Le mercure du permafrost, une autre menace pour notre environnement // The mercury in permafrost, another threat to our environment

On savait déjà que la fonte du permafrost dans l’Arctique libère d’importantes quantités de gaz à effet de serre. Aujourd’hui, les scientifiques révèlent qu’il recèle aussi des quantités considérables de mercure, une neurotoxine agressive qui représente une menace sérieuse pour la santé humaine.
Selon une étude menée par des scientifiques du National Snow and Ice Data Center à Boulder (Colorado) et publiée dans la revue Geophysical Research Letters, il y aurait l’équivalent de cinquante piscines olympiques de mercure piégées dans le permafrost. C’est deux fois plus que ce que contient l’ensemble des sols, l’atmosphère et les océans ailleurs dans le monde. Selon l’étude, lorsque le pergélisol (autre nom du permafrost) dégèlera dans les prochaines années, une partie de ce mercure sera libérée dans l’environnement, avec un impact non encore estimé – mais considérable – sur les gens et sur nos ressources alimentaires. Les scientifiques ont effectué leurs recherches en prélevant des carottes de pergélisol à travers l’Alaska. Ils ont mesuré les niveaux de mercure et ensuite extrapolé pour calculer la quantité de mercure dans le permafrost ailleurs dans le monde, en particulier au Canada, en Russie et dans d’autres pays nordiques.
Le mercure, un élément naturel, se lie à la matière vivante à travers la planète, mais l’Arctique est particulier. Normalement, lorsque les plantes meurent et se décomposent, le mercure est libéré dans l’atmosphère. La différence dans l’Arctique, c’est que les plantes ne se décomposent pas complètement. Au lieu de cela, leurs racines sont gelées et ensuite enterrées sous plusieurs couches de sol. Cela retient le mercure qui se trouvera libéré si le permafrost vient à fondre.
La quantité de mercure libérée dépend du dégel du permafrost qui, à son tour, dépend du volume des émissions de gaz à effet de serre et du réchauffement de la planète. Le dégel du permafrost a commencé dans certaines régions et les scientifiques prévoient qu’il se poursuivra au cours du 21ème siècle. L’étude indique que si les niveaux d’émissions de gaz à effet de serre actuels se poursuivent jusqu’en 2100, le permafrost se sera réduit de 30 à 99%.
La question est de savoir où ira le mercure dans un tel contexte, et quels seront ses effets sur la Nature et sur l’Homme. Il pourrait contaminer les rivières qui se jettent dans l’océan Arctique. Il pourrait aussi se propager dans l’atmosphère, ou dans ces deux univers. Le problème est que le mercure, bien que naturel, représente un danger pour les humains et la faune, en particulier sous certaines formes. Nous rejetons déjà du mercure en faisant brûler du charbon. Il se répand alors dans l’atmosphère où il parcourt de longues distances. Quand il pleut sur l’océan ou sur les lacs, le mercure pénètre dans la chaîne alimentaire. Il s’accumule d’abord à l’intérieur des micro-organismes, puis en concentrations de plus en plus élevées dans l’organisme des prédateurs, tels les poissons, qui se nourrissent de ces petits organismes. Lorsque les humains consomment du poisson contenant du mercure en quantités trop importantes, cela peut être dangereux, surtout pour les femmes enceintes.
Dans l’Arctique, le mercure peut également s’accumuler dans les organismes de grands mammifères comme les ours polaires ou les narvals, phénomène qui a fait l’objet de plusieurs études. Si les concentrations de mercure dans l’Arctique continuaient à augmenter, ce serait une nouvelle preuve de l’impact du changement climatique sur les communautés autochtones qui y vivent.
Les résultats de l’étude sont inquiétants car elle nous apprend que le permafrost n’est pas seulement une colossale zone de stockage de carbone susceptible de modifier le climat de la planète ; c’est aussi une importante zone de stockage de mercure qui risque d’être rejeté dans notre environnement avec le dégel du pergélisol. Cela est particulièrement préoccupant au vu de la prédominance des écosystèmes de zones humides dans l’Arctique.
Source: The Washington Post.

————————————

We already knew that thawing Arctic permafrost would release powerful greenhouse gases. Now, scientists reveal it could also release massive amounts of mercury which is a potent neurotoxin and serious threat to human health.

According to a study led by scientists with the National Snow and Ice Data Center in Boulder, Colorado and published in the journal Geophysical Research Letters, there is the equivalent of 50 Olympic swimming pools of mercury trapped in the permafrost. This is twice as much as the rest of all soils, the atmosphere, and ocean combined. According to the study, when permafrost thaws in the future, some portion of this mercury will get released into the environment, with unknown impact to people and our food supplies. The scientists performed the research by taking cores from permafrost across Alaska. They measured mercury levels and then extrapolated to calculate how much mercury there is in permafrost across the globe, where it covers large portions of Canada, Russia and other northern countries.

Mercury, a naturally occurring element, binds with living matter across the planet, but the Arctic is special. Normally, as plants die and decay, they decompose and mercury is released back to the atmosphere. But in the Arctic, plants often do not fully decompose. Instead, their roots are frozen and then become buried by layers of soil. This suspends mercury within the plants, where it can be remobilized again if permafrost thaws.

How much mercury would be released depends on how much the permafrost thaws, which in turn depends on the volume of greenhouse-gas emissions and subsequent warming of the planet. However, permafrost thaw has begun in some places and scientists project that it will continue over the course of the century. The study says that with current emissions levels through 2100, permafrost could shrink by between 30 and 99 percent.

The question is to know where this mercury will go, and what it will do. It could spread through rivers that into the Arctic Ocean. Or it could enter the atmosphere. Or both. The problem is that mercury, although naturally occurring, is damaging to humans and wildlife, especially in certain forms. We are already causing mercury to enter the atmosphere by burning coal, which lofts the element into the atmosphere where it travels long distances. When it rains out into the ocean or lakes, mercury enters the food chain, first accumulating in the bodies of microorganisms and then growing increasingly concentrated in predators – like fish – that feed off smaller organisms. When humans consume mercury-laden fish in quantities too large, it can be dangerous, especially for pregnant women.

In the Arctic, mercury can also accumulate in the bodies of major mammal predators, such as polar bears or narwhal, a phenomenon that has been documented. If the Arctic mercury burden further increases, it could be another way that climate change affects the native communities living there.

The results of the study are concerning because what we are learning is that not only is permafrost a massive storage for carbon that will feedback on global climate, but permafrost also stores a globally significant pool of mercury, which is at risk of being released into the environment when permafrost thaws. This is especially concerning, given the predominance of wetland ecosystems in the Arctic.

Source: The Washington Post.

Carte montrant l’étendue du permafrost dans l’Arctique (Source: National Snow and Ice Data Center)

Publicités

Le réchauffement climatique au nord de l’Alaska // Global warming in the north of Alaska

Utqiaġvik, mieux connue sous son ancien nom de Barrow, est la plus grande ville du district de North Slope en Alaska. Elle est située au nord du cercle polaire arctique. C’est la 11ème localité la plus septentrionale au monde et la plus septentrionale des États-Unis. Un peu plus de 4 000 personnes vivent à Barrow.
En raison de sa situation géographique, Barrow ne voit jamais le soleil en hiver. Il a fait sa réapparition à l’horizon le 22 janvier 2018, pour la première fois depuis la mi-novembre. Le 23 janvier, la lumière du jour a augmenté de presque une heure par rapport à la veille. La ville aura quatre heures de jour à la fin de janvier. Le 11 mai, il n’y aura pas de nuit.
Le 21 janvier a été une autre journée remarquable. C’était la première fois depuis Halloween que les thermomètres de la ville enregistraient une température de l’air inférieure à la normale
Les derniers automnes et les hivers à Utqiaġvik ont été particulièrement doux. Selon le biologiste Craig George, qui étudie les baleines boréales et d’autres animaux à Utqiaġvik, on ne dit plus à Utqiaġvik que « le climat est en train de changer», mais que «le climat a changé». Le biologiste se souvient du mois d’octobre 1988 quand trois baleines grises se sont retrouvées piégées dans la glace de la Mer de Beaufort, juste au nord de Point Barrow. Les baleines ont fait la une de la presse mondiale lorsque les habitants du coin ont utilisé des tronçonneuses pour découper des trous dans la glace de mer pour permettre aux cétacés de respirer et leur frayer un chemin vers l’océan. La situation était bien différente cette année. Il n’y avait pas de glace sur la mer et les vagues venaient déferler sur la côte. La température de l’air atteignait 1,1 degré Celsius le jour du solstice d’hiver. Comme je l’ai écrit dans une note précédente (le 16 décembre 2017), en décembre, les scientifiques de la NOAA qui relevaient des dernières températures fournies par les capteurs d’Utqiaġvik ont détecté des anomalies dans les algorithmes informatiques et ont carrément supprimé les relevés de novembre parce qu’ils avaient l’air faux!
Selon la NOAA, la température moyenne d’octobre à décembre 2017 à Utqiaġvik a été de 8,3°C au-dessus de la normale et la plus élevée de cette période au cours des 98 dernières années. Depuis 2000, la température moyenne d’octobre à Utqiaġvik a augmenté de 3,8°C. La température moyenne de novembre a augmenté de 3,3°C et celle de décembre de 2,2°C. Les habitants d’Utqiaġvik ont ​​connu des températures quotidiennes supérieures à la normale pendant 77% de l’année en 2017!
Une autre conséquence du changement climatique à Utqiaġvik concerne le sol gelé ou  pergélisol. La température du pergélisol à 1,20 mètre de profondeur est de 3 à 4 degrés Celsius plus élevée que pour la même période l’année dernière, en sachant que l’année dernière était plus chaude que la normale. La glace de mer qui se forme plus tard en automne et qui recouvre moins d’océan est la cause de cette hausse des températures. L’océan dépourvu de glace a un effet de réchauffement sur les terres qui l’entourent.
Au vu des données satellitaires, la Mer des Tchouktches, à l’ouest d’Utqiaġvik, n’a pas gelé avant le 1er janvier 2018 alors qu’elle était en moyenne recouverte de glace vers le 20 novembre à la fin des années 1980.
Les habitants d’Utqiaġvik se sentent démunis et ne peuvent qu’espérer un retour aux conditions telles qu’elles étaient avant les années 1990, époque où le réchauffement climatique a vraiment commencé.
Source: Anchorage Daily News.

En cliquant sur ce lien, vous verrez défiler en accélérer les 3 derniers jours à Utqiaġvik. Lorsque la lumière du jour le permet, on aperçoit la mer partiellement envahie par la glace.

http://feeder.gina.alaska.edu/feeds/webcam-uaf-barrow-seaice-images/movies/current-3_day_animation.webm

——————————————-

Utqiaġvik, commonly known by its former name Barrow, is the largest city of the North Slope Borough in Alaska. It is located north of the Arctic Circle. It is the 11th northernmost public community in the world and is the northernmost city in the United States. A little more than 4,000 people live in Barrow.

Due to its northern location, Barrow never sees the sun during the winter. It only reappeared on the horizon on January 22nd 2018 for the first time since mid-November. January 23rd featured almost an hour’s increase from the day before. The town will have four hours of daylight by the end of January. By May 11th, there will be no night.

January 21st was another remarkable day. It was the first time since Halloween that the town’s thermometers recorded a below-normal daily average air temperature

Just as dramatic are the recent warm autumns and winters in Utqiaġvik. According to biologist Craig George, who studies bowhead whales and other animals in Utqiaġvik, the term is no longer ‘climate change’; it is ‘climate changed.’ The biologist remembers October 1988, when three grey whales became trapped in Beaufort Sea ice just north of Point Barrow. The whales became a worldwide news story, as local rescuers used chain saws to cut circular breathing holes in the sea ice, trying to lead the whales to open ocean. The situation was different this year. There was no ice and the waves were crashing onshore. The temperature was 1.1 degrees Celsius on winter solstice. As I put it in a previous note (December 16th 2017), in December, NOAA scientists looking for the latest temperatures from Utqiaġvik sensors found computer algorithms had flagged and removed November readings because they looked wrong!

The average temperature for October through December 2017 was 8.3°C above normal and highest for that span in the last 98 years, according to NOAA. Since 2000, the average October temperature in Utqiaġvik has increased 3.8°C. November’s average temperature has increased 3.3°C degrees and December’s, 2.2°C. Utqiaġvik residents experienced above-normal average daily temperatures 77 percent of the year in 2017!

Another consequence of climate change in Utqiaġvik concerns the frozen ground or permafrost. Permafrost temperatures at 1.20 metres deep are 3 to 4 degrees Celsius higher than at the same time last year, even though last year was also warmer than normal. Sea ice that is forming later in autumn and covering less ocean is driving the warmth. Open ocean has a warming effect on the land around it.

The Chukchi Sea to the west of Utqiaġvik did not ice over until about Jananuary 1st, 2018, according to the latest satellite record that goes back to the late 1970s. An average date the Chukchi Basin was ice-covered in the late 1980s was about November 20th.

Residents in Utqiaġvik  feel helpless and can only hope for a return to conditions before the 1990s, when the extreme warming began.

 Source: Anchorage Daily News.

By clicking on this link, you will see a timelapse video of the last 3 days in Utqiaġvik. When there is sufficient daylight, one can discern the sea which is partially covered with the ice.

http://feeder.gina.alaska.edu/feeds/webcam-uaf-barrow-seaice-images/movies/current-3_day_animation.webm

Source: Google maps

 

Arctique : Cimetières en péril // Arctic : Endangered graveyards

Comme je l’ai déjà écrit à plusieurs reprises, le réchauffement climatique fait fondre le permafrost dans les hautes latitudes, en particulier en Alaska et dans le Yukon. L’instabilité du sol provoquée par cette fonte endommage les routes, fissure les fondations des habitations et accélère l’érosion.
Dans certains villages de l’Arctique, les habitants ont cessé d’enterrer leurs morts car, avec la fonte du permafrost, la partie la plus ancienne de leurs cimetières s’enfonce dans le sol. Creuser des tombes dans le sol détrempé ne fait qu’empirer les choses.
Aujourd’hui, la vue offerte par les cimetières de la région est bien triste. Les croix sortent du sol en présentant des positions étranges et certaines d’entre elles sont presque complètement noyées dans l’eau saumâtre. Le marécage a commencé à apparaître il y a 10 ou 15 ans, puis s’est étendu et a carrément avalé les tombes aux alentours.
Cette situation dans les cimetières vient s’ajouter aux maisons qui s’effondrent sur les rivages de l’Océan Arctique en raison de l’élévation du niveau de la mer. En conséquence, de nombreux habitants ont déjà quitté leurs villages pour aller vivre dans des zones plus sûres. Le gouvernement fédéral a fait jusqu’à présent bien peu de choses pour leur venir en aide.

Source: Anchorage Daily News.

———————————

As I put it several times before, global warming is thawing the permafrost in the upper latitudes, particularly in Alaska and the Yukon. Actually, it is doing more than damaging roads, cracking foundations and accelerating erosion.

In some villages of the Arctic, residents have stopped burying their dead because, as the permafrost melts, the oldest part of their cemetery is sinking. Digging graves in the soggy ground is just making it worse.

Today, the sight offered by the cemeteries of the region is quite sad. The crosses stick out of the sunken ground at odd angles, some of them almost completely submerged in the brackish water. The swamp appeared about 10 or 15 years ago and then expanded, swallowing the graves around it.

This adds to the houses that are collapsing on the shores of the Artic because of the rise in sea level. As a consequence, many residents have left their communities to live in safer areas. The federal government has done little up to now in order to help them.

Source: Anchorage Daily News.

En Alaska, certains cimetières, autochtones ou orthodoxes, présentent une grande originalité (Photos: C. Grandpey)

Les effondrements continuent dans les Alpes // Rock collapses are continuing in the Alps

Après l’effondrement de près de 3 millions de mètres cubes de matériaux et de roches qui a eu lieu en août 2017 dans les Alpes suisses (voir ma note du 11 septembre 2017), c’est au tour des Alpes françaises de subir le même sort. Dans la nuit du 28 au 29 septembre 2017, près de 100 000 mètres cubes de roche se sont écroulés au pied de l’Eperon Tournier, en contrebas de la célèbre Aiguille du Midi. Aujourd’hui, les Chamoniards peuvent apercevoir une balafre de 300 mètres de hauteur sur la face nord de l’Aiguille du Midi.

En 2016, la paroi a été scannée et elle le sera à nouveau pour pouvoir évaluer avec exactitude la quantité de roche qui s’est effondrée. L’éboulement s’est produit en zone de permafrost de roche, au moment où la roche dégèle par endroits quand elle a emmagasiné assez de chaleur pour atteindre des températures positives. Ces dernières années, on a remarqué que, à cause du réchauffement climatique, le permafrost dégèle de plus en plus profondément et provoque ce type d’éboulement.
Des prélèvements de glace ont été effectués sur le site de l’effondrement par le laboratoire Edytem de Chambéry. Jamais une telle quantité de glace n’avait été retrouvée dans la partie haute de la cicatrice de l’écroulement. Elle cimentait la montagne et les scientifiques vont pouvoir l’analyser pour déterminer ses caractéristiques et la dater avec l’aide de l’IGE, le Laboratoire de glaciologie et géophysique de l’environnement de Grenoble.

Sources : France 3 & France Info.

—————————————-

After the collapse of almost 3 million cubic metres of materials and rocks that took place in August 2017 in the Swiss Alps (see my post of September 11th, 2017), it is up to the French Alps to suffer the same fate. On the night of September 28th, 2017, nearly 100,000 cubic metres of rocks collapsed at the foot of the Eperon Tournier, below the famous Aiguille du Midi. Today, the rersidents of Chamonix can see a s300-metre-high scar on the north face of the Aiguille du Midi.
By 2016, the wall has been scanned and it will be scanned again in order to accurately assess the amount of rock that has collapsed. The rockslide occurred in an area of rock permafrost, at a time when the rock thaws in places when it has stored enough heat to reach positive temperatures. In recent years, scientists observed that, because of climate change, permafrost thaws deeper and deeper and causes this type of landslide.
Ice sampling was carried out at the site of the collapse by the Edytem Laboratory in Chambéry. Such an amount of ice had never been found before in the upper part of the collapse scar. It cemented the mountain and scientists will be able to analyze it to determine its characteristics and to date it with the help of the IGE, the Laboratory of glaciology and geophysics of the environment of Grenoble.
Sources: France 3 & France Info.

Aiguille du Midi (Photo: C. Grandpey)

La fonte du permafrost ferme un aéroport en Alaska // Melting permafrost closes an airport in Alaska

Tununak (320 habitants) est un petit village isolé sur la côte ouest de l’Alaska. Le seul lien avec le monde extérieur est l’avion. Il y a environ un an, Tununak a ouvert un aéroport ultramoderne qui a coûté 19 millions de dollars. Le problème, c’est qu’aujourd’hui, les compagnies aériennes refusent de l’utiliser. La fonte du permafrost a endommagé la piste et les pilotes ne peuvent pas atterrir en toute sécurité. Le tiers inférieur de la piste est criblé de nids de poule, et maintenant elle commence à s’affaisser. En fait, en raison du changement climatique, c’est tout le site qui s’affaisse sous le poids de l’aéroport.
L’aéroport est fermé depuis le 5 octobre mais on n’a jamais vraiment donné d’explications aux habitants.
Comme la plupart des communautés de l’Alaska qui ne sont pas reliées au réseau routier, Tununak dépend du transport aérien pour son approvisionnement en biens et pour ses services. La fermeture de l’aéroport signifie que l’épicerie ne reçoit plus de marchandise et les gens n’ont pas reçu de courrier depuis plus d’une semaine. Plusieurs personnes âgées s’inquiètent de ne pas recevoir leurs médicaments.
Pour l’instant, les habitants de Tununak traversent la toundra en 4×4 pour aller faire leurs courses et chercher leur courrier à Toksook Bay, à quelques dizaines de kilomètres au sud.
Le Ministère des Transports a décidé d’envoyer un technicien de génie civil à Tununak pour évaluer la situation, mais son vol a été retardé par le mauvais temps. Comme cette visite d’évaluation des dégâts a été retardée, le Ministère des Transports est dans l’incapacité de dire quand la piste de Tununak sera réparée.
Source: Alaska Dispatch News.

————————————–

Tununak (pop. 320) is a small and remote village on the western coast of Alaska. The only link with the outside world is the plane. About a year ago, Tununak opened a $19 million, state-of-the-art airport. But now, local airlines are refusing to fly there. The village’s shifting permafrost is buckling the runway, and it is too dangerous for pilots to land on it safely. The lower third of the runway is riddled with potholes, and now it is starting to sink. Beecause of climate change, the melting permafrost is moving under the airport’s weight.

The airport has been effectively shut down since October 5th but residents were not really told what was happening.

Like most Alaska communities off the road system, Tununak relies on air travel for goods and services. The closure of the airport means that groceries are no longer arriving in the local shop and êople have not received mail in over a week or so. Several elderly residents are concerned about receiving their medications.

For now, Tununak residents are driving across the tundra on four-wheelers to pick up groceries and mail in Toksook Bay, a few tens of kilometres to the south.

The Department of Transportation is sending a grader operator to Tununak to assess the situation, but their flights have been delayed by storms. Because their assessment has been delayed, the Department of Transportation does not have a timetable yet for when Tununak’s runway will be fixed.

Source: Alaska Dispatch News.

 

L’avenir du permafrost en Alaska // The future of Alaska’s permafrost

Comme je l’ai écrit à plusieurs reprises sur ce blog, le permafrost (ou pergélisol) fond à une vitesse incroyable dans l’Arctique, avec des conséquences importantes pour l’environnement. Un article récemment publié dans le New York Times apporte plus de détails sur le phénomène.
L’Arctique se réchauffe environ deux fois plus vite que d’autres parties de la planète, et la hausse des températures est fortement ressentie en Alaska. La glace de mer et certains biotopes disparaissent; la hausse du niveau de la mer menace les villages côtiers. Pour les scientifiques du Woods Hole Research Center qui sont allés en Alaska étudier les effets du changement climatique, le problème le plus sérieux réside dans la fonte du permafrost.
Logé entre quelques dizaines de centimètres et quelques mètres sous la surface, le permafrost contient de grandes quantités de carbone dans la matière organique ; ce sont des plantes qui ont absorbé du dioxyde de carbone de l’atmosphère il y a des siècles, sont mortes et ont gelé avant de pouvoir se décomposer. Sur la planète, on pense que le permafrost contient aujourd’hui deux fois plus de carbone que l’atmosphère. Une fois que cette matière organique décongèle, les microbes en transforment une partie en dioxyde de carbone et en méthane qui peuvent passer dans l’atmosphère et accélérer son réchauffement.
En juillet 2017, les scientifiques du Woods Hole Research Center ont installé une station temporaire au bord d’un lac à 90 km au nord-ouest de Bethel, une ville située près de la côte ouest de l’Alaska, à environ 640 km d’Anchorage. Ils ont prélevé des carottes de permafrost, ainsi que des échantillons de sédiments et d’eau et enfoncé des sondes thermiques dans le sol gelé. Plus tard, dans le laboratoire de l’institution, ils ont entrepris le processus d’analyse des échantillons pour déterminer la teneur en carbone et en nutriments. L’objectif est de mieux comprendre comment la fonte du permafrost affecte le paysage et, en fin de compte, quelle quantité de gaz à effet de serre est évacuée dans l’atmosphère.
Même dans le nord de l’Alaska où le climat est plus froid et où le permafrost dans la région de North Slope descend à plus de 600 mètres sous la surface, les scientifiques voient des changements importants. La température à deux mètres de profondeur a augmenté de 3 degrés Celsius au cours des dernières décennies. Les changements à la surface ont été encore plus importants. Sur l’un des sites de mesures, la température du permafrost en surface est passée de moins 8 degrés Celsius à moins 3. A ce rythme, cette température deviendra positive vers le milieu du siècle. En plus des émissions de gaz à effet de serre, la fonte du permafrost a une incidence sur les infrastructures et provoque des affaissements de terrain lorsque la glace perd de son volume en fondant. J’ai précédemment donné l’exemple de la rue principale de Bethel, une agglomération où les bâtiments s’enfoncent et se fissurent.
La fonte du permafrost est un processus graduel. Le sol est totalement gelé en hiver et commence à décongeler de haut en bas lorsque la température de l’air augmente au printemps. À mesure que les températures moyennes augmentent, cette couche décongelée ou active en subit les effets en profondeur. Les chercheurs s’intéressent à la manière dont les feux de forêt affectent le permafrost. Comme les incendies font disparaître en surface une partie de la végétation qui agit comme un isolant, on pense que le feu et la combustion qu’il entraîne peuvent accélérer la fonte du pergélisol.
La fonte du permafrost sous un lac ou en bordure de celui-ci peut provoquer l’évacuation de l’eau, un peu comme une baignoire qui fuit. Cette fonte peut aussi entraîner des variations de niveau du sol, ce qui peut entraîner des changements dans l’écoulement de l’eau ; ainsi, certaines parties de la toundra peuvent s’assécher et d’autres être transformées en tourbières. Au-delà des effets sur la vie végétale et animale, les changements apportés au paysage peuvent avoir un impact important sur le changement climatique en modifiant la quantité de dioxyde de carbone et de méthane qui est émise. Bien que le méthane ne persiste pas dans l’atmosphère aussi longtemps que le dioxyde de carbone, il a une capacité de piégeage thermique beaucoup plus grande et peut contribuer à un réchauffement plus rapide. Si le permafrost en décomposition est humide, il y aura moins d’oxygène disponible pour les microbes, de sorte qu’ils produiront plus de méthane. Si le pergélisol est sec, la décomposition entraînera plus de dioxyde de carbone.
Les estimations varient en ce qui concerne la quantité de carbone émise lors de la fonte du permafrost dans le monde, mais on estime que les émissions d’ici la fin du siècle pourraient atteindre environ 1,5 milliard de tonnes par an, soit environ les émissions annuelles actuelles provenant de combustibles fossiles aux États-Unis.
La hausse des émissions de carbone dans la toundra de l’Alaska est tenue pour responsable de la hausse des températures et de la fonte du permafrost. Dans une étude publiée au début de cette année, les chercheurs ont constaté que la décomposition bactérienne du permafrost décongelé, ainsi que le dioxyde de carbone produit par la végétation vivante, se poursuit plus tard dans l’automne parce que le gel en surface est retardé. Selon les chercheurs, la hausse des émissions de CO2 a été si importante que l’Alaska pourrait passer du stade de simple réserve à celui de véritable source de carbone.
Source: The New York Times.

————————————–

As I put it several times in this blog, permafrost is thawing at an incredible speed in the Arctic, with significant consequences for the environment. An article recently published in The New York Times brings more details about the phenomenon.

The Arctic is warming about twice as fast as other parts of the planet, and even in sub-Arctic Alaska the rate of warming is high. Sea ice and wildlife habitat are disappearing; higher sea levels threaten coastal native villages. To the scientists from Woods Hole Research Center who have gone to Alaska to study the effects of climate change, the most urgent is the fate of permafrost.

Starting just a few tens of centimetres below the surface and extending a few metres down, it contains vast amounts of carbon in organic matter, plants that took carbon dioxide from the atmosphere centuries ago, died and froze before they could decompose. Worldwide, permafrost is thought to contain about twice as much carbon as is currently in the atmosphere. Once this ancient organic material thaws, microbes convert some of it to carbon dioxide and methane, which can flow into the atmosphere and cause more warming.

In July, Woods Hole scientists set up a temporary field station on a lake 90 km northwest of Bethel, a city located near the west coast of Alaska, approximately 640 km from Anchorage. They drilled permafrost cores, took other sediment and water samples and embedded temperature probes in the frozen ground. Later, back in the lab at Woods Hole, they began the process of analyzing the samples for carbon content and nutrients. The goal is to better understand how thawing permafrost affects the landscape and, ultimately, how much and what mix of greenhouse gases is released.

Even in colder northern Alaska, where permafrost in some parts of the North Slope extends more than 600 metres below the surface, scientists are seeing stark changes. Temperatures at a depth of 2 metres have risen by 3 degrees Celsius over decades. Near-surface changes have been even greater. At one northern site, permafrost temperatures at shallow depths have climbed from minus 8 degrees Celsius to minus 3. If emissions and warming continue at the same rate, near-surface temperatures will rise above freezing around the middle of the century. In addition to greenhouse-gas emissions, thawing wreaks havoc on infrastructure, causing slumping of land when ice loses volume as it melts. I previously gave the example of the main road in Bethel where building foundations move and crack.

The thawing of permafrost is a gradual process. Ground is fully frozen in winter, and begins to thaw from the top down as air temperatures rise in spring. As average temperatures increase, this thawed, or active, layer can increase in depth. The researchers are especially interested in how wildfires affect the permafrost. Because burning removes some of the vegetation that acts as insulation, the theory is that burning should cause permafrost to thaw more.

Thawing permafrost underneath or at the edge of a lake can cause it to drain like a leaky bathtub. Thawing elsewhere can bring about small elevation changes that can in turn lead to changes in water flow through the landscape, drying out some parts of the tundra and turning others into bogs. Beyond the local effects on plant and animal life, the landscape changes can have an important climate change impact, by altering the mix of carbon dioxide and methane that is emitted. Although methane does not persist in the atmosphere for as long as carbon dioxide, it has a far greater heat-trapping ability and can contribute to more rapid warming. If the decomposing permafrost is wet, there will be less oxygen available to microbes, so they will produce more methane. If the permafrost is dry, the decomposition will lead to more carbon dioxide.

Estimates vary on how much carbon is released from thawing permafrost worldwide, but by one calculation emissions over the rest of the century could average about 1.5 billion tons a year, or about the same as current annual emissions from fossil-fuel burning in the United States.

Already, thawing permafrost and warmer temperatures are being blamed for rising carbon emissions in the Alaskan tundra. In a study earlier this year, researchers found that bacterial decomposition of thawed permafrost, as well as carbon dioxide produced by living vegetation, continues later into the fall because freezing of the surface is delayed. The rise in emissions has been so significant, the researchers found, that Alaska may be shifting from a sink, or storehouse, of carbon, to a net source.

Source: The New York Times.

Carte montrant (en bleu) l’étendue du permafrost en Alaska en 2010

Projection montrant (en orange) la perte probable de permafrost en 2050

 (Source : Woods Hole Research Center)

Le Parc National du Denali (Alaska) et le réchauffement climatique // Denali National Park (Alaska) and global warming

Selon un nouveau rapport publié par le Service des Parcs Nationaux, les visiteurs qui voyagent dans le Parc National du Denali doivent s’attendre à être confrontés à des problèmes causés par le réchauffement climatique : glissements de terrain déclenchés par le dégel du permafrost, gonflement des torrents provoqué par la fonte des glaciers et fumée générée par les incendies de forêts de plus en plus importants et de plus en plus fréquents
Le rapport considère que le changement climatique représente l’un des nombreux défis pour les services de transport du Parc du Denali, site de la plus haute montagne d’Amérique du Nord et l’une des principales destinations touristiques en Alaska. Le plan décrit les facteurs qui devraient guider la gestion future du Parc au cours des 20 prochaines années.
Le Parc National du Denali est déjà connu pour ses règles de transport très strictes. Une seule route de 148 kilomètres pénètre à l’intérieur du Parc, et très peu de véhicules privés sont autorisés à circuler sur les 25 premiers kilomètres. La plupart des visiteurs utilisent les navettes du Parc pour des visites guidées ou pour atteindre les terrains de camping et les sentiers de randonnée. Le Parc est également une destination privilégiée pour les pilotes de petits avions qui déposent les alpinistes sur les camps de base permettant d’accéder aux glaciers, et qui proposent aux touristes des survols du Denali et d’autres sommets de la Chaîne de l’Alaska.

Comme c’est le cas pour les autres contrées du Grand Nord, le Denali devrait connaître les effets du réchauffement climatique au cours des prochaines décennies. On s’attend à ce que les températures annuelles moyennes subissent une hausse de 2,5°C d’ici 2040 et de 4°C d’ici 2080. Les changements les plus significatifs seront probablement observés en hiver.
Le Parc du Denali montre déjà les effets du changement climatique, avec des phénomènes comme l’accélération de la fonte des glaciers, l’expansion de la végétation arbustive à des altitudes et des latitudes plus hautes, et l’apparition d’affaissements dans le paysage provoqués par le dégel du permafrost. Ces changements peuvent avoir un effet sur les personnes qui se déplacent à pied, en véhicule, ou en avion. Les eaux de fonte des glaciers peuvent inonder la route, les sentiers ou les pistes d’atterrissage, tandis que la fumée des incendies de forêts peut représenter un danger pour le transport aérien.
La fréquentation touristique du Parc peut être également affectée. Les périodes d’ouverture du Parc au printemps et à l’automne vont probablement s’allonger, alors qu’elle font actuellement partie de la période hors saison. Cela entraînera une demande accrue de moyens de transport et plus de services pour les visiteurs. La route du Parc est particulièrement vulnérable aux conditions changeantes, notamment au dégel du permafrost. Le Denali se trouve à la limite entre la zone de permafrost permanent et la zone de permafrost discontinu. Avec l’augmentation des températures, la limite entre ces deux zones devrait migrer vers le nord. Cela exposera la route du Parc à de plus en plus de dégâts liés à des affaissements, ce qui exigera une maintenance accrue.
Certains problèmes liés au climat sont déjà apparus le long de la route du Parc. En octobre 2013, une masse de matériaux de 18 mètres de long et de 33 mètres de large, libérée par la fonte du permafrost, a glissé sur la route du Parc et entravé le passage des véhicules. D’autres glissements se sont produits pendant l’été 2016; l’un d’eux a temporairement fermé la route au niveau de la borne 67 et bloqué plusieurs visiteurs.
Source: Alaska Dispatch News.

——————————————

According to a new report released by the National Park Service, visitors travelling in Denali National Park and Preserve should expect to observe problems caused by global warming. Among them are landslides triggered by permafrost thaw, floodwaters gushing from melting glaciers and smokier air from bigger and more frequent wildfires

The report identifies climate change as one of several challenges looming for transportation in the park, site of North America’s tallest mountain and one of the top visitor destinations in Alaska. The plan outlines factors that should guide future management over the next 20 years.

The park is already known for its strict transportation rules. A single 148-kilometre road goes into its heart, and very few private vehicles are allowed past the first 25 kilometres. Most visitors use park shuttle buses for day sightseeing trips or to reach campgrounds and hiking destinations. The park is also an important destination for pilots flying small planes; ski-equipped aircraft ferry mountain climbers to remote glacial base camps and carry sightseers who want to view Denali and other Alaska Range peaks from the air.

As is the case for the rest of the far North, Denali is expected to get warmer in coming decades. Average annual temperatures are expected to be 2.5°C higher by 2040 and 4 degrees warmer by 2080, with the biggest changes likely to come in winter.

Denali is already showing effects of climate change, including accelerating glacial melt, expansion of woody plants to higher elevations and latitudes, and slumps in the landscape caused by permafrost thaw. Those changes in the natural world can affect people travelling by foot, vehicle, boat or airplane. Floods from glacial melt could swamp road, trail or airstrip sections, for example, and increased wildfire smoke can create hazards for air travel.

Even the distribution of visitor crowds is potentially affected. Milder spring and autumn weather is likely to increase what is now considered the offseason for the park, and thus increase demand for transportation and visitor services. The park road is particularly vulnerable to changing conditions, notably permafrost thaw. Denali sits atop the boundary between continuous permafrost, in which is the area fully underlain by frozen soil, and discontinuous permafrost, which is the area where permanently frozen soil exists in patches. As temperatures rise, the boundary between continuous and discontinuous permafrost is expected to migrate north. This will expose the Park Road to an increasing change of subsidence-related damage, resulting in more maintenance.

Some climate-related problems along the park road have already emerged. In October 2013, an 18-metre-long, 33-metre-wide mass of partially thawed permafrost chunks slid onto the park road and blocked passage. Some smaller slides occurred in the summer of 2016; one temporarily closed the road at Mile 67 and stranded some visitors.

Source : Alaska Dispatch News.

Photos: C. Grandpey