. Many park visitors are worried that the glacier will retreat too far for them to see it easily,

Some Kenai Fjords glaciers are losing even more ice. Pedersen Glacier lost an average of 20 metres a year from 1951 to 1986, but that rate jumped to 123 metres a year from 1994 to 2015. A lake at the toe of the glacier that was tiny two decades ago is now substantial. A similar lake formation has occurred at retreating Bear Glacier, south of Exit. Bear Glacier is more than five times as big as Exit and is losing more than 10 times as much ice annually.

Source: Alaska Dispatch News.

Etapes du recul de l’Exit Glacier depuis 1950 (Source: National Park Service)

Langue de l’Exit Glacier en 2013 (Photo: C. Grandpey)

Columbia Glacier en septembre 2013 (Phoro: C. Grandpey)

Mendenhall Glacier en septembre 2016 (Photo: C. Grandpey)

Portage Glacier en septembre 2016 (Photo: C. grandpey)

Séismes et glaciers en Alaska // Earthquakes and glaciers in Alaska

Le 28 février 1979, un séisme de M 7.7 a secoué les Chugach Mountains et la région du Mont Saint-Elias dans la partie méridionale de l’Alaska. Les géologues pensent que  l’événement a été provoqué par des mouvements tectoniques complexes dans cette région où se rencontrent les plaques Pacifique et nord-américaine. Aujourd’hui, les scientifiques étudient un autre élément susceptible d’avoir un effet sur l’activité sismique de la région: la fonte des glaciers.
Les chercheurs du Goddard Space Flight Center de la NASA et de l’USGS ont cherché à savoir si les fluctuations glaciaires avaient une relation avec les séismes enregistrés dans les environs des glaciers Malaspina et Bering, au sud du Parc national Wrangell-St. Elias et au nord de Yakutat. Une étude datant de 2004 a conclu que si les plaques tectoniques jouent le rôle le plus important dans le déclenchement des séismes majeurs, les mouvements des glaciers proches de ces sites peuvent également avoir un impact.
De 1993 à 1995, le glacier de Béring a avancé rapidement au cours d’une surge glaciaire. Au cours des cinq années qui ont suivi cette surge, la masse de glace nouvellement accumulée a reculé et s’est amincie sous l’effet de la hausse des températures. Lorsque la glace s’est épaissie pendant la surge glaciaire, le nombre de séismes a diminué dans la région. Par contre, quand elle s’est amincie, le nombre de petits séismes a augmenté, avec des événements de M 1 à M 2 sur l’échelle de Richter.
Les chercheurs ont également calculé la pression accumulée sous les glaciers dans la région de Icy Bay, entre les glaciers de Béring et Malaspina, de 1899 à 1979. La masse imposante d’un glacier peut contribuer à la stabilité de la région, mais une fois la fonte démarrée, les plaques tectoniques sont plus libres de leurs mouvements et peuvent créer des frottements sous la surface. Entre 1899 et 1979, les glaciers ont perdu assez de glace pour que la perte de poids en surface ait contribué au séisme de la région du Mont St. Elias.
Le sud de l’Alaska est un lieu unique pour étudier ce type d’interactions entre séismes et glaciers. En effet, il y a très peu d’endroits dans le monde où la fonte rapide d’une masse de glace interagit avec des plaques tectoniques qui se trouvent à des dizaines de kilomètres sous la surface de la Terre.
Dans une étude publiée en 2008, deux chercheurs de  l’Alaska Earthquake Center (Université de l’Alaska à Fairbanks) ont constaté qu’entre 2002 et 2006, le nombre de petits mouvements tectoniques dans la région de Icy Bay avait augmenté par rapport à l’activité sismique entre 1988 et 1992. Ils ont émis l’hypothèse que cela était dû à une augmentation significative de la perte de glace en 2002-2006.
Un certain nombre d’événements glaciaires tels que la formation de crevasses, le vêlage et le déplacement sur la roche sous-jacente peuvent provoquer des séismes, mais ils ne sont pas liés aux mouvements tectoniques.
Source: Alaska Dispatch News.

—————————————

On February 28th, 1979, an M 7.7 earthquake shook the Chugach and St. Elias mountains in Southcentral Alaska. The event is believed by geologists to be the result of complex tectonic movements in the area, where the vast Pacific and North American plates meet and accumulate pressure. Now, scientists are studying another element that may also influence the region’s seismic activity: glacial melting.

Researchers with NASA’s Goddard Space Flight Center and the U.S. Geological Survey sought to find out if glacial fluctuations had any relation to earthquakes in the area around the Malaspina and Bering glaciers, south of the Wrangell-St. Elias National Park and north of Yakutat. While their 2004 study concluded that moving tectonic plates had the largest role in major earthquakes, they also acknowledged that ice movements close to these sites may have also had an impact.

From 1993 to 1995, the Bering glacier advanced rapidly in a movement known as a glacial surge. In the five years that followed the surge, the newly-formed mass of ice retreated and thinned, a response to warming temperatures. When the ice thickened during the surge, the number of earthquakes decreased in the region. During the thinning, the number of small quakes increased, hovering around M 1 to M 2 on the Richter scale.

The researchers also calculated the amount of pressure that would have built up under the glaciers in the Icy Bay region, between the Bering and Malaspina glaciers, from 1899 to 1979. The large mass of a glacier can help keep things stable, but once that melts away, the tectonic plates are freer to move and create friction beneath the surface. Between 1899 and 1979, the glaciers lost enough ice for the weight loss to have contributed to the St. Elias earthquake.

Southern Alaska is a unique location to study these type of interactions: few places have a rapidly melting mass interacting with plates tens of kilometres beneath the Earth’s surface.

In a later study released in 2008, two researchers from the Alaska Earthquake Center at the University of Alaska Fairbanks, found that between 2002 and 2006, the number of small tectonic movements in the Icy Bay region increased when compared to the seismic rate between 1988 and 1992. They hypothesized that this was due to a significant increase in the rate of ice wastage in 2002-2006.

A variety of glacial activities such as crevassing, calving and moving along the underlying rock trigger earthquakes but these are not related to tectonic movements.

Source: Alaska Dispatch News.

 Partie méridionale de l’Alaska, avec glaciers Bering et Malaspina, et Icy Bay entre les deux glaciers (Google Maps)

Glacier de Béring (Crédit photo : Wikipedia)

Vue du massif du Mont St Elias (Photo : C. Grandpey)