Péninsule de Reykjanes (Islande) : et maintenant? // Reykjanes Peninsula (Iceland) : what now?

Comme je l’ai indiqué précédemment, on a enregistré ces derniers jours une hausse de la sismicité sur la péninsule de Reykjanes (Islande) avec plus de 3000 événements au cours de la semaine écoulée. Ils avaient une magnitude parfois supérieure à M 3,0 et deux événements ont culminé à M 4,2 et M 4,3 le dimanche 15 mai 2022. Il est intéressant de noter que les hypocentres de ces séismes se trouvaient à 4-6 km de profondeur. A partir du 16 mai, l’essaim a commencé à s’essouffler.

Parallèlement à cette sismicité, une inflation a été détectée à l’ouest du Mt Thorbjörn, probablement provoquée par une intrusion magmatique.

Au vu de ces différents événements et par précaution, la couleur de l’alerte aérienne est passée au Jaune.

S’agit-il d’un simple essaim sismique comme cela se produit fréquemment dans cette partie de l’Islande? Sismicité et inflation annoncent-elles une éruption à plus ou moins long terme? Personne ne le sait. Comme l’a déclaré un géophysicien islandais, « il y a eu une activité sismique dans d’autres systèmes volcaniques de la région et le soulèvement du sol à Svartsengi ou au Mt Þorbjörn est le quatrième depuis 2020. Non loin de Krýsuvík, la terre s’est soulevée en 2020 et une certaine activité a été détectée dans d’autres secteurs de la Péninsule de Reykjanes. Mais il est impossible de prévoir quand, ou même si, des éruptions se produiront. »

————————————

As I put it previously, an increase in seismicity has been recorded in recent days on the Reykjanes peninsula (Iceland) with more than 3000 events during the past week. They had magnitudes sometimes greater than M 3.0 and two events peaked at M 4.2 and M 4.3 on Sunday May 15th, 2022. Interestingly, the hypocenters of these earthquakes were 4-6 km deep. From May 16th, the swarm began to decline.
Along with this seismicity, inflation was detected west of Mt Thorbjörn, likely caused by magma intrusion.
In view of these various events and as a precaution, the aviation colour code changed to Yellow.
Is it a simple seismic swarm as frequently occurs in this part of Iceland? Do seismicity and inflation announce an eruption in the long or short term? No one knows. Said one Icelandic geophycist : « There has been seismic activity in other volcanic systems in the area and the land rising in Svartsengi or Þorbjörn is the 4th one since 2020. Not far from the area in Krýsuvík land rose in 2020 and some activity has been detected in other areas in the Reykjanes peninsula. But it is impossible to predict when or if some eruptions occur. »

Source: IMO

Retour sur l’éruption de Kamoamoa (Hawaii) en 2011 // The Kamoamoa eruption (Hawaii) in 2011

Au cours des 35 années qu’elle a duré, l’éruption du Pu’uO’o dans la Middle East Rift Zone (MERZ) du Kilauea a été l’occasion pour les scientifiques d’améliorer leur travail de recherche et de surveillance des volcans hawaiiens. Même les éruptions de courte durée, comme celle de Kamoamoa qui a duré quatre jours en 2011, ont offert des informations importantes.
Dans les mois qui ont précédé l’éruption de Kamoamoa, la lave a rempli le cratère du Pu’uO’o. Une inflation continue a été enregistrée au sommet du Kilauea et le long de la MERZ. Au fur et à mesure que le système se pressurisait, la sismicité augmentait dans la partie supérieure de la Zone de Rift Est (East Rift Zone) et le lac de lave sommital atteignait ses niveaux les plus élevés..
Le 5 mars 2011, une secousse et une augmentation de l’activité sismique, accompagnées d’une déflation rapide du Pu’uO’o, ont été observées en début d’après-midi. Un intrusion dans la partie supérieure de la zone de rift a fait s’évacuer le magma qui se trouvait sous le Pu’uO’o. Peu de temps après, le plancher du Pu’uO’o a commencé à s’affaisser et le niveau du lac de lave sommital a chuté.
Alertés par des alarmes sismiques en temps quasi réel et des données de déformation, les scientifiques du HVO ont rapidement effectué un survol de la zone et ont pu assister au début de l’éruption de Kamoamoa entre le Pu’uO’o et le cratère Napau.
Au cours des premiers jours, l’activité éruptive a oscillé entre deux systèmes de fractures, avec des bouches dont l’activité alternait. En début de journée le 8 mars 2011, l’éruption s’est concentrée sur les deux extrémités opposées des fractures. L’activité a diminué dans l’après-midi du 9 mars, et l’épisode éruptif de Kamoamoa a pris fin vers 22h30..
Le dyke et l’éruption qui a suivi ont joué un rôle de soupape et permis l’évacuation de la pression qui s’était accumulée depuis des mois dans le système d’alimentation du Kilauea.
Pendant l’éruption, afin de compléter les données en temps quasi réel fournies par les stations de surveillance du HVO, les scientifiques ont également récolté des échantillons de lave, effectué des mesures de gaz, cartographié les coulées de lave et les fractures, pris des photos et des notes sur le terrain. Toutes ces données importantes permettent de mieux comprendre les éruptions volcaniques et leurs processus.
Les analyses de plusieurs échantillons de lave prélevés tout au long de l’éruption ont montré que la lave était initialement plus évoluée que celle collectée sur le champs de lave du Pu’uO’o avant l’éruption de Kamoamoa. Cela signifie que le dyke qui a alimenté l’éruption a d’abord émis – ou s’est mélangé à – un magma plus ancien qui était stocké dans la zone de rift. Au fur et à mesure que l’éruption s’est poursuivie et que du magma juvénile est arrivé dans le système, la composition de lave a évolué pour ressembler à celle qui avait été émise précédemment au niveau du Pu’uO’o. Il est intéressant de noter qu’une évolution semblable de la composition de la lave a été observée au début de l’éruption de 2018.
Source : USGS, HVO.

J’étais à Hawaii quelques jours avant le début de l’éruption de Kamoamoa. Vous pourrez voir ci-dessous quelques photos du puits de lave sommital, du cratère du Pu’uO’o et de l’East Rift Zone où la lave commençait déjà à s’écouler.

——————————————–

The 35-year-long Pu’uO’o eruption on Kilauea’s Middle East Rift Zone (MERZ) was a remarkable opportunity for scientists to improve volcano research and monitoring. Even short-lived episodes in this eruption, like the four-day-long Kamoamoa eruption, offered important insights.

In the months leading up to the 2011 Kamoamoa eruption, lava filled Pu’uO’o crater. Steady inflation was recorded at the summit and the MERZ. As the system pressurized, seismicity increased in the upper East Rift Zone and the summit lava lake rose to the highest levels recorded before that time.

On March 5th, 2011, seismic tremor and increased earthquake activity, accompanied by rapid deflation at Pu’uO’o, began abruptly in the early afrternoon. An intrusion uprift drew magma away from beneath Pu’uO’o. Shortly after, the Pu’uO’o crater floor began to subside and the summit lava lake level dropped.

HVO alerted by near real-time seismic alarms and deformation data, quickly conducted an overflight of the area and witnessed the start of the Kamoamoa eruption between Pu’uO’o and Napau craters.

In the first few days, eruptive activity shifted around two fissure systems with vents repeatedly starting and stopping. Early on March 8th, the eruption focused on the two opposite ends of the fissures. The activity waned in the afternoon of March 9th, and around 10:30 p.m. the Kamoamoa eruptive episode was over.

The dike and subsequent eruption acted as a pressure release valve of Kilauea’s magma plumbing system that had been pressurizing for months.

During the eruption, to supplement the near real-time data from HVO monitoring stations, scientists also collected lava samples and gas measurements, mapped lava flows and ground cracks, took photos and detailed field notes. These important data sets help to better understand volcanic eruptions and their processes.

Analyses of multiple lava samples taken throughout the eruption showed that the erupted lava was initially more evolved than the lava collected on the Pu’uO’o flow fields prior to the Kamoamoa eruption. This means that the dike which fed the eruption either pushed out, or mixed with, a body of cooler magma that had been stored in the rift. As the eruption continued, the lava compositions began to resemble those previously erupted at Pu’uO’o, as juvenile lava flushed through the system. This is what happened in the beginning of the 2018 eruption.

Source : USGS, HVO.

I was in Hawaii a few days before the start of the Kamoamoa eruption. Here are some photos of the summit lava pit crater, the Pu’uO’o crater and the East Rift Zone where lava was already beginning to flow.

Photos : C. Grandpey

Le lac de lave du Kilauea (Hawaii) // The Kilauea lava lake (Hawaii)

Le dernier épisode de « Volcano Watch », un article hebdomadaire publié par l’U.S. Geological Survey (USGS) est consacré au comportement des lacs de lave au sommet du Kilauea.

Lorsque j’ai visité le volcan en août 2008, le cratère de l’Halema’uma’u (HMM) était recouvert d’une croûte de lave bien rigide. Le seul signe d’activité était une zone jaune causée par des dépôts de soufre dans la paroi SO du cratère.

Photos : C. Grandpey

En fait, c’est l’endroit où la lave a décidé d’émerger dans le cratère en septembre de cette même année. Une courte série d’explosions a précédé la formation d’un lac de lave qui s’est étendu régulièrement pour former ce qui a été baptisé l’Overlook Crater. La convection de la lave dans le lac a entraîné des émissions constantes de dioxyde de soufre (SO2) qui ont généré un brouillard volcanique, le vog à Hawaiʻi.

Photo : C. Grandpey

Le lac de lave a également produit une lueur visible en permanence la nuit dans toute la zone sommitale.

Photo : C. Grandpey

Lorsque la lave a commencé à être émisse par des fissures dans les Leilani Estates en 2018, le réservoir sommital du Kilauea a entamé une phase de déflation et le lac de lave s’est rapidement vidangé avant que le sommet commence à s’effondrer.

Source : HVO

L’un des aspects intéressants du lac de lave qui est resté en place entre 2008 et 2018 a été la relation étroite entre les variations du tilt – ou inclinaison du sommet – et le niveau de la surface du lac de lave.

Le lac de lave en 2016 (Crédit photo :  HVO)

Au fur et à mesure que la surface du lac s’élevait dans l’Overlook Crater, les inclinomètres du sommet enregistreraient une tendance inflationniste. Au fur et à mesure que la surface du lac de lave s’abaissait, les instruments enregistraient une tendance déflationniste. Les scientifiques du HVO ont conclu qu’il y avait une connexion ouverte entre le lac de lave et le réservoir magmatique peu profond sous le sommet (réservoir HMM). En conséquence, le lac a agi comme un baromètre, son niveau montant et descendant en relation directe avec les variations de pression dans le réservoir HMM. Ce comportement du lac de lave a permis de déterminer certaines quantités de magma contenues dans le réservoir HMM qui sont difficiles, voire impossibles, à déterminer sur d’autres volcans.

Exemples de variations du tilt en avril 2018 ‘Source : HVO)

Dans une publication de 2019, les scientifiques ont expliqué qu’en analysant la déformation du sommet et les variations de niveau de la lave au cours des premières phases d’effondrement du sommet du Kilauea en 2018, il a été possible d’affirmer que l’effondrement et l’éruption de 2018 avaient entraîné une diminution du volume du réservoir HMM de l’ordre de 20 %, et que la plus grande partie du magma restait présente dans le réservoir.

Le lac de lave présent actuellement dans le cratère de l’Halema’uma’u monte et descend également en suivant des variations inflationniste et déflationniste. Cela signifie que, dans une certaine mesure, il existe à nouveau une connexion ouverte avec le réservoir HMM. Cependant, certains cycles de déflation et d’inflation sont plus importants que d’autres; pendant ces épisodes, le niveau du lac de lave baisse et l’éruption s’arrête. L’éruption ne reprend pas et le niveau du lac ne remonte pas au moment où les inclinomètres montrent une tendance inflationniste. Il faut en général attendre que la phase d’inflation soit à peu près égale à l’épisode de déflation précédent.

Crédit photo : HVO

En observant ce comportement du lac de lave, les scientifiques du HVO savent à peu près à quel moment la pause de l’éruption sera terminée et à quel endroit la lave fera sa réapparition dans le cratère. L’écart de temps observé entre le retour de l’inflation sommitale et la reprise de l’éruption est également une indication que la connexion entre la surface et le réservoir HMM n’est pas toujours ouverte. Pendant que le sommet gonfle, la pression monte dans le réservoir, et ce n’est que lorsque l’éruption recommence que la pression est relâchée. Après cela, le système s’équilibre et se comporte à nouveau comme un système ouvert, comme il l’a fait en 2008-2018.
Il s’agit donc d’une différence intéressante et importante entre le lac de lave actuel et celui qui existait de 2008 à 2018. Cela offre la possibilité de mieux connaître les conditions nécessaires pour que le système passe de fermé à ouvert.
On observe globalement en ce moment une déflation lente du système magmatique sommital du Kilauea. Cela signifie que l’éruption ne s’intensifiera probablement pas. La lave ne fait que des apparitions éphémères dans le cratère.
Source : USGS/HVO.

————————————————–

The latest episode of « Volcano Watch », a weekly article released by U.S. Geological Survey (USGS) is dedicated to the behaviour of lava lakes at the summit of Kilauea.

When I visited the volcano in August 2008, Halema’uma’u Crater (HMM) was covered with a solid crust of lava. The only sign of activity was a yellow area caused by sulphur deposits in the SW wall of the crater. (see photos above)

Actually, it was the place where lava decided to emerge in the crater in September of that year. A short series of explosions preceded the opening of a lava lake which grew steadily, forming what became known as the Overlook crater. Convection of lava within the lake provided a steady supply of sulphur dioxide (SO2), which was the main contributor to vog (volcanic smog) in Hawaiʻi. (see photo above)

It also provided a reliable glow against the night sky that was visible throughout the summit region. (see photo above).

When lava began erupting from fissures in Leilani Estates in 2018, Kilauea’s summit reservoir system began to deflate, and the lava lake quickly drained away before the summit began to collapse. ‘see photo above)

One of the interesting facets of the 2008–2018 lava lake era was the close association between summit tilt data and the surface level of the lava lake. As the lake surface would rise within the Overlook crater, summit tiltmeters would record inflationary tilt. As the lava lake surface withdrew, tiltmeters would record deflationary tilt. The interpretation was that there was a fully open connection between the lava lake and the shallow summit magma reservoir, referred to as the Halemaʻumaʻu (HMM) reservoir. As a result, the lake acted like a barometer, with its level moving up and down in direct proportion to pressure changes in the HMM reservoir. This unique behaviour made it possible to determine certain quantities for the HMM magma reservoir that are difficult or impossible to determine at other volcanoes.

In a 2019 publication, scientists showed that by tracking deformation and lava level changes during the opening stages of Kilauea’s 2018 summit collapses, it was possible to determine that the entire 2018 collapse and eruption decreased the HMM magma reservoir volume by a most likely amount of 20%, leaving the majority of the magma in place.

The current lava lake in Halemaʻumaʻu (see photo above) also rises and falls together with inflationary and deflationary tilt. This indicates that, to some extent, there is again an open connection to the shallow HMM magma chamber. However, some of the deflation and inflation cycles are larger than others, and during these episodes the lava lake level goes down and the eruption pauses. The eruption does not resume, and the lake level does not rise again at the same time as the tiltmeters show inflationary tilt, but instead waits until the amount of inflationary tilt is about equal to the amount of preceding deflationary tilt.

This behaviour of the lava lake gives HVO scientiststs a rough idea of when the eruption pause be over and active lava will return to the crater. The gap in time between the return of inflationary tilt and eruption renewal is also an indication that the connection between the surface and shallow HMM reservoir is not always open. While the summit is inflating, pressure is building in the reservoir, and it is not until the eruption starts again that the pressure is released. After this the system equilibrates and once again behaves as an open system, like it did in 2008–2018.

This is an interesting and important difference between the current lava lake and the lake that existed from 2008–2018 and presents the opportunity to learn more about the conditions under which the system might change from closed to open.

The current overall trend of Kilauea’s summit magma system is slow deflation. This means there are no signs right now that the eruption could get more vigorous.

Source: USGS / HVO.

Inflation islandaise // Icelandic inflation

Le Met Office islandais indique que l’inflation se poursuit sur la péninsule de Reykjanes. Les scientifiques continuent également à surveiller étroitement l’inflation dans d’autres parties du pays, notamment dans les régions de l’Askja et du Grímsvön.
Sur la péninsule de Reykjanes, une inflation avait été enregistrée avant l’éruption du 19 mars au 18 septembre 2021, ainsi que dans les mois qui ont suivi, au cours de la fin de l’année 2021. L’inflation a repris récemment. Elle est centrée dans la zone du Fagradalsfjall, mais il est difficile de le localiser précisément. Les scientifiques pensent, malgré tout, que le magma s’accumule à une profondeur d’environ 12 à 16 km.

Suite à l’accumulation de neige, la connexion a été perdue avec la plupart des stations de mesure que le Met Office avait installées sur l’Askja. Pourtant, des signaux sont toujours émis par une station située sur un versant du volcan. Ils montrent que l’inflation observée précédemment n’a pas ralenti. D’autres relevés seront nécessaires pour confirmer ce processus d’inflation qui est probablement causé par l’accumulation de magma à une profondeur d’environ 3 km. Aucune prévision ne peut être faite sur le risque d’une éventuelle éruption.

Même si la couleur de l’alerte aérienne pour le Grímsvötn est revenue au Vert, les géologues du Met Office expliquent qu’une éruption peut avoir lieu à tout moment. Ils enregistrent toujours une inflation et une hausse de l’activité sismique. Une éruption du Grímsvötn se produit généralement très vite, suite à une augmentation de l’activité volcanique et de l’activité sismique. Elle est généralement détectée par les instruments peu de temps avant que le magma n’atteigne la surface,.
Source : Icelandic Met Office, Iceland Review.

——————————————-

The Icelandic Met Office indicates that inflation continues on the Reykjanes peninsula. Scientists keep monitoring inflation closely in other parts of the country as well, including in the Askja, and Grímsvön areas.

On the Reykjanes peninsula, land inflated prior to the March 19th -September 18th, 2021 eruption and in its wake until a new magma intrusion occurred before the end of the year. Since then, inflation has resumed. It is centere in the area under Fagradalsfjall, but it is difficult to locate precisely. However, it is likely that magma is accumulating at a depth of approximately 12-16 km.

Because of the amount of snow, connection has been lost to most monitoring devices of the Icelandic Met Office located on Askja volcano. Still, signals are still being received from one station located in the slope of the volcano, showing signs of inflation, which does not appear to be slowing down. More stations should be needed to confirm the inflation process which is probably caused by magma accumulating at a depth of about 3 km. No prediction can be made about the risk of a possible eruption.

Even though the aviation color code for Grímsvötn is back to Green, Met Office geologists warn that an eruption can take place anytime. They are still noting inflation, and seismic activity is increasing. An eruption in Grímsvötn usually occurs at short notice, following increased volcanic unrest and seismic activity. It is usually detected before magma reaches the surface, but only a few hours in advance.

Source: Icelandic Met Office, Iceland Review.

Vue de la caldeira de l’Askja avec l’Oskjuvatn et le Viti (Photo: C. Grandpey)