Le lac d’eau du Kilauea (Hawaï) // Kilauea’s water lake (Hawaii)

Bien que le Kilauea ne soit pas actuellement en éruption à Hawaï, le volcan est célèbre pour les lacs de lave qui bouillonnent souvent dans le cratère sommital. Cependant, fin juillet 2019, une pièce d’eau verte a remplacé le lac de lave dans l’Halema’uma’u et elle pu être observée pendant environ 18 mois. Voir les notes que j’ai écrites à propos de ce lac le 6 août et le 12 octobre 2019, ainsi que le 18 août 2020.

Au début, la mare d’eau était relativement petite, d’une dizaine de mètres de diamètre, et peu profond. (Crédit photo : HVO)

Dans un article de la série Volcano Watch, les scientifiques de l’Observatoire Volcanologique d’Hawaï (HVO) expliquent que la surveillance et l’étude du lac étaient importantes car la présence d’eau augmentait le risque d’explosions phréatiques violentes, en sachant que de telles éruptions avaient été observées sur le Kilauea par le passé.
Pendant tout le temps de la présence du lac dans le cratère de l’Halema’uma’u, le HVO a surveillé de près sa couleur, son niveau et sa température. En effet, des phénomènes comme un changement soudain de couleur ou un bouillonnement à la surface peuvent être des précurseurs d’éruptions.

Crédit photo: HVO

Les mesures du niveau de l’eau effectuées par le personnel du HVO ont révélé qu’il montait régulièrement et n’était pas affecté par les précipitations. Cela signifie qu’il était alimenté par les eaux souterraines. Les mesures effectuées par caméra thermique ont également montré que l’eau était très chaude (jusqu’à environ 80 °C), de sorte qu’au moins la moitié des eaux souterraines qui entraient dans le lac s’évacuait par évaporation.

Crédit photo: HVO

Le lac était inaccessible à pied et l’utilisation d’un hélicoptère pour échantillonner l’eau a été jugée trop dangereuse. Le HVO a obtenu des échantillons d’eau du lac à l’aide de drones, la première fois le 26 octobre 2019, puis le 17 janvier 2020. Un troisième échantillonnage a été effectué le 26 octobre 2020. Les échantillons ont révélé que la composition chimique du lac avait très peu changé entre la première et la troisième campagne d’échantillonnage.

 

(Crédit photo : HVO)

L’eau du lac était acide (pH d’environ 4), mais pas aussi acide que la plupart des lacs volcaniques acides dans monde qui présentent souvent un pH d’environ 1, voire moins pour le Kawah Ijen en Indonésie. L’eau du lac du Kilauea contenait de grandes quantités de fer, de magnésium et de soufre dissous. Les géochimistes du HVO ont conclu que le fer et le magnésium provenaient des roches basaltiques du Kilauea. Le fer était également responsable des différentes couleurs du lac. La couleur verdâtre initiale était due à la forme de fer présente dans les basaltes du Kilauea. Au fur et à mesure que le fer séjournait de plus en plus longtemps dans l’eau et entrait en contact avec l’oxygène de l’atmosphère, il se transformait en une autre forme de fer, avec des minéraux de couleur orange et marron, semblables à la rouille qui se forme sur les objets métalliques. Cela explique pourquoi la couleur du lac est passée du vert au marron au fil du temps. L’eau verte visible fréquemment sur les bords du lac était la preuve que le lac était constamment alimenté par les eaux souterraines avec la forme verte du fer. Au début, les scientifiques du HVO ont pensé que le soufre détecté dans l’eau pouvait être dû à la dissolution de gaz sulfureux, comme le SO2, émis par le magma situé sous le lac. Cependant, une étude du type de soufre dans l’eau, ainsi que du niveau d’acidité (pH 4) de cette eau, ont révélé que le soufre du lac provenait plutôt de minéraux d’altération sulfatés, déposés sur les roches voisines pendant de nombreuses années, qui s’étaient dissous dans l’eau.
Le lac n’a montré aucun changement significatif avant l’éruption de décembre 2020. Heureusement, la lave a percé la surface à côté du lac, de sorte qu’aucune explosion phréatique majeure ne s’est produite. Au lieu de cela, en un peu plus d’une heure, toute l’eau qui s’était accumulée au fond du cratère a été vaporisée par la chaleur de la lave.
L’Halemaʻumaʻu a ensuite retrouvé sa lave. Les eaux souterraines au sommet du Kilauea sont nettement plus profondes que le plancher actuel du cratère. En conséquence, si l’apparition d’une nouvelle pièce d’eau ne peut être exclue, le HVO ne s’attend pas à en voir une de sitôt dans le cratère de l’Halema’uma’u.

Source : USGS / HVO.

 

Au mois de décembre 2020, le lac de lave avait fait son retour sur le plancher de l’Halema’uma’u (Crédit photo : HVO)

——————————————————

Although Kilauea is currently not eruptiing in Hawaii, the volcano is famous for the lava lakes that bubble in the summi crater. However, in late July 2019, a puddle of green water had replaced the lava lake in Halema’uma’u and stayed there for about 18 months. See the posts I wrote about this lake on August 6th, October 12th 2029, and August 18th, 2020.

In a Volcano Watch article, the Hawaiian Volcano Observatory (HVO) scientists explain that monitoring and understanding the lake was important because the presence of water increased the possibility of violent phreatic explosions, without forgetting that such eruptions had been observed at Kilauea in the past.

During the lake’s lifetime, the HVO kept a close eye on the color, level, and temperature of the lake. Indeed, phenomena like a sudden color change or boiling can be precursors to eruptions.

The water level measurements made by HVO staff revealed that the lake rose steadily and was not affected by rainfall, which meant that it was fed by groundwater. Measurements made by thermal camera also showed that the water was so warm (up to about 80°C) that at least half the groundwater flowing into the lake evaporated away rather than remaining in the lake itself.

The lake was inaccessible on foot, and using a helicopter to sample the water was deemed too hazardous. HVO obtained water samples from the lake using drones, first on October 26th, 2019, next on January 17th, 2020. A third sampling was conducted on October 26th, 2020. The samples revealed that the chemical composition of the lake changed very little in the year between the first and third sampling campaigns.

The lake water was acidic (pH of approximately 4), but not as acidic as most acid volcanic lakes around the world (pH of about 1), and it contained large amounts of dissolved iron, magnesium, and sulfur. HVO geochemists concluded that the iron and magnesium were leached from Kilauea’s basaltic rocks. The iron also was responsible for the lake’s many colors. The initial greenish color was due to the form of iron that exists in Kilauea basalts. As that iron in the water spent more and more time in the lake and in contact with oxygen in the atmosphere, it transformed to another form of iron that creates orange- and brown-colored minerals, similar to rust that forms on metal objects. That explains why the lake changed color from green to brown over time. The green water that frequently reappeared at the lake’s edges was a proof that the lake was consistently being fed by groundwater with the green form of iron.

Initially, HVO scientists thought that the sulfur that was detected in the water might be the result of the lake dissolving sulfur gases, like SO2, being released from magma below. However, careful study of the type of sulfur in the water, along with the pH 4 acidic level of this water, revealed that the lake’s sulfur was instead derived from sulfate alteration minerals,deposited on the nearby rocks for years and years, that had dissolved into the water.

The lake didn’t show any changes before the December 2020 eruption. Fortunately, lava erupted adjacent to the lake rather than through it, so no large phreatic explosions occurred. Instead, in just over an hour, all the water accumulated over the past year and a half was boiled away by lava flows.

Halemaʻumaʻu has since been filled by lava, and groundwater in the Kilauea summit is significantly deeper than the current crater floor, well beneath the surface. So, though another water lake is not out of the question in Kilauea’s future, HVO is not expecting one any time soon.

Source : USGS / HVO.

Chaleur accablante dans le sud de la France : Méditerranée en péril // Sweltering heat in the south of France : the Mediterranean Sea at risk

L’information n’est guère surprenante quand on voit le niveau actuel des températures sur le littoral méditerranéen. Il est bien évident que la chaleur de l’atmosphère affecte également la surface de la mer. Jusqu’à 29°C ont été enregistrés à la surface de l’eau à Nice le mardi 6 août 2024. Le thermomètre a même atteint 30°C le 4 août entre 16h30 et 17 heures. Cette hausse de la température de la surface de la mer ne date pas d’hier. Cela fait plusieurs années que la température de l’eau se maintient entre 3 et 4°C au-dessus de la moyenne normale. Appartenant à un bassin fermé, la Méditerranée se réchauffe 20% plus rapidement que les autres masses d’eau sur Terre.

Les climatologues expliquent cette hausse du mercure par des conditions atmosphériques particulièrement chaudes et un faible refroidissement hivernal. En raison du réchauffement climatique, les canicules marines sont de plus en plus fréquentes et persistantes. Les mers et les océans absorbent chaque année près d’un quart des émissions de CO2 générées par les activités humaines, et emmagasinent 90% de l’excédent de chaleur. Cette masse d’eau chaude est un important puits de carbone.

Les vagues de chaleur prolongées sur l’ensemble de la Méditerranée ne se limitent pas aux mesures enregistrées au large de Monaco et de Nice. On les observe aussi dans l’Adriatique, ainsi que dans les régions centrale et orientale de la Méditerranée. Elles représentent une catastrophe pour la faune, la flore et les écosystèmes marins. Les espèces vulnérables, telles que les coraux, subissent un important stress thermique, ce qui provoque des phénomènes de blanchissement et une diminution significative des populations. La température trop élevée de l’eau perturbant des habitats naturels et des chaînes alimentaires, on enregistre aussi des modifications des schémas migratoires, ainsi qu’une baisse de la reproduction.

Adapté d’un article paru sur le site France Info.

Le 4 août 2024, la température moyenne à la surface de la Méditerranée a dépassé le record de 2023 (Source :CEAM / France Info)

—————————————————-

The piece of news is hardly surprising when one seens the current temperatures on the Mediterranean coast. It is obvious that the heat of the atmosphere also affects the sea surface. Up to 29°C were recorded on the water surface in Nice on Tuesday, August 6th, 2024. The thermometer even reached 30°C on August 4th between 4:30 p.m. And 5:00 p.m. This increase in the sea surface temperature is not new. For several years, the water temperature has remained between 3 and 4°C above the normal average. Belonging to a closed basin, the Mediterranean is warming 20% ​​faster than other bodies of water on Earth.
Climatologists explain this increase in temperature by particularly warm atmospheric conditions and a slight winter cooling. Due to global warming, marine heatwaves are becoming more frequent and persistent. Each year, seas and oceans absorb nearly a quarter of the CO2 emissions generated by human activities, and store 90% of the excess heat. This mass of warm water is a major carbon sink.
Prolonged heatwaves across the Mediterranean are not limited to the measurements recorded off the coast of Monaco and Nice. They are also observed in the Adriatic, as well as in the central and eastern regions of the Mediterranean. They represent a disaster for marine fauna, flora and ecosystems. Vulnerable species, such as corals, are subject to significant thermal stress, which causes bleaching and a significant decline in populations. As the excessively high water temperature disrupts natural habitats and food chains, changes in migratory patterns and a decline in reproduction are also recorded.
Adapted from an article published on the France Info website.

Réchauffement climatique : des rivières virent à l’orange en Alaska // Global warming : some rivers are turning orange in Alaska

Voici une autre conséquence inattendue du réchauffement climatique et du dégel du pergélisol dans l’Arctique. Une étude publiée dans la revue Communications: Earth & Environment explique que les rivières et les ruisseaux de l’Alaska changent de couleur, passant d’un beau bleu à un orange rouille, en raison des métaux toxiques libérés par le dégel du pergélisol.
La situation a surpris les chercheurs du National Park Service, de l’Université de Californie à Davis et de l’US Geological Survey (USGS), qui ont effectué des analyses dans 75 sites le long de cours d’eau de la chaîne de montagnes Brooks (Brooks Range) en Alaska. Au cours des cinq à dix dernières années, les rivières et ruisseaux de la région ont pris la couleur de la rouille, avec une eau devenue trouble.
À mesure que le pergélisol dégèle, la décoloration et la nébulosité de l’eau sont dues à des métaux tels que le fer, le zinc, le cuivre, le nickel et le plomb, dont certains sont toxiques pour les écosystèmes fluviaux. Le phénomène a déjà été observé dans certaines parties de la Californie et dans des secteurs des Appalaches qui ont un passé minier. Il s’agit d’un processus classique qui se produit dans les rivières qui connaissent des activités minières depuis les années 1850, mais il est très surprenant de le voir dans des régions sauvages éloignées de tout, sans activités minières à proximité.
Les chercheurs ont utilisé l’imagerie satellite pour déterminer à quel moment le changement de couleur s’est produit dans les rivières et les ruisseaux. À plusieurs endroits, la décoloration la plus significative a eu lieu entre 2017 et 2018 et a coïncidé avec les années les plus chaudes jamais enregistrées. Cette décoloration a provoqué un déclin spectaculaire de la vie aquatique, suscitant des inquiétudes quant à la façon dont le dégel continu du pergélisol affectera les localités qui dépendent de ces cours d’eau pour boire et pêcher.
L’Alaska n’est pas le seul État à connaître ce phénomène. Une étude publiée un mois avant celle concernant cet État, détaille comment les montagnes Rocheuses du Colorado subissent des effets identiques du réchauffement climatique. L’étude, publiée par Water Resources Research, note une augmentation des concentrations de métaux comme le sulfate, le zinc et le cuivre dans 22 ruisseaux de montagne du Colorado au cours des 30 dernières années. Les chercheurs ont découvert que la réduction du débit des cours d’eau représentait la moitié de cette augmentation, tandis que l’autre moitié provenait du dégel du sol, ce qui permet aux minéraux de s’échapper du substrat rocheux.
Des études similaires ont été réalisées par le passé en dehors des États-Unis. Des recherches sur l’augmentation des concentrations de métaux et d’éléments rares dans les rivières et ruisseaux de montagne ont été menées dans les Andes chiliennes, les Alpes européennes et les Pyrénées du nord de l’Espagne. Bien que certaines de ces zones aient été exposées à des sites miniers, avec des concentrations de métaux dans les rivières et les ruisseaux au fil des années, les augmentations constatées soulèvent des questions sur la manière dont le réchauffement climatique continuera à avoir un impact sur les sources d’eau des montagnes.
Source : CNN, Yahoo Actualités.

Vue aérienne de la Kutuk, dans le nord de l’Alaska, où la belle couleur bleue de la rivière doit cohabiter avec l’eau orange due au dégel du pergélisol (Crédit photo : National Park Service)

———————————————-

Here is another unexpected consequence of global warming ansd the ensuing thawing of the permafrost in the Arctic. A study published in the journal Communications: Earth & Environment explains that rivers and streams in Alaska are changing color, from a clean, clear blue to a rusty orange, because of the toxic metals released by thawing permafrost.

The situation comes as a surprise for researchers from the National Park Service, the University of California at Davis and the US Geological Survey, who conducted tests at 75 locations in the waterways of Alaska’s Brooks Range. The rivers and streams in the range appeared to rust and became cloudy and orange over the past five to 10 years.

As permafrost thaws, the discoloration and cloudiness are being caused by metals such as iron, zinc, copper, nickel and lead, some of which are toxic to the river and stream ecosystems. The phenomenon was observed in parts of California, parts of Appalachia which have a mining history. This is a classic process that happens in rivers that have been impacted for over 100 years since some of the mining rushes in the 1850s, but it is very startling to see it on some of the most remote wilderness, far from a mine source.

Researchers used satellite imagery to determine when the change in color happened at different rivers and streams. At several locations, the most drastic increases were between 2017 and 2018 and they coincided with the warmest years on record at that point. This discoloration has caused dramatic declines in aquatic life, raising concerns about how the continued thawing of permafrost will affect communities that rely on those waterways for drinking and fishing.

Alaska is not the only state experiencing this phenomenon. Another study, published just a month before researchers in Alaska made their findings public, details how Colorado’s Rocky Mountains are seeing similar effects a warming climate.The study, published by Water Resources Research, notes an increase of metal concentrations – namely sulfate, zinc and copper – across 22 of Colorado’s mountain streams in the past 30 years. Researchers found that a reduced streamflow accounted for half of the increase, while the other half is from the thawing of frozen ground that allows for minerals to leach out of the bedrock.

Similar studies have been made beyond the US in the past. Research on increases in metal and rare earth element concentrations in mountain rivers and streams has been done in the Chilean Andes, the European Alps and the Pyrenees in northern Spain. Although some of these areas have been exposed to mining sites and thus have seen metal concentrations in rivers and streams over the years, the noted increases raise questions about how global warming will continue to impact mountain water sources.

Source : CNN, Yahoo News.

La centrale de Svartsengi bientôt sous la menace de la lave ? // The Svartsengi power plant soon under the threat of lava ?

Alors que l’éruption se poursuit sur la péninsule de Reykjanes, une nouvelle digue de terre est en cours d’édification et des tentatives de refroidissement de la lave sont également en cours pour contrôler trois coulées qui menacent de déborder d’une digue près de la centrale de Svartsengi. La lave avance lentement et ne présente pas de danger immédiat, mais les efforts se poursuivent pour l’empêcher d’atteindre les infrastructures critiques.

Les travaux ont commencé pour construire une nouvelle digue de protection (en jaune sur la carte ci-dessous) à l’intérieur d’un autre rempart au nord de la centrale de Svartsengi (en rose sur la carte) qui a été vaincu par la lave dans la soirée du 20 juin. Trois coulées de lave ont commencé à déborder de la digue de terre. Les pompiers ont alors tenté à nouveau de refroidir la lave en projetant de l’eau, comme ils l’avaient fait il y a quelques jours. Des moyens supplémentaires ont été acheminés pour une plus grande efficacité. En 1973, lorsque les Islandais ont décidé d’envoyer de l’eau sur le front de lave sur l’île d’Heimaey, avant l’arrivée des puissantes pompes fournies par l’armée américaine, Haroun Tazieff avait déclaré que c’était comme faire pipi sur un incendie de forêt et que l’opération était vouée à l’échec, une remarque qui n’avait pas été appréciée par les autorités islandaises. La situation actuelle sur la péninsule de Reykjanes montre qu’il n’avait pas complètement tort. En effet, les équipements utilisés jusqu’à présent à proximité de la centrale de Svartsengi se sont révélés largement insuffisants. De nombreux ouvriers, pompiers, policiers et autres secouristes se sont relayés toute la nuit pour tenter de contrôler la lave. Vers 2 heures du matin le 21 juin, une coulée avait été stoppée, mais de la lave épaisse et incandescente avançait toujours en trois endroits le long des digues de terre. La lave n’est qu’à environ un kilomètre des infrastructures de Svartsengi, mais elle se déplace très lentement ; il n’y a donc pas de danger immédiat, d’autant plus que, selon les dernières informations fournies par le Met Office le 22 juin 2024, l’éruption a beaucoup faibli au cours des dernières heures et pourrait bien être en phase terminale. Le soulèvement du sol à Svartsengi a ralenti lui aussi.

Source  : médias d’information islandais.

Sur le schéma fourni par la Protection Cicile, la croix montre l’emplacement du débordement de lave, le trait jaune le nouveau chanier de mise en place de didues de protection, et en rose les digues de protection existantes près de la centrale de Svartsengi.

———————————————–

With the eruption continuing on the Reykjanes Peninsula, a new barrier is bung built and cooling measures are being applied to control three lava streams flowing over an existing barrier near the Svartsengi Power Plant. The lava is moving slowly, posing no immediate danger, and efforts continue to prevent it from reaching critical infrastructure.

Work has begun on the construction of a new protective barrier (marked in yellow on the map below) within another barrier north of the Svartsengi Power Plant (marked in pink) that was breached by lava on June 20th in the evening. Three lava streams began flowing over the barrier, prompting the resumption of lava cooling measures that firefighters had experimented with earlier this week; heavy machinery was used to limit the spread of the lava. In 1973, when Icelanders decided to spray water on the lava front in Heimaey, Before using the powerful pumps provided by the U.S. Army, Haroun Tazieff had said it was like peeing on a wildfire, a remark that was not appreciated by Icelandic authorities. The current situation on the Reykjanes Peninsula shows he was not completely wrong. As the equipment used close to the Svartsengi power plant has proved lragely insufficient up to now. Numerous workers, firefighters, police, and other emergency responders have been taking shifts throughout the night, attempting to control the lava. By 2:00 am on June 21st, one lava stream had been stanched, but thick, glowing lava was still flowing in three streams down the barriers. The lava flow is only about a kilometer away from structures in Svartsengi. The lava is moving very slowly, however, so there is no immediate danger, especially since, according to the latest information provided by the Met Office on June 22nd, 2024, the eruption has decreased significantly over the last few hours and could well be in the terminal phase. Ground UPLIFT AT Svartsengi has also slowed down.

Source : Icelandic news media.