Sécheresse et manque d’eau en Alaska ! // Drought and water shortage in Alaska !

Comme je l’ai écrit précédemment (voir mes messages des 4 et 6 juillet 2019), l’Alaska a connu une vague de chaleur sévère cet été, une situation sans précédent. La conséquence est que plusieurs régions souffrent d’une sécheresse et d’un manque d’eau jamais observés auparavant. Dans un village, les autorités coupent12 heures par jour l’approvisionnement en eau destiné à la population. Dans un autre, les toilettes à chasse automatique sont basculées en mode et les restaurants servent des repas sur des assiettes en carton.
L’été chaud et sec en Alaska a entraîné des conditions extrêmes dans les communautés autochtones de Nanwalek et de Seldovia, dans la Péninsule de Kenai. Les autorités en charge de la région ont été contraintes de publier une déclaration de catastrophe naturelle.
Des conditions de sécheresse intense affectent de plus en plus l’État, exacerbées par les feux de forêt qui continuent de brûler. La ville d’Anchorage est envahie par la fumée en provenance d’un important incendie de forêt qui brûle depuis plusieurs semaines dans la Péninsule de Kenai. La ville dispose d’une bonne quantité d’eau dans ses réservoirs, contrairement à certaines petites communautés comme Nanwalek et Seldovia qui dépendent de la fonte des neiges et de la pluie pour remplir leurs réserves. La pénurie d’eau se fait durement sentir. En moyenne annuelle, la région reçoit près de 22 centimètres de pluie de juin à août; cet été, elle a reçu un peu moins de 8 centimètres.
Selon des chercheurs en climatologie de l’université d’Alaska à Fairbanks, de tels scénarios deviendront de plus en plus fréquents avec le réchauffement climatique, mais cela ne signifie pas pour autant qu’une telle sécheresse se produira chaque année.
Dans la Péninsule de Kenai, le réservoir d’eau de Nanwalek ne contient que 210 000 litres, autrement dit moins de deux jours d’approvisionnement en temps normal, lorsque le village consomme environ 115 000 litres par jour. Chaque jour, les autorités locales coupent l’eau la nuit, entre 21 heures et 9 heures. Comme l’eau stagne dans les citernes la nuit, il est conseillé aux habitants de faire bouillir leur eau pour éviter toute contamination.
Comme Nanwalek, Seldovia, à 15 kilomètres au nord-est, n’a reçu qu’une fraction de ses précipitations normales. De juin à août, le village de 220 habitants en temps normal a reçu un peu moins de 4 centimètres de précipitations, contre une moyenne d’environ 14 centimètres. Le 5 septembre 2019, Seldovia avait pour environ 16 jours et demi d’eau dans son réservoir. Pour l’économiser, les gens utilisent de l’eau non potable pour des usages non alimentaires comme la lessive. L’école a désactivé la chasse automatique dans les toilettes et a imité les restaurants en utilisant des assiettes et des couverts jetables.
Selon le National Weather Service, il devrait pleuvoir au cours de la fin de semaine sur les zones arides du centre-sud, notamment sur les deux villages, mais il ne devrait pas s’agir de précipitations abondantes. La semaine prochaine devrait revenir à des conditions plus sèches. Dans l’ensemble, il semblerait que la région commence à retrouver un peu d’humidité, mais le déficit en eau persistera cette année.
Source: Anchorage Daily News.

————————————————-

As I put it before (see my posts of 4 and 6 July 2019), Alaska went through a severe heatwave this summer, a situation that had never been seen before. The consequence is that several regions are suffering from a drought and a lack of water. In one Alaska village, officials are shutting off the public water supply 12 hours each day. In another, automatic flush toilets have been switched to manual flushing, and restaurants are serving meals on paper plates.

Alaska’s hot, dry summer has led to extreme measures in the Native communities of Nanwalek and Seldovia in the Kenai Peninsula, prompting regional officials to issue a disaster declaration.

The arid conditions are more widespread in the State, exacerbated by wildfires still burning. Anchorage is still fielding smoke drifting from a major wildfire that has been burning for several weeks in the Kenai Peninsula. The city has plenty of water in its system, unlike a handful of small communities that rely on snow melt and rain like Nanwalek and Seldovia to fill their reserves. Their water shortages are acutely felt. In an average year, the area receives nearly 22 centimetres of rain from June to August; this summer, it received slightly less than 8 centimetres.

According to climate researchers at the University of Alaska Fairbanks, such scenarios could become more common with climate warming, but that doesn’t mean it will happen every year.

In the Kenai peninsula, Nanwalek’s water tank has only 55,000 gallons in it, less than a two-day supply in normal times when the village goes through about 30,000 gallons a day. So local leaders are shutting off the water system between 9 p.m. and 9 a.m. daily. Because the tanked reserve is standing still at night, residents must boil their water to ward off possible contamination.

Seldovia, 15 kilometres to the northeast, also received a fraction of its normal rainfall. From June to August, the community of about 220 fulltime residents received slightly about 4 centimetres, compared with the average of about 14 centimetres. Seldovia has about 16½ days of water left in its reservoir, as of September 5th. To conserve, people are using non-potable water for nonfood uses like laundry. The school has turned off the automatic flushing in toilets and joined restaurants by using disposable plates and utensils.

Over the weekend, some rain is forecast for parched south-central areas, including the two villages, but it is not expected to be a super wet storm, according to the National Weather Service.

Next week is expected to return to drier conditions. Overall, however, the area is expected to begin a wetter pattern, but it won’t be as wet as expected this time of year.

Source : Anchorage Daily News.

Vue de la Péninsule de Kenai, durement touchée par la sécheresse et les incendies de forêt cet été (Source: Google Maps)

Halema’uma’u (Hawaii): Eau de pluie ou eau de source? // The water in Halema’uma’u (Hawaii): Rainwater or groundwater?

La mare d’eau au fond du nouveau cratère de Halema’uma’u soulève un certain nombre de questions. Les deux plus fréquentes sont: d’où vient l’eau et quelles pourraient être ses conséquences?
Les deux sources les plus probables sont l’eau de pluie et l’eau souterraine, autrement dit la présence d’une nappe phréatique. Selon les scientifiques du HVO, les deux hypothèses sont à prendre en compte, avec une préférence pour les eaux d’origine souterraine.
La nappe phréatique dans la zone sommitale du Kilauea se situe à une altitude d’environ 590 mètres, telle qu’elle a été mesurée dans un puits de forage creusé en 1973 à environ 800 mètres au sud de Halema’uma’u. La hauteur du plancher d’Halema’uma’u est d’environ 512 mètres, soit 70 mètres en dessous de la nappe phréatique qui se trouve à proximité.
Avant l’effondrement du sommet du Kilauea en 2018, les données géophysiques laissaient supposer que la nappe phréatique à proximité de Halema’uma’uu était à peu près à la même altitude que dans le forage, mais elle s’est probablement modifiée lors de l’effondrement du cratère. La nappe phréatique est probablement en train de se rétablir et, au fur et  à mesure qu’elle monte, l’eau s’infiltre dans des zones basses au niveau du plancher du cratère.
En ce moment, la surface de la mare d’eau dans le cratère s’élève lentement et régulièrement, ce qui correspond probablement à une hausse de la nappe phréatique. Le niveau de l’eau dans le cratère augmenterait par à-coups s’il dépendait des fortes pluies sur le Kilauea. Or, l’Halema’suma n’a pas reçu de fortes pluies depuis la première observation de l’eau dans le cratère le 25 juillet 2019. Il serait intéressant de prélever un échantillon de cette eau et de la dater à l’aide de moyens isotopiques; l’eau de pluie aurait l’âge actuel, tandis que les eaux souterraines seraient plus vieilles.
En ce qui concerne la profondeur de la mare, elle ne dépasse pas quelques mètres. Il se pourrait que ce ne soit que le sommet de la zone saturée en eau, qui pourrait atteindre plusieurs dizaines de mètres de profondeur. Cette profondeur n’est toutefois pas infinie car elle est forcément freinée par la chaleur résiduelle du magma dans le conduit d’alimentation. Malgré tout, à mesure que le conduit refroidit, une plus grande quantité d’eau peut s’accumuler et contribuer à augmenter le volume en surface.

Le volume de la masse d’eau aura forcément une influence sur les risques potentiels. Une simple mare n’aura aucune incidence sur la prochaine éruption sommitale. En revanche, si le magma devait entrer en contact avec plusieurs dizaines de mètres d’eau, un scénario explosif plus important pourrait être observé, comme cela s’est déjà produit dans le passé.
Source: USGS / HVO.

————————————————-

The pond of water at the bottom of Halema‘uma‘u’s new crater is raising many questions. The two most frequent are, where is the water coming from and what is its importance?

Two potential sources of the water are recent rainfall and groundwater. According to HVO scientists, either remains a possibility. Circumstantial evidence, however, favours groundwater.

The local water table, below which rocks are saturated with water, is at an elevation of about 590 metres, as measured in a deep hole drilled in 1973 about 800 metres south of Halema‘uma‘u. The elevation of the floor of Halema‘uma‘u is about 512 metres, 70 metres lower than the nearby water table.

Before the 2018 collapse of Kilauea’s summit, geophysical data suggested that the water table near Halema‘uma‘u was at about the same elevation as in the drill hole, but it was apparently drawn down during the collapse. The water table is likely recovering now, and as it rises, water inundates low areas such as the crater floor.

So far, the surface of the pond is rising slowly and steadily, consistent with a rising water table. Normally, the pond level would rise in jumps during downpours if rain was directly responsible for feeding it. However, Halema‘uma‘u has experienced no heavy rain since the pond was first observed on July 25th, 2019. It would be best to sample the water and date it using isotopic means; rain would have today’s age, groundwater an older age.

As far as the water’s depth is concerned, it is no more than a couple of metres. But the visible pond could be just the top of the saturated zone, which could conceivably be several tens of metres. There is probably a bottom to the standing water, because heat in the magma conduit below the floor of Halema‘uma‘u would boil away water at some depth. But as the conduit cools, the floor of standing water could move downward, deepening the water body from below as well as at the surface.

The total thickness of the water body impacts potential hazards. A mere puddle would scarcely affect the next summit eruption. But, if rising magma had to penetrate several tens of metres of water, an explosive scenario that has played out in the past could repeat.

Source: USGS / HVO.

Crédit photo: USGS / HVO

L’eau de l’Halema’uma’u (Hawaii) // The water of Halema’uma’u (Hawaii)

La dernière éruption du Kilauea a pris fin en août 2018 et il n’y a actuellement aucune coulée de lave sur le volcan….mais il y a de l’eau au fond du cratère de l’Halema’uma’u, au sommet du Kilauea ! Le lac de lave qui a persisté pendant l’éruption a maintenant été remplacé par des mares d’eau. .
L’apparition récente d’eau au fond du cratère a provoqué de nombreuses interrogations. Comme on peut le voir sur les photos mises en ligne par le HVO (voir ci-dessous), cette eau est de couleur turquoise, laiteuse ou verdâtre, ce qui trahit la présence de soufre dissous et de métaux provenant du mélange avec l’eau des gaz magmatiques ou des roches environnantes. Les caméras thermiques révèlent une température de surface d’environ 70°C.
L’eau au fond de l’Halema’uma’u n’est pas visible depuis les zones du parc national ouvertes au public, mais le HVO a déplacé l’une de ses webcams vers un site offrant une vue directe sur le fond du cratère.
Pour mesurer le niveau de cette eau, les scientifiques du HVO utilisent un télémètre laser à longue portée. Les mesures quotidiennes montrent que le niveau s’est lentement élevé. Les prochains survols en hélicoptère permettront de cartographier et de mesurer avec précision la superficie et le volume des mares. À l’aide de photographies obliques, il est possible de créer des modèles tridimensionnels du fond du cratère. La comparaison de ces modèles mis à jour régulièrement avec les données LIDAR (système de mesure par détection laser) collectées en juillet 2019 permettra d’estimer le volume d’eau. Les images satellites haute résolution compléteront ces informations. Des drones pourront également fournir des images aériennes et des mesures précises de la superficie et du volume de l’eau accumulée.
L’échantillonnage direct et les analyses chimiques permettront enfin de savoir s’il s’agit d’une accumulation d’eau de pluie en surface ou d’une eau souterraine plus profonde. Il se peut aussi qu’une partie de l’eau provienne de la condensation de la vapeur produite directement par le magma.

Une meilleure connaissance de la source de cette eau permettra de mieux comprendre les dangers possibles qui y sont associés. Par exemple, si elle est une émergence de la vaste zone d’eaux souterraines autour du cratère, elle risque d’interagir avec une montée éventuelle du magma et provoquer une activité explosive.
A cause de la dangerosité du site, l’échantillonnage direct est problématique. Il est déconseillé de se rendre auprès des mares en raison de l’accumulation possible de dioxyde de carbone au fond du cratère. Les effondrements fréquents des pentes instables du cratère sont un autre danger. Les prélèvements se feront probablement par la voie aérienne, avec un récipient de captage accroché au bout d’un filin.
À l’heure actuelle, les instruments ne révèlent aucun signe d’activité à court terme au sommet du Kilauea. Le réservoir magmatique sommital continue à se recharger lentement. Le niveau d’alerte volcanique est maintenu à « Normal ». En conséquence, le HVO n’émet plus que des bulletins mensuels.
Source: USGS / HVO.

—————————————

The last eruption of Kilauea ended in August 2018 and there is currently no active lava on the volcano….but there is water at the bottom of Halema’uma’u Crater. The lava lake that persisted during the eruption has now been replaced by water ponds.   .

The recent appearance of water at the bottom of Halema‘uma‘u Crater at the summit of Kilauea, has attracted wide attention and generated many questions. As shown in HVO’s website photos, the ponds are milky turquoise, or greenish, in colour, indicative of dissolved sulphur and metals from magmatic gases or surrounding rock mixing into the water. Thermal images show water surface temperatures of approximately 70°C.

The water in Halema‘uma‘u is not visible from publicly accessible areas of the national park but HVO has moved one of its existing webcams to a site that provides a direct view of the ponds.

To measure the level of water in the ponds, HVO scientists use a long-range laser rangefinder. These daily measurements show that the water level has slowly risen. Future helicopter overflights will allow for the mapping and precise measuring of the area and volume of the changing ponds. Using oblique photographs, 3-dimensional models of the crater floor can be created. Comparing these updated models with the LIDAR (light detection and ranging) data collected in July 2019 will help estimate water volume. High-resolution satellite images can fill in observational gaps between HVO’s overflights. Drones could also provide aerial imagery and precise measurements of pond area and volume.

Direct sampling and chemical analyses of the water in Halema‘uma‘u would provide insight into its source, and know if it is a shallow accumulation of rainwater or the surface expression of a deeper-seated layer of groundwater. Some of the water could also be from condensed water vapour directly released by the magma. Knowing the water’s source will offer a better understanding of the possible hazards associated with it. For instance, if the water is from the extensive zone of groundwater around the crater, it could be more likely to interact with rising magma and result in explosive activity.

Given the hazardous location of the water, however, direct sampling is tricky. Walking down to the ponds is not advised due to the possible accumulation of carbon dioxide on the crater floor. Other dangers include frequent rockfalls from the steep, unstable slopes.

At the current time, monitoring data do not indicate any signs of imminent unrest at Kilauea’s summit. Magma continues to quietly recharge the summit magma reservoir.

The alert level for Kilauea remains at Normal. Reflecting this alert level, HVO is now only issuing monthly updates.

Source: USGS / HVO.

Vue générale du cratère de l’Halema’uma’u avec la petite mare d’eau au fond de la cavité (Crédit photo: USGS / HVO)

Vue rapprochée de l’eau au fond de l’Halema’uma’u le 8 août 2019 (Crédit photo: USGS / HVO)

Une pénurie d’eau menace la planète // The shortage of water: A threat to our planet

Selon le dernier rapport du World Resources Institute (WRI) paru le 6 août 2019, près du quart de la population mondiale, réparti dans 17 pays, est en situation de pénurie hydrique grave. Selon le WRI, on s’approche à grands pas du « Jour Zéro » où plus aucune eau ne sortira du robinet. Vous pourrez lire le rapport (en anglais) du WRI en cliquant sur ce lien :

https://www.wri.org/blog/2019/08/17-countries-home-one-quarter-world-population-face-extremely-high-water-stress

Le rapport du WRI débute avec l’exemple des réservoirs de Chennai, la sixième plus grande ville de l’Inde, qui sont presque à sec. L’année dernière, les habitants du Cap, en Afrique du Sud, ont évité de peu le « Jour Zéro » où plus aucune eau ne sort robinets. Sans oublier Rome (Italie) qui, en 2017, a dû  rationner l’eau afin de l’économiser.

Le WRI explique qu’aujourd’hui près du quart de la population mondiale vivant dans 17 pays est confrontée à une situation de pénurie d’eau « extrêmement élevée. » Personne n’ose en parler, mais une pénurie d’eau à grande échelle deviendra inévitablement source de migrations de populations et de conflits. Le rapport du WRI précise que les prélèvements hydrauliques dans le monde ont plus que doublé depuis les années 1960 en raison d’une demande croissante qui ne montre aucun signe de ralentissement. Les pays les plus concernés se situent au Moyen-Orient et en Afrique du Nord avec à leur tête le Qatar, Israël, le Liban ou encore l’Iran.

A côté des pays du Moyen Orient, l’Inde souffre de la pire crise de l’eau de son histoire et des millions de vies et de moyens de subsistance sont menacés. La population du pays, particulièrement nombreuse, demande énormément de ressources. Les eaux en surfaces mais également les eaux souterraines y sont gravement surexploitées.

Selon le WRI, la France occupe la 59ème place dans le classement des pays les plus touchés par une pénurie hydraulique. Le pays se situe dans la catégorie à risque « moyen-élevé ». Mais le rapport souligne que même si certains Etats semblent moins concernés que d’autres, il peut exister des zones de pénurie extrême en leur sein. C’est ce que nous constatons actuellement en France avec la sécheresse extrême qui affecte certaines régions.

Le rapport du WRI indique que, « comme pour tout défi, les perspectives de la pénurie d’eau dépendent de la direction stratégique opérée par chaque Etat. »  Il souligne que certains pays ont commencé à sécuriser leurs ressources hydrauliques grâce à une gestion appropriée. Ainsi, l’Arabie saoudite facture l’eau pour inciter à la conservation. La Namibie, l’un des pays les plus arides du monde, transforme les eaux usées en eau potable depuis 50 ans. L’Australie a presque réduit de moitié l’utilisation de son eau domestique pour éviter le fameux « Jour Zéro ».

Dans la conclusion de son rapport, le WRI explique qu’il existe des tendances indéniablement inquiétantes dans le domaine de l’eau. Toutefois, « en prenant des mesures dès maintenant et en investissant dans une meilleure gestion, nous pouvons résoudre les problèmes liés à l’eau pour le bien des personnes, des économies et de la planète. »

Source : World Resources Institute (WRI).

——————————————————-

According to the latest World Resources Institute (WRI) report released on August 6th, 2019, almost a quarter of the world’s population, spread across 17 countries, is experiencing severe water scarcity. According to WRI, we are getting close to « Day Zero » when no more water will come out of the tap. You can read the WRI report by clicking on this link:

https://www.wri.org/blog/2019/08/17-countries-home-one-quarter-world-population-face-extremely-high-water-stress

The WRI report begins with the example of the water reservoirs of Chennai, the sixth largest city in India, which are almost dry. Last year, people in Cape Town, South Africa, narrowly avoided « Day Zero » when no more water comes out of the taps. Not to mention Rome (Italy) which, in 2017, had to ration the water in order to save it.

WRI explains that today almost a quarter of the world’s population living in 17 countries is facing a situation of « extremely high water scarcity. » Nobody dares to talk about it, but a large-scale water shortage will inevitably become a source of population migration and conflict. The WRI report states that water withdrawals worldwide have more than doubled since the 1960s due to growing demand that shows no signs of slowing down. The most affected countries are in the Middle East and North Africa headed by Qatar, Israel, Lebanon and Iran.

Alongside the Middle East countries, India suffers from the worst water crisis in its history and millions of lives and livelihoods are threatened. The country’s population, which is particularly large, requires a great deal of resources. The surface waters but also the groundwater are seriously over-exploited.

According to WRI, France ranks 59th among the countries most affected by a hydraulic shortage. The country is in the « medium-high » risk category. But the report points out that even though some states seem less concerned than others, there may be areas of extreme scarcity within them. This is what we are currently seeing in France with the extreme drought affecting certain regions.

The WRI report states that « as with any challenge, the prospects for water scarcity depend on the strategic direction of each state”. It points out that some countries have started to secure their water resources through proper management. Thus, Saudi Arabia charges water to encourage conservation. Namibia, one of the driest countries in the world, has been turning wastewater into drinking water for 50 years. Australia has almost halved the use of its domestic water to avoid the famous « Day Zero ».

In the conclusion of the report, WRI explains that there are undeniably worrying trends in the water sector. However, « by taking action now and investing in better management, we can solve water-related problems for the good of people, economies and the planet. »

Source: World Resources Institute (WRI).

 

De l’eau dans le cratère de l’Halema’uma’u (Kilauea / Hawaii) // Water in Halema’uma’u Crater (Kilauea / Hawaii)

Pour la première fois dans l’histoire du Kilauea, une mare d’eau a été découverte au cours de la dernière semaine de juillet 2019 au fond de l’Halema’uma’u, le cratère sommital du volcan. Le HVO a confirmé cette présence d’eau qui pourrait marquer la transition vers une phase plus explosive des futures éruptions.

Les scientifiques ne savent pas comment va évoluer la situation, mais on sait que lorsque la lave interagit avec l’eau, elle peut provoquer de violentes explosions. Une première possibilité est que le magma chauffe et vaporise lentement cette eau pour donner naissance à un nouveau lac de lave. Il se pourrait aussi que la lave interagisse avec la nappe phréatique et déclenche de petites explosions. Une troisième hypothèse est que le magma monte rapidement, et provoque une explosion majeure.

Les scientifiques de l’USGS ont expliqué qu’il n’y a actuellement « aucune raison de penser que les dangers présents au sommet ont augmenté ou diminué » suite à la découverte de cette eau. Toutefois, « la présence d’eau pourrait provoquer un changement important dans l’activité à long terme du volcan.»
Bien que le Kilauea soit surtout connu pour son activité effusive et ses somptueuses coulées de lave, le volcan a une histoire d’alternance de longues périodes d’éruptions explosives et de périodes de phases effusives. Il ne faudrait pas oublier que plusieurs événements explosifs se sont produits sur le volcan dans le passé. Ces éruptions ont le plus souvent généré des déferlantes pyroclastiques.

En 1790, l’une d’elles a tué plus de 400 personnes dans la caldeira du Kilauea. Ce fut l’éruption volcanique la plus meurtrière jamais observée aux États-Unis. Ces déferlantes pyroclastiques, qui peuvent se déplacer à la vitesse d’un ouragan, comptent parmi les éruptions les plus dangereuses. Les géologues du HVO pensent qu’une telle activité ne se produirait pas du jour au lendemain et que les techniques de surveillance modernes permettraient probablement d’alerter le public.

Une autre éruption majeure s’est produite en 1924. Des explosions ont commencé le 10 mai et expédié des blocs pesant jusqu’à 45 kg à 60 mètres de distance, ainsi que des fragments plus petits pesant environ 9 kg jusqu’à 270 mètres. Après une brève pause, l’activité s’est intensifiée le 18 mai et a culminé avec une explosion majeure qui a fait un mort.
Source: USGS / HVO.

Note personnelle: La petite mare que l’on peut observer en ce moment et dont la température est d’environ 70°C a probablement été formée par l’accumulation d’eau de pluie au fond du cratère de l’Halema’uma’uu. Si du magma devait remonter vers la surface, il y a de fortes chances pour que sa chaleur vaporise rapidement cette eau de surface qui n’a rien à voir avec l’eau d’une nappe phréatique en profondeur. Si une explosion se produisait, ce ne serait certainement pas un événement majeur.

———————————————

For the first time in Kilauea’s recorded history, a pond of water was discovered – and confirmed by HVO – during the last week of July 2019 at the bottom of Halema’uma’u, the summit crater of Kilauea volcano. Scientists say this development could signal a shift to a more explosive phase of future eruptions.

Scientists do not know what will happen next, but is is well known that when lava interacts with water, it might cause explosive eruptions. One possibility is that lava could slowly heat up and vaporize the water and eventually create a new lava lake. Lava could also interact with the water table and create small explosions. Another possibility is that magma rises rapidly, which could produce a larger explosion.

USGS officials stressed that there is currently “no reason to think hazards at the summit have increased or decreased” because of the discovery of water. But “the presence of water could be a significant switch in the long-term activity of the volcano.”

Although Kilaeua is well known for its effusive activity ansd its sumptuous lava flows, the volcano has a history of alternating between long periods of explosive eruptions and times of effusive phases. Indeed, there have been several explosive events on Kilauea in the past. These eruptions commonly produce pyroclastic surges. In 1790, one of them killed more than 400 people at Kilauea’s caldera, making it the deadliest volcanic eruption in what is now the United States. These surges can move at hurricane velocity across the landscape and they are among the most dangerous kinds of eruptions. HVO geologists think none of this will happen overnight, and modern monitoring techniques will probably give the public plenty of warning. Another major eruption occurred in 1924. Explosive activity began on May 10th of that year, blowing rock chunks weighing as much as 45 kg 60 metres out, and smaller fragments weighing about 9 kg out as far as 270 metres. After a brief reprieve, activity intensified through a major blast on May 18th, when an enormous explosive event caused the eruption’s only fatality.

Source: USGS / HVO.

Personal note: As far as the current small pond (temperature of about 70°C) is concerned, it was probably formed by the accumulation of rain water at the bottom of Halema’uma’u Crater. Should there be some magma ascent to the surface the magma’s heat would probably rapidly vaporize this surface water which has nothing to do with the water of a deep aquifer. If an explosion occurred it would certainly not be a major event.

Vue du cratère de l’Halema’uma’u et de la petite mare au fond de la cavité d’effondrement laissée par la dernière éruption. Il fallait avoir un puissant téléobjectif pour réaliser une photo lisible de cette eau ! (Source : USGS / HVO)

Image thermique de l’accumulation de l’eau au fond du cratère de l’Halema’uma’. Comme indiqué précédemment, la température de cette eau est d’environ 70°C (Source: USGS)

Histoire d’eau et de magma sur la planète Mars // About water and magma on Mars

Des scientifiques de l’Université d’Arizona ont expliqué en 2018 qu’il pourrait y avoir de l’eau liquide sous la calotte glaciaire du pôle sud de la planète Mars. Dans une nouvelle étude publiée début 2019 dans la revue Geophysical Research Letters, une autre équipe de chercheurs de la même université écrit que cette eau, si elle existait réellement, aurait besoin d’une source de chaleur souterraine pour devenir liquide.
Les auteurs de l’étude ont déclaré que cette chaleur résulterait probablement d’une activité volcanique souterraine relativement récente. Si cette hypothèse était confirmée, cela voudrait dire que Mars est une planète plus active d’un point de vue géologique qu’on le pensait auparavant. Les chercheurs ont ajouté qu’en l’absence d’activité volcanique récente, il était peu probable que de l’eau liquide soit présente sous les calottes de glace de la planète qui présentent une épaisseur de 2 km.
Sur Terre, on trouve souvent de l’eau liquide à la base des calottes glaciaires en raison du fait que la chaleur irradie de sous la surface et s’accumule, ce qui fait fondre la glace. Dans l’étude de 2018, publiée dans la revue Science, les chercheurs avaient présenté des données laissant supposer que l’eau liquide était susceptible d’exister sous la calotte glaciaire du pôle sud de Mars, mais l’étude n’avait pas fourni d’explications.
Pour déterminer ce qui pourrait expliquer la présence d’eau, les scientifiques ont d’abord supposé qu’elle existait, puis ils ont modélisé les propriétés physiques de la planète Mars. Comme la Planète Rouge dégage beaucoup moins de chaleur de son intérieur que la Terre, les scientifiques ont avancé différentes hypothèses  pour essayer d’expliquer la présence d’eau de fonte sous les calottes glaciaires.
Un premier modèle a suggéré que le sel pourrait être responsable de la fonte de la glace car le minéral abaisse de manière significative son point de fonte. Toutefois, les chercheurs ont constaté que cette solution ne serait pas suffisante pour maintenir l’eau liquide.
L’équipe scientifique a ensuite proposé une autre explication: la chaleur proviendrait d’une autre source, en particulier une chambre magmatique qui se serait formée sous la surface de Mars il y a environ 300 000 ans. Les chercheurs ont avancé l’hypothèse selon laquelle cette chambre magmatique aurait dégagé de la chaleur, ce qui aurait maintenu l’eau sous les calottes glaciaires.

La principale conclusion de l’étude repose sur le raisonnement «  si-alors »: SI l’eau existe, ALORS il doit y avoir une activité géologique récente dans le sous-sol pour fournir de la chaleur. SI cette approche est réaliste, ALORS cela signifie qu’une activité volcanique souterraine se produit encore sur la planète Mars, bien que la plupart des scientifiques pensent qu’il n’y a aucune preuve d’un volcanisme actif aujourd’hui, même si certaines études indiquent que des coulées de lave à la surface de la planète pourraient être apparues il y a seulement quelques millions d’années.
Il est important de savoir si Mars cache de l’eau liquide à sa surface car cela aura des implications importantes, à la fois pour les projets d’implantation de colonies de peuplement permanentes, mais aussi dans le cadre des recherches de vie sur la planète.
Source: Newsweek, University of Arizona.

—————————————————

Scientists from the University of Arizona explained in 2018 that there might be liquid water deep below Mars’s southern polar ice cap. In a study published in the journal Geophysical Research Letters, another team from the same university wrote that this water, if it really existed, would require an underground source of heat to become liquid.

The authors of the paper said that this heat would likely result from relatively recent subterranean volcanic activity. If this hypothesis was confirmed, it would indicate that Mars is a more geologically active planet than previously believed. The researchers also noted that without any recent volcanic activity, liquid water was unlikely to be present below the planet’s 2-kilometre-thick ice sheets.

On Earth, liquid water is often found at the base of ice sheets because of the fact that heat radiates from below the surface and becomes trapped, which causes it to melt. Last year’s paper, published in the journal Science, presented data suggesting that liquid water could also be found below Mars’s southern ice sheet, although the study did not explain how it could exist there.

To work out what could be sustaining the predicted liquid water, the scientists first assumed it existed and then modelled Mars’s physical properties. Because the Red Planet has much less heat radiating from its interior than our own, the scientists proposed different ideas for what could be causing water to melt at the bottom of the ice sheets.

One model suggested that salt could be responsible because the mineral significantly lowers the melting point of ice. But the researchers found that this effect would not be sufficient to sustain the liquid water.

Next, the research team proposed another explanation: the heat was coming from another source, specifically, a chamber filled with magma that formed below the Martian surface around 300,000 years ago. The researchers suggested this could have been releasing heat, which kept the water at the bottom of the ice caps liquid.

However, the main conclusion of the study is really an if-then statement: If the water exists, then there must be recent geological activity in the subsurface that provided heat. If these suggestions are true, it could mean that underground volcanic activity may still be occurring on the planet today, despite the views of some scientists that it had largely stopped in relatively recent times. Most scientists think there is no evidence for active volcanism erupting onto the surface of Mars today, though some studies have suggested lava flows elsewhere on the surface could be as young as forming several million years ago.

The question of whether or not Mars hosts liquid water on the surface has significant implications both for plans to set up permanent settlements there and the search for life on the planet.

Source : Newsweek, University of Arizona.

Calotte glaciaire sur le pôle sud de la Planète Rouge (Crédit photo: NASA)

Réchauffement climatique et cycle de l’eau // Climate change and water cycle

Les climatologues ont prévenu que l’un des principaux effets du changement climatique serait la perturbation du cycle de l’eau. La vie quotidienne et les activités humaines étant déterminées par les systèmes hydrologiques, il est important de comprendre l’impact du changement climatique sur l’approvisionnement en eau potable, l’assainissement, la production alimentaire et énergétique.
La relation entre eau, énergie, agriculture et climat est aussi importante que complexe. Le changement climatique risque de déséquilibrer l’équilibre relativement stable dans lequel notre civilisation s’est construite et de compromettre la sécurité des systèmes d’approvisionnement en eau, d’alimentation et d’énergie. Au fil du temps, les effets du réchauffement planétaire provoqué par les gaz à effet de serre générés par l’homme sont devenus se plus en plus évidents. En 2017, les gaz tels que le dioxyde de carbone (CO2), le méthane (CH4) et le protoxyde d’azote (N2O) ont atteint des niveaux record. La concentration de dioxyde de carbone a atteint aujourd’hui une moyenne de plus de 410 parties par million à l’échelle de la planète, ce qui est le plus haut niveau jamais enregistré.
Alors que la température moyenne de la Terre continue d’augmenter, nous pouvons nous attendre à un impact significatif du changement climatique sur les ressources en eau et à des effets dévastateurs. Le réchauffement climatique perturbe le cycle de l’eau et les précipitations. Selon des scientifiques du GIEC, les risques de sécheresse et de précipitations extrêmes sont de plus en plus importants. Avec des températures moyennes plus élevées et un air plus chaud pouvant contenir plus d’eau, il est possible que de longues périodes sèches se mêlent à des épisodes de précipitations brèves mais importantes, avec risque d’inondations, et le changement climatique est susceptible d’exacerber ces événements.

Des recherches récentes ont lié certains événements de précipitations extrêmes au changement climatique. C’est ainsi que plusieurs études ont conclu que le changement climatique créait des conditions favorables à des excès de précipitations qui ont entraîné plusieurs inondations dévastatrices. Ce fut le cas lors de l’ouragan Florence en Caroline du Nord en 2018 et l’ouragan Harvey dans le sud-est du Texas en 2017.
Les montagnes sont le point de départ de nombreuses rivières et autres sources d’eau douce. Au total, les eaux de fonte et les eaux de ruissellement en provenance des montagnes fournissent plus de 50% des ressources en eau douce de la planète. Cependant, à mesure que la température augmente, les glaciers et le manteau neigeux fondent à une vitesse sans précédent. De nombreux glaciers reculent et certains risquent de disparaître au 21ème siècle. En conséquence, les zones qui dépendaient des glaciers pour leur approvisionnement en eau douce devront chercher d’autres sources.
La capacité de stockage de l’eau en montagne sera rendue encore plus compliquée si la hausse des températures remplace les précipitations sous forme de neige par celles sous forme de pluie. Bien que plus de pluie que de neige puisse sembler un avantage, cela risque de signifier une disponibilité réduite de l’eau. Comme l’eau de pluie s’écoule plus vite que la neige en train de fondre, il est possible que les niveaux d’humidité du sol et de recharge des nappes souterraines soient affectés et réduits. Les régions dont l’eau de fonte est la principale source d’alimentation en eau douce pourraient être confrontées à des pénuries, en particulier vers la fin de l’été.
Il existe de nombreuses autres relations entre le changement climatique et l’eau. Par exemple, le changement climatique a réchauffé la surface des océans et entraîné une prolifération d’algues indésirables. C’est ce qui s’est passé récemment avec les sargasses dans les Caraïbes (voir mes notes à ce sujet). Ces événements peuvent nuire à l’économie et à la santé humaine, mais aussi entraver le tourisme et la pêche.

En Inde, où vivent 1,3 milliard d’habitants, près de la moitié de la population fait face à une crise de l’eau. Plus de 20 villes du pays, comme New Delhi ou Bangalore, auront épuisé leurs nappes phréatiques d’ici deux ans. Cela signifie qu’une centaine de millions de personnes devront vivre sans eau issue de puits. Dans le Pendjab, l’un des principaux greniers agricoles de l’Inde, les paysans se plaignent du niveau des nappes phréatiques, qui a baissé de 12, 18 ou 30 mètres en une seule génération. L’eau accumulée sur des milliers d’années depuis la dernière ère glaciaire est pompée pour les besoins de l’agriculture industrielle, pour la révolution verte. Le gouvernement envisage de construire de nouveaux et importants barrages (l’Inde en compte déjà 5 000) et dévier des cours d’eau vers les régions asséchées. En attendant, le changement climatique donne lieu à des précipitations de plus en plus irrégulières durant la mousson, vitale pour les populations, alors que la demande en eau douce ne cesse d’augmenter avec les 16 millions de citoyens indiens supplémentaires chaque année.

Tous ces facteurs et exemples montrent que l’eau deviendra un élément clé dans le monde au cours des années à venir. Le manque d’eau dans certains pays entraînera inévitablement des migrations de population et même des conflits. Si nos gouvernements ne font aucun effort pour prendre des mesures visant à réduire les gaz à effet de serre et le réchauffement de la planète, ils seront confrontés à de très graves problèmes.

Source : Presse et organismes internationaux.

——————————————————

Climate scientists have warned that one of the primary effects of climate change would be the disruption of the water cycle. Since everyday life and human activities aredetermined by hydrological systems, it is important to understand the impact that climate change will have on drinking water supplies, sanitation, food and energy production.

The relationship between water, energy, agriculture and climate is as important as it is complex. Climate change has the potential to tip out of balance the relatively stable climate in which civilization has been built and jeopardize the security of water, food and energy systems. Over time, the effects of global warming due to human-generated greenhouse gases in the atmosphere have become more evident. In 2017, major gases, like carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) hit record levels. The year’s carbon dioxide concentration reached a global average of 410 parts per million, which was the highest ever recorded.

As the earth’s average temperature continues to rise, we can expect a significant impact on water resources with the potential for devastating effects on these resources. Climate change disrupts the water cycle and precipitation. According to scientists from the Intergovernmental Panel on Climate Change (IPCC), there is increasing probability for more intense droughts and precipitation events. With higher average temperatures and warmer air that can hold more water, a pattern might emerge of lengthy dry spells interspersed with brief but heavy precipitation and possible flooding. Climate change can exacerbate these events.

Recent research has tied certain extreme precipitation events to climate change. Several studies concluded that climate change created conditions that made torrential rainfall more likely, leading to several recent devastating flooding events, for example, Hurricane Florence in North Carolina in 2018 and Hurricane Harvey in southeastern Texas in 2017.

Mountains are critical headwaters to numerous rivers and other freshwater sources. In all, mountain meltwater and runoff provide more than 50 percent of the world’s freshwater. Yet as global temperatures elevate, mountain glaciers and snowpack are melting at an unprecedented rate. Many mountain glaciers are in retreat, and some are in danger of disappearing within the 21st century. Thus, areas that previously depended on glaciers for freshwater will then have to seek other sources.

Further complicating mountain water storage capability is the greater likelihood that warmer temperatures make precipitation fall as rain rather than snow. Although more rain than snow may seem like a plus, it could mean reduced water availability. Because rain flows faster than melting snow, levels of soil moisture and groundwater recharge may be reduced. Areas that rely on meltwater as their primary freshwater source could increasingly experience water shortages, especially towards the end of summer, and will have to seek other sources.

Numerous other relationships between climate change and water exist. For instance, climate change has warmed up water bodies and caused harmful algal blooms to become greater problem in rivers, lakes and oceans around the world. This is what recently happened with sargassum in the Caribbean.  These events can hurt the economy and human health, hampering tourism and shutting down fisheries and shellfish harvesting.

In a recent article, the National Geographic gave the example of the water crisis in India, home to 1.3 billion people. Nearly half of the population is facing a water crisis. More than 20 cities in the country, such as New Delhi or Bangalore, will have depleted their water tables within two years. This means that a hundred million people will have to live without water from wells. In Punjab, one of India’s largest agricultural granaries, peasants complain about groundwater levels, which have dropped 12, 18 or 30 metres in a single generation. Water accumulated over thousands of years since the last ice age is pumped for the needs of industrial agriculture, for the green revolution. The government plans to build new and large dams (India already has 5,000) and divert rivers to dry areas. In the meantime, climate change is giving rise to increasingly erratic rainfall during the monsoon season, which is vital for the population, while demand for freshwater continues to grow with an additional 16 million Indian citizens each year.

All these factors and examples show that water will become a key element in the world in future years. The lack of water in some countries will inevitably trigger population migrations and even wars. If our governments make no efforts to take measures to reduce greenhouse gases and global warming, they will be confronted with very serious problems.

Source: International press and institutions.

L’eau, d’origine glaciaire ou autre, représentera un atout majeur dans les prochaines décennies (Photo: C. Grandpey)