Approche scientifique de l’éruption islandaise de 2021 // Scientific approach of the 2021 Icelandic eruption

Nous ne savons pas prévoir les éruptions, mais nous savons décrire le déroulement des événements éruptifs.
Des scientifiques de l’Université d’Islande et du Met Office islandais (IMO) ont publié deux articles dans la revue Nature, dans lesquels ils présentent le fruit de leurs observations lors de l’éruption de Fagradalsfjall en 2021. C’était la première éruption sur la péninsule de Reykjanes après 800 ans de calme volcanique.
Les études montrent que les précurseurs de l’éruption islandaise étaient différents de ceux qui ont précédé de nombreuses autres éruptions à travers le monde, et que la composition de la lave a évolué au fur et à mesure que l’éruption progressait.
Les chercheurs ont analysé l’activité sismique sur la péninsule de Reykjanes. Elle a commencé en décembre 2019, a culminé avec l’éruption du 19 mars 2021 et s’est poursuivie pendant environ six mois.

L’un des articles – intitulé « La déformation et le déclin de la sismicité avant l’éruption de Fagradalsfjall de 2021 » – s’attarde sur les précurseurs de l’éruption et montre dans quelle mesure ils diffèrent des précurseurs de nombreuses autres éruptions dans le monde.
Il y a eu une activité sismique intense sur la péninsule de Reykjanes dans les semaines qui ont précédé l’éruption de 2021, avec une libération de contraintes tectoniques dans la croûte terrestre. Cependant, pendant plusieurs jours avant l’éruption, la déformation du sol et l’activité sismique ont diminué dans la zone autour du site de l’éruption. Ce schéma précurseur est donc différent de ceux qui précèdent de nombreuses autres éruptions dans le monde, qui montrent souvent une augmentation de la déformation du sol et de la sismicité peu de temps avant le début de l’éruption, signe que le magma se fraye un chemin vers la surface.
Les auteurs de l’article expliquent que la situation observée sur le Fagradalsfjall a été provoquée par l’interaction entre le flux magmatique et les contraintes au niveau des plaques tectoniques. Lorsque le magma se fraye un chemin à travers la croûte avant une éruption, une contrainte tectonique est parfois libérée, ce qui provoque des séismes et une déformation du sol. Un déclin de la sismicité et de la déformation peut indiquer que ce processus touche à sa fin et que le magma est prêt à percer la surface.
Au cours de la période de trois semaines qui a précédé l’éruption de Fagradalsfjall, il y a eu à la fois une déformation de surface considérable et une forte sismicité. La cause était la mise en place d’un dyke magmatique vertical entre la surface et 8 km de profondeur. Dans le même temps, des contraintes tectoniques dans la croûte ont été libérées. Des séismes d’une magnitude pouvant atteindre M 5,6 ont été enregistrés dans les zones voisines.
Les scientifiques pensent que la baisse de la sismicité dans les jours qui ont précédé l’éruption peut s’expliquer par le fait que le magma avait alors presque atteint la surface, là où la croûte est la plus faible et où il y a donc moins de résistance.
Cette situation montre qu’il faut tenir compte de la relation entre les volcans et les contraintes tectoniques dans la prévision des éruptions. Une libération des contraintes tectoniques, suivie d’une diminution de la déformation et de la sismicité, peut précéder un certain type d’éruption.

Le deuxième article – intitulé « Déplacement rapide d’une source magmatique profonde sur le volcan Fagradalsfjall » – traite des changements dans la composition de la lave dans la Geldingadalir au cours de l’éruption.
Les scientifiques ont fréquemment échantillonné la lave au cours des 50 premiers jours de l’éruption et ils ont mesuré les gaz volcaniques autour du site éruptif. Ces mesures ont révélé que la lave du Fagradalsfjall provenait directement d’un réservoir magmatique à grande profondeur, à la frontière entre la croûte et le manteau, autrement dit la zone proche du Moho.
Une éruption avec du magma provenant directement de la zone proche du Moho n’a pas été observée dans d’autres éruptions en temps réel. Dans ces cas précédents, le magma provenait de profondeurs moindres de la croûte terrestre. On manque d’informations sur les parties les plus profondes des systèmes magmatiques. L’éruption du Fagradalsfjall a fourni à la communauté scientifique de nouvelles connaissances sur les processus impliqués.
Au début de l’éruption de 2021, la lave était relativement riche en magnésium, comparée à la lave d’autres éruptions historiques en Islande, ce qui révèle un apport de magma particulièrement chaud. Il y avait aussi beaucoup de dioxyde de carbone (CO2) dans les gaz volcaniques émis par la bouche éruptive, ce qui confirme un apport de magma très profond. Selon les scientifiques, cela montre que le magma a subi peu de refroidissement en remontant à travers la croûte jusqu’à la surface. On pense que le réservoir magmatique se trouvait à une quinzaine de kilomètres sous la surface.

L’étude de l’éruption révèle également que la composition de la lave du Fagradalsfjall a radicalement changé au fur et à mesure que l’éruption progressait. Cela laisse supposer que pendant l’éruption un nouveau magma est arrivé en provenance de profondeurs plus importantes que le magma déjà présent dans le réservoir.
Les scientifiques expliquent que l’on sait depuis longtemps que différents types de magma peuvent se mélanger en profondeur, dans les systèmes magmatiques, avant une éruption. Cette éruption présente des preuves en temps réel que ces processus se produisent.
De plus, les modifications de la composition des produits volcaniques montrent que du nouveau magma peut s’introduire rapidement dans un réservoir profond, dans un délai d’environ 20 jours, et se mélanger au magma déjà présent dans le réservoir, en déclenchant potentiellement l’éruption.
Ces découvertes peuvent aider à mieux comprendre les volcans et la géochimie du manteau et pourraient contribuer à l’élaboration de modèles de systèmes magmatiques partout dans le monde.

Source: Met Office islandais, Université d’Islande, The Watchers.

Il sera maintenant intéressant de comparer les conclusions de l’éruption de 2021 avec celles de l’éruption de 2022. Il faudra voir si la dernière éruption se situe dans le prolongement de celle de 2021 ou s’il s’agit de deux événements indépendants l’un de l’autre.

———————————————

We are not good at predicting eruptions, but we are dood at describing what happened.

Scientists from the University of Iceland, the Icelandic Met Office (IMO) have published two papers in the journal Nature, presenting new findings from the 2021 eruption at Fagradalsfjall. It was the first eruption on the Reykjanes Peninsula after 800 years of dormancy.

The studies show that the precursors to the eruption were unusual compared to many other eruptions across the world and that the composition of the lava changed as the eruption continued.

Researchers closely observed the seismic activity on Reykjanes Peninsula, which began in December 2019, culminated with the eruption on March 19th, 2021 and continued for around half a year.

One of the papers – titled “Deformation and seismicity decline before the 2021 Fagradalsfjall eruption” -discusses the precursors to the eruption and how they differ from the precursors of many other eruptions around the world.

There was a significant seismic activity on the Reykjanes Peninsula in the weeks leading up to the 2021 eruption, marked by tectonic stress release in the crust. However, for several days before the eruption, deformation and seismic activity declined in the area around the eruption site. This precursory pattern is different from those preceding many other eruptions around the world, which often show escalating rates of ground displacement and seismicity shortly before the eruption onset, as the magma forces its way to the surface.

The scientists behind the paper explain that the behaviour at Fagradalsfjall was caused by the interplay between magma flow and plate tectonic stress. As magma forces its way through the crust before an eruption, tectonic stress may be released, causing earthquakes and ground deformation in the early stages. A decline in seismicity and deformation may indicate that this process is coming to an end and that the magma may erupt.

During the three-week period preceding the eruption at Fagradalsfjall, there was both considerable surface deformation and a large number of earthquakes. This was caused by the emplacement of a vertical magma-filled dyke between the surface and a depth of 8 km. At the same time, tectonic stress in the crust was released. Earthquakes occurred in nearby areas, up to magnitude M 5.6.

The scientists also suggest that the decline in seismicity in the days before the eruption could be explained by the fact that the magma had then almost reached the surface, where the crust is weakest and there is therefore less resistance.

This situation shows that consideration must be given to the relationship between volcanoes and tectonic stress in eruption forecasting. A release of tectonic stress followed by a decline in deformation and seismicity rate may be a precursory activity for a certain type of eruption.

The second paper – titled “Rapid shifting of a deep magmatic source at Fagradalsfjall volcano, Iceland” – discusses the changes to the composition of the lava that flowed through Geldingadalir and the surrounding area as the eruption continued.

Scientists sampled the lava frequently during the first 50 days of the eruption and measured the volcanic gases around the eruption site. This revealed that the lava at Fagradalsfjall was directly sourced from a magma reservoir at great depth, at the boundary between the crust and the mantle – the near-Moho zone.

Eruption directly from the near-Moho zone has not been observed in other eruptions with real-time investigation. In these previous cases, the magma came from shallower levels in the crust. Until now, there has therefore been a lack of information about the deepest parts of magmatic systems. The eruption at Fagradalsfjall has provided the scientific community with new knowledge of the processes involved.

At the start of the eruption, the lava was relatively rich in magnesium in comparison with lava from other historical eruptions in Iceland, indicating an unusually hot magma supply. There was also a lot of carbon dioxide in the volcanic gases emitted from the eruption vent, indicating an unusually deep magma supply. The scientists explain that this suggests that the magma underwent little cooling on its way up through the crust to the surface. It is believed that the magma reservoir was located about 15 km from the surface.

The research also revealed that the composition of the lava at Fagradalsfjall radically changed as the eruption progressed. This suggests that during the eruption, a new magma was generated at greater depths than the magma already present in the reservoir.

The scientists point out that it has long been argued that different kinds of magma can mix deep in magmatic systems before an eruption. This study presents real-time evidence that these processes do occur.

Furthermore, changes to the composition of volcanic products show that new magma can flow into a deep reservoir rapidly, in a timescale of around 20 days, mixing with the magma already in the reservoir and potentially triggering the eruption.

These findings may aid our understanding of volcanoes and the geochemistry of the mantle and could support the development of models of magmatic systems all over the world.

Source: Icelandic Met Office, University of Iceland, The Watchers.

It will now be interesting to compare the conclusions of the 2021 eruption with those of the 2022 eruption. It will be particularly interesting to see if the last eruption is a continuation of that of 2021 or if they are two distinct events.

Captures d’écran de l’éruption de 2021

Islande : l’éruption de 2022 toujours pas officiellement terminée // Iceland : the 2022 eruption not yet officially over

Toute activité a cessé dans la Meradalir le 20 août 2022 et plus aucune lave n’était visible sur le site éruptif. Le 8 septembre, la Police islandaise, en accord avec la police de Suðurnes, a décidé de mettre un terme aux phases d' »Alerte et d’Incertitude » qui étaient en vigueur dans la région.
Les autorités continueront toutefois de surveiller de près la zone. Dans un communiqué de presse, le Département de Protection Civile a déclaré : « Il se peut que nous assistions à des épisodes d’intrusion et à des séismes à Reykjanes au cours des prochaines semaines. Les habitants sont invités à sécuriser les meubles et autres articles ménagers pour éviter les blessures et/ou les dégâtss à leurs maisons.” Le communiqué de presse indique également que des rangers resteront présents sur le site de l’éruption pour surveiller le comportement des visiteurs.La présence de la police et des secouristes sera progressivement réduite, bien qu’elle puisse être renforcée si nécessaire.Le Département de Protection Civile souligne le danger de s’aventurer sur la lave et rappelle que les cratères et la lave encore chaude sont protégés par les lois de préservation de la nature.
Source : Iceland Review.
La sismicité et le tremor éruptif montrent actuellement des valeurs basses sur la péninsule de Reykjanes. Un essaim sismique a été enregistré ces dernières heures dans le nord de l’Islande, au large de l’île de Grimsey, mais ce type d’activité sismique est assez fréquent dans la région et n’a pas d’origine volcanique.

————————————–

All activity ceased in Meradalir on August 20th, 2022 when no more lava could be seen on the eruptive site. On September 8th, the National Police Commissioner, in consultation with the Suðurnes Police, decided to revoke the Alert and Uncertainty Phases that had been in effect in the area,.

Authorities will continue to monitor the area closely. In a press release, the Department of Civil Protection and Emergency Management declared: « We can expect intrusion activity and earthquakes in Reykjanes over the coming weeks. Residents are encouraged to secure furniture and other household items to prevent injury and/or damages to their homes.” The press release also states that rangers will be positioned at the eruption site to monitor foot traffic. The presence of police and rescue workers will be gradually diminished in the area, although they will be dispatched if needed. The Department underscores the hazard of venturing onto the lava, noting that craters and hot lava are protected by nature-preservation laws.

Source: Iceland Review.

Seismicity and the eruptive tremor currently show low values on the Reykjanes Peninsula. A seismic swarm was recorded in the past hours in northern Iceland, off Grimsey, but this type of seismic actovity is quite frequent in the area and has no volcanic origin.

Tout est calme sur le site de l’éruption (Image webcam)

Islande : l’éruption est officiellement terminée! // Iceland : the eruption is officially over!

L’éruption dans la Meradalir, sur la péninsule de Reykjanes, a pris fin officiellement à 4h30 le matin du 21 août 2022. Cela faisait plusieurs jours que l’on observait un déclin de l’activité qui s’accompagnait également d’une chute du tremor éruptif. Il ne devrait pas y avoir – du moins dans le court terme – d’une reprise de l’éruption. La sismicité n’indique pas la présence d’une nouvelle intrusion magmatique.

——————————————

The eruption in Meradalir, on the Reykjanes peninsula, officially ended at 4:30 am on the morning of August 21st, 2022. A decline in activity had been observed for several days. It was also accompanied by a drop in the eruptive tremor. There should not be – at least in the short term – a resumption of the eruption. Seismicity does not indicate the presence of a new magmatic intrusion.

Source: Met Office islandais

Eruption dans la Meradalir (Islande) : C’est bien la fin! // Meradalir eruption (Iceland) : This is the end!

Les scientifiques islandais ne l’ont pas annoncé officiellement, mais il est évident que l’éruption dans la Meradalir sur la péninsule de Reykjanes a tiré sa révérence. Depuis hier, aucune incandescence n’est visible au niveau du cratère actif. En ce matin du 21 août, les émissions gazeuses sont très faibles. Comme je l’ai écrit précédemment, il ne faut pas s’attendre à un sursaut d’orgueil de l’éruption. En effet, le tremor éruptif continue de décliner rapidement et la sismicité reste faible sur la péninsule. Les deux événements de magnitude supérieure à M 3,0 enregistrés au cours des dernières heures ont probablement une origine tectonique. Il se peut aussi qu’ils soient dus à des effondrements dans les conduits d’alimentation de l’éruption après le retrait du magma. Suite au prochain épisode, sur la péninsule…ou ailleurs sur l’île!

————————————-

Icelandic scientists have not announced it officially, but it is clear that the eruption in Meradalir on the Reykjanes peninsula has come to an end. Since yesterday, no incandescence has been visible at the active crater. On the morning of August 21st, the gaseous emissions are very low. As I put it before, we should not expect a new eruptive outbreak. Indeed, the eruptive tremor continues to decline rapidly and seismicity remains low on the peninsula. The two events with magnitudes greater than M 3.0 recorded in the past few hours probably have a tectonic origin. They may also be due to collapses in the eruption conduits after the retreat of magma. Let’s wait for the next episode, on the peninsula…or elsewhere on the island!

Plus rien à voir dans la Meradalir ce matin (image webcam)