La vapeur d’eau de l’éruption du Hunga Tonga-Hunga Ha‘apai // Water vapour from the Hunga Tonga-Hunga Ha‘apai eruption

Lorsque le volcan Hunga Tonga-Hunga Ha’apai (archipel des Tonga) est entré en éruption le 15 janvier 2022, il a envoyé des ondes de choc dans l’atmosphère ainsi que des vagues de tsunami à travers notre planète. Des études ont montré que les effets de l’éruption ont également atteint l’espace, provoquant un événement météorologique spatial majeur.
Les scientifiques de la NASA nous apprennent aujourd’hui que le volcan a émis une quantité colossale de vapeur d’eau dans l’atmosphère, avec probablement des effets notables sur la température de la Terre.
Selon la NASA, l’éruption du 15 janvier a envoyé non seulement des cendres dans la stratosphère, mais aussi suffisamment de vapeur d’eau pour remplir 58 000 piscines olympiques. Les scientifiques expliquent que l’événement a battu « tous les records » d’injection de vapeur d’eau depuis que les satellites ont commencé à enregistrer ce type de données.
Le Microwave Limb Sounder à bord du satellite Aura de la NASA, qui mesure les gaz dans l’atmosphère, a découvert que l’explosion avait envoyé quelque 146 téragrammes d’eau dans la stratosphère, entre environ 13 et 53 kilomètres au-dessus de la surface de la planète. Un téragramme (Tg) équivaut à 10 12 grammes ou 10 9 kilogrammes. Cette énorme quantité de vapeur a augmenté la quantité totale d’eau dans la stratosphère d’environ 10 %. C’est près de quatre fois la quantité de vapeur d’eau entrée dans la stratosphère au moment de l’éruption du Pinatubo en 1991 aux Philippines. Les scientifiques expliquent que le panache, qui a éclipsé la puissance de la bombe atomique d’Hiroshima, pourrait affecter temporairement la température sur Terre.
Depuis que la NASA a commencé à effectuer des mesures il y a 18 ans, seules deux autres éruptions, celle du Kasatochi en Alaska en 2008 et du Calbuco en 2015 au Chili, ont envoyé des quantités importantes de vapeur d’eau à des altitudes aussi élevées. Dans les deux cas, les nuages de vapeur d’eau se sont rapidement dissipés; aucun de ces événements n’est comparable à l’énorme quantité d’eau libérée par l’éruption aux Tonga.
On sait que de puissantes éruptions volcaniques peuvent refroidir la température à la surface de la Terre car les cendres réfléchissent la lumière du soleil. L’éruption des Tonga marque un contraste saisissant, car la vapeur d’eau qu’elle a libérée est capable de piéger la chaleur. Selon les chercheurs, il pourrait s’agir de la première éruption volcanique à avoir un impact sur le climat, non pas par le refroidissement causé par les aérosols, mais par le réchauffement de la surface causé par la vapeur d’eau.
Les scientifiques ajoutent que cette vapeur d’eau pourrait rester dans la stratosphère pendant plusieurs années, aggravant au passage l’appauvrissement de la couche d’ozone et augmentant les températures de surface. L’eau pourrait même rester pendant des décennies, sans avoir toutefois d’effets permanents.
On pense que la caldeira du volcan sous-marin, une dépression d’environ 150 mètres de profondeur, est à l’origine de ce phénomène exceptionnel. Si la caldeira avait été moins profonde, l’eau de mer n’aurait pas été assez chaude pour expliquer une telle quantité de vapeur d’eau; si elle avait été plus profonde, la trop grande pression exercée par l’eau de mer aurait atténué le souffle de l’explosion.
Source : CBS News.

—————————————-

When the Hunga Tonga-Hunga Ha‘apai volcano (Tonga archipelago) erupted on January 15th, 2022, it sent atmospheric shock waves and tsunami waves around the world. Studies have shown that he effects of the eruption also reached space, causing a major space weather event.

NASA scientists now inform us that the volcano spewed an unprecedented amount of water vapour into the atmosphere, and this will likely have noticeable effects on Earth’s temperatures.

The January 15th eruption sent not only ash into the stratosphere, but also enough water vapor to fill 58,000 Olympic-sized swimming pools, according to NASA. Scientists explain it broke « all records » for the injection of water vapour since satellites began recording such data.

The Microwave Limb Sounder instrument on NASA’s Aura satellite, which measures atmospheric gases, found the blast delivered roughly 146 teragrams of water to the stratosphere, between about 13 and 53 kilometers above the planet’s surface. One teragram equals a trillion grams, and that extreme quantity increased the total amount of water in the stratosphere by about 10% . This is nearly four times the amount of water vapour estimated to enter the stratosphere from the 1991 Mount Pinatubo eruption in the Philippines. Scientists say that the unprecedented plume, which dwarfed the power of the Hiroshima atomic bomb, could temporarily affect Earth’s global average temperature.

Since NASA began taking measurements 18 years ago, only two other eruptions, the 2008 Kasatochi eruption in Alaska and the 2015 Calbuco eruption in Chile, sent substantial amounts of water vapour to such high altitudes. Both dissipated quickly; neither of those events compare to the huge amount of water released by the Tonga event.

Powerful volcanic eruptions usually cool surface temperatures on Earth because the resulting ash reflects sunlight. However, the Tonga eruption marks a stark contrast, because the water vapour it released can trap heat. According to the researchers, it may be the first volcanic eruption observed to impact climate not through surface cooling caused by volcanic sulfate aerosols, but rather through surface warming.

Experts say this water vapour could remain in the stratosphere for several years, potentially temporarily worsening the depletion of the ozone layer and increasing surface temperatures. The water could even remain for decades, but it should not have permanent effects.

Experts point to the underwater volcano’s caldera, a basin-shaped depression that is about 150 meters deep, as the reason for the record-breaking eruption. If the caldera was shallower, the seawater would not have been hot enough to account for the water vapour measurements, and if it was any deeper, intense pressures could have muted the blast.

Source: CBS News.

Image satellite de l’énorme panache généré par l’éruption du 15 janvier 2022 (Source: NASA)

2022 : surface hivernale de la glace de mer encore trop faible // 2022 : Arctic winter sea ice still too low

La glace de mer arctique a atteint son étendue maximale annuelle le 25 février 2022 après avoir progressé pendant l’automne et l’hiver. La surface hivernale de cette année est la 10ème plus faible enregistrée par le National Snow and Ice Data Center (NSIDC). depuis l’arrivée des données satellitaires.
L’étendue de la glace de mer arctique a atteint un maximum de14,88 millions de km2 et se situe à environ 770 000 km2 en dessous de la moyenne pour la période 1981-2010.
La glace de mer progresse et régresse en fonction des saisons. Dans l’Arctique, elle atteint son étendue maximale vers le mois de mars après avoir progressé pendant les mois les plus froids; elle régresse pour atteindre son étendue minimale en septembre après avoir fondu pendant les mois les plus chauds. Dans l’hémisphère sud, la glace de mer antarctique suit un cycle inverse.
Pour évaluer l’étendue de la glace de mer, des capteurs satellitaires recueillent des données qui sont traitées quotidiennement. Chaque image transmise représente une zone d’environ 25 kilomètres sur 25. Les scientifiques utilisent ensuite ces images pour estimer l’étendue de l’océan où la glace de mer recouvre au moins 15% de l’eau.
Depuis que les satellites ont commencé à observer l’évolution de la glace de mer en 1979, les surfaces maximales dans l’Arctique ont diminué à un rythme d’environ 13 % par décennie, tandis que les étendues minimales ont diminué d’environ 2,7 % par décennie. Ces tendances sont liées au réchauffement climatique d’origine anthropique avec le dioxyde de carbone qui emprisonne la chaleur dans l’atmosphère et fait augmenter les températures. L’analyse de la NASA confirme que l’Arctique se réchauffe environ trois fois plus vite que les autres régions de la planète.
En février dernier, la glace de mer antarctique a atteint une étendue minimale record. Toutefois, contrairement à l’Arctique, la glace de mer dans cette région du globe a montré des hauts et des bas irréguliers, principalement à cause de l’environnement géographique. En effet, les vents et les courants océaniques liés à l’océan Austral et à l’Antarctique ont une forte influence sur l’étendue de la glace de mer. La glace de mer dans l’Arctique est entourée de terres, tandis que dans l’Antarctique elle n’est entourée que par l’océan et peut donc s’étaler plus librement. Dans l’ensemble, le record de glace de mer en Antarctique montre une certaine stabilité.
Les gains de glace de mer en Antarctique ne sont pas suffisants pour compenser les pertes dans l’Arctique. La glace dans les deux régions aide à réguler les températures sur notre planète. Même si l’Antarctique atteint des niveaux de glace de mer relativement équilibrés, les pertes dans l’Arctique ne peuvent que contribuer à accélérer le réchauffement climatique dans sa globalité.
Source : NASA, NSIDC.

————————————————

Arctic sea ice hit its annual maximum extent on February 25th, 2022 after growing through autumn, and winter. This year’s wintertime extent is the 10th-lowest in the satellite record maintained by the National Snow and Ice Data Center (NSIDC).

Arctic sea ice extent peaked at 14.88 million km2 and is roughly 770,000 km2 below the 1981-2010 average maximum.

Sea ice waxes and wanes with the seasons every year. In the Arctic, it reaches its maximum extent around March after growing through the colder months, and shrinks to its minimum extent in September after melting through the warmer months. In the Southern Hemisphere, Antarctic sea ice follows an opposite cycle.

To estimate sea ice extent, satellite sensors gather sea ice data that are processed into daily images, each image grid cell spanning an area of roughly 25 kilometers by 25 kilometers. Scientists then use these images to estimate the extent of the ocean where sea ice covers at least 15% of the water.

Since satellites began reliably tracking sea ice in 1979, maximum extents in the Arctic have declined at a pace of about 13% per decade, with minimum extents declining at about 2.7% per decade. These trends are linked to warming caused by human activities such as emitting carbon dioxide, which traps heat in the atmosphere and causes temperatures to rise. NASA’s analysis also shows the Arctic is warming about three times faster than other regions.

This February, Antarctic sea ice dropped to a record-low minimum extent. But unlike in the Arctic, this sea ice has shown irregular ups and downs mainly because of the geographical features that surround it. Winds and ocean currents specifically linked to the Southern Ocean and Antarctica have a strong influence on sea ice extent.

Sea ice in the Arctic is surrounded by land, whereas sea ice in the Antarctic is surrounded only by ocean and can thus spread out more freely. Overall, the Antarctic sea ice record shows a slightly upward – but nearly flat – trend or increase.

Gains in Antarctic sea ice are not large enough to offset the losses of the Arctic. The ice in both regions helps regulate global temperatures. Even if Antarctic gains balanced sea ice levels globally, Arctic sea ice losses could still contribute to further regional and global warming.

Source: NASA, NSIDC.

Cette image montre la surface occupée par la glace de mer arctique le 25 février 2022. La ligne jaune montre l’étendue moyenne pour un mois de mars, observée par les satellites de 1981 à 2010, lorsque la glace atteint généralement son étendue maximale. ( Source : NASA)

This image shows the average concentration of Arctic sea ice on February 25th, 2022. The yellow outline shows the median sea ice extent for the month of March, when the ice generally reaches its maximum extent, as observed by satellites from 1981 to 2010. (Source: NASA)

Evolution de l’étendue de la glace de mer arctique au mois de mai ((Source: NASA)