Climat: Un avenir inquiétant // Climate: An uncertain future

Selon une étude réalisée par une équipe internationale de chercheurs de 17 pays et publiée début juillet 2018 dans Nature Geoscience, le réchauffement climatique au cours des prochaines années pourrait être deux fois plus important que celui prévu par les modèles climatiques présentés dans les scénarios actuels. Même si l’objectif d’une hausse des températures de  2°C était atteint, le niveau de la mer pourrait augmenter de six mètres ou plus.
Les résultats de l’étude s’appuient sur l’observation de trois périodes chaudes au cours des 3,5 millions d’années passées, époque où la température de la Terre dépassait de 0,5°C à 2°C les températures préindustrielles du 19ème siècle.
L’étude montre également que de vastes zones de calottes polaires pourraient disparaître. Des changements significatifs dans les écosystèmes pourraient voir le désert du Sahara devenir une étendue verte et les bordures des forêts tropicales se transformer en savane. Les observations des périodes de réchauffement passées révèlent qu’un certain nombre de mécanismes amplificateurs, mal représentés dans les modèles climatiques, augmentent le réchauffement à long terme bien au-delà des projections actuelles. En conséquence, le budget carbone pour éviter 2°C du réchauffement climatique pourrait être beaucoup plus réduit que prévu, laissant une marge d’erreur très faible pour atteindre les objectifs de la COP 21.
Pour obtenir leurs résultats, les chercheurs ont examiné trois des périodes chaudes les mieux documentées, le maximum thermique de l’Holocène (il y a 5000-9000 ans), le dernier interglaciaire (129 000-116 000 ans) et la période chaude du milieu du Pliocène (3,3-3 millions d’années). Le réchauffement des deux premières périodes a été causé par des changements prévisibles de l’orbite terrestre, tandis que l’événement du milieu du Pliocène fut le résultat de concentrations atmosphériques de dioxyde de carbone de 350 à 450 ppm, ce qui correspond sensiblement au niveau actuel (409,53 ppm au relevé du 6 juillet 2018 sur la Mauna Loa à Hawaii).
En combinant un large éventail de mesures fournies par des carottes de glace, des couches de sédiments, des archives fossiles, des datations à l’aide d’isotopes atomiques et une foule d’autres méthodes paléoclimatiques établies, les chercheurs ont reconstitué l’impact de ces changements climatiques. Ensemble, ces périodes montrent clairement à quel point la Terre sera plus chaude une fois le climat stabilisé. Aujourd’hui, notre planète se réchauffe beaucoup plus rapidement qu’au cours de n’importe laquelle de ces périodes car les émissions anthropiques de CO2 continuent de croître. Même si ces émissions cessaient aujourd’hui, il faudrait des siècles, voire des millénaires, pour retrouver un équilibre.
Les changements survenus sur Terre sous les conditions du passé ont été profonds: les étendues de glace de l’Antarctique et du Groenland se sont considérablement réduites et, par conséquent, le niveau de la mer s’est élevé d’au moins six mètres; les aires de répartition du plancton marin se sont déplacées, bouleversant des écosystèmes marins entiers; le Sahara a verdi et les espèces forestières se sont déplacées de 200 km vers les pôles, tout comme la toundra; les espèces de haute altitude ont décliné, les forêts tropicales tempérées ont été réduites et dans les zones méditerranéennes la végétation maintenue par le feu a dominé.
Même avec seulement 2°C de réchauffement – et potentiellement seulement 1,5 ° C – les impacts significatifs sur le système terrestre seront profonds. L’élévation du niveau de la mer pourrait devenir inéluctable pendant des millénaires ; cela affecterait une grande partie de la population mondiale, des infrastructures et l’activité économique. Pourtant, ces changements importants sont généralement sous-estimés dans les projections des modèles climatiques actuels  qui se concentrent sur le court terme et semblent sous-estimer le réchauffement à long terme et l’amplification de la chaleur dans les régions polaires. Ces mêmes modèles climatiques semblent être fiables pour des changements mineurs sur de courtes périodes, par exemple au cours des prochaines décennies jusqu’en 2100, mais quand les changements prennent de l’ampleur ou persistent, ils sous-estiment le réchauffement climatique.
La dernière étude montre que si nos dirigeants ne s’attaquent pas très rapidement aux émissions de gaz à effet de serre, le réchauffement climatique transformera profondément notre planète et notre mode de vie, pas seulement pour ce siècle mais bien au-delà.
Source: Nature Geoscience, Science Daily.

———————————————-

According to a study performed by an international team of researchers from 17 countries and published early July 2018 in Nature Geoscience, future global warming may be twice as warm as projected by climate models under current scenarios. Even if the world meets the 2°C target, sea levels may rise six metres or more.

The results of the study are based on observational evidence from three warm periods over the past 3.5 million years when the world was 0.5°C-2°C warmer than the pre-industrial temperatures of the 19th century.

The research also revealed how large areas of the polar ice caps could collapse and significant changes to ecosystems could see the Sahara desert become green and the edges of tropical forests turn into savanna. Observations of past warming periods suggest that a number of amplifying mechanisms, which are poorly represented in climate models, increase long-term warming beyond climate model projections. This suggests the carbon budget to avoid 2°C of global warming may be far smaller than estimated, leaving very little margin for error to meet the Paris targets.

To get their results, the researchers looked at three of the best-documented warm periods, the Holocene thermal maximum (5000-9000 years ago), the last interglacial (129,000-116,000 years ago) and the mid-Pliocene warm period (3.3-3 million years ago). The warming of the first two periods was caused by predictable changes in the Earth’s orbit, while the mid-Pliocene event was the result of atmospheric carbon dioxide concentrations that were 350-450ppm, much the same as today.

Combining a wide range of measurements from ice cores, sediment layers, fossil records, dating using atomic isotopes and a host of other established paleoclimate methods, the researchers pieced together the impact of these climatic changes. In combination, these periods give strong evidence of how a warmer Earth would appear once the climate had stabilized. By contrast, today our planet is warming much faster than any of these periods as human caused carbon dioxide emissions continue to grow. Even if our emissions stopped today, it would take centuries to millennia to reach equilibrium.

The changes to the Earth under these past conditions were profound: there were substantial retreats of the Antarctic and Greenland ice sheets and as a consequence sea-levels rose by at least six metres; marine plankton ranges shifted, reorganising entire marine ecosystems; the Sahara became greener and forest species shifted 200 km towards the poles, as did tundra; high altitude species declined, temperate tropical forests were reduced and in Mediterranean areas fire-maintained vegetation dominated.

Even with just 2°C of warming – and potentially just 1.5°C – significant impacts on the Earth system are profound. Sea-level rise could become unstoppable for millennia, impacting much of the world’s population, infrastructure and economic activity. Yet these significant observed changes are generally underestimated in climate model projections that focus on the near term. Compared to these past observations, climate models appear to underestimate long term warming and the amplification of warmth in polar regions. Indeed, climate models appear to be trustworthy for small changes, such as for low emission scenarios over short periods, for instance over the next few decades until 2100. But as the change gets larger or more persistent, it appears they underestimate climate change.

This new research shows that if today’s leaders don’t urgently address our emissions, global warming will bring profound changes to our planet and way of life, not just for this century but well beyond.

Source: Nature Geoscience, Science Daily.

 
 

Les glaciers fondent et les effets sont spectaculaires sur le littoral: Bâtiments menacés, blockhaus à la dérive, etc.  (Photos: C. Grandpey)

 

 

Image glacier ou image érosion littorale (Soulac?)

Publicités

Hawaii : L’entrée de lave dans l’océan et son impact sur les écosystèmes // The ocean lava entry and its impact on ecosystems

La lave qui pénètre dans le Pacifique dans District de Puna ne modifie pas seulement le paysage terrestre; elle modifie également le paysage marin en affectant la vie aquatique.

Un professeur du département des Sciences de la Mer de l’Université d’Hawaii à Hilo concentrait jusqu’à présent ses études sur la vie dans les « Tide Pools » (bassins d’eau de mer qui se remplissent avec la marée) près de Vacationland. L’objet de ses recherches était les impacts de l’eau douce sur les écosystèmes côtiers.
Malheureusement, les « Tide Pools » ont été recouverts par la lave au début de l’été et le professeur a dû changer son fusil d’épaule. Il travaille maintenant en relation avec Liquid Robotics, une entreprise située à Kawaihae Harbor, et utilise un nouvel équipement baptisé Wave Glider pour analyser la répartition de l’eau chaude sur le site où la lave pénètre dans l’océan, ainsi que son impact sur l’environnement.
Le Wave Glider est une sorte de robot qui collecte des données tout en flottant à la surface de l’océan. L’appareil a à peu près la taille d’une planche se surf mais est légèrement plus épais pour pouvoir y loger des batteries, un ordinateur pour la navigation et la communication, et des instruments de mesure scientifique
En utilisant cette technologie sans pilote, les scientifiques ont la possibilité d’étudier les effets de la lave qui entre dans l’océan, le panache qu’elle génère, ainsi que et les interactions de la lave et de l’eau de mer directement à la surface de l’océan. Il convient de noter que très peu d’éruptions volcaniques et de coulées de lave ont été analysées en temps réel depuis le large.
Le professeur et son équipe ont examiné trois types de données: température de l’eau, sédiments et pH.
– L’eau bout à l’endroit où la lave pénètre dans l’océan et les chercheurs ont relevé des températures supérieures à 38°C à trois kilomètres de la côte. Certains jours, cette distance peut être grande, d’autres jours plus courte. Ces variations de température dépendent en partie de la quantité de lave qui se déverse dans l’océan. La température de référence de l’eau pendant les relevés était de 26°C. Les scientifiques ont noté que l’eau chaude a tendance à s’éloigner du rivage plutôt de s’étirer le long de la côte. Elle se déplace vers le large et l’eau plus froide se déplace le long du littoral ou remonte des profondeurs pour remplacer l’eau là où la lave entre dans la mer. En procédant de cette façon, cette eau plus fraîche fournit une certaine protection aux écosystèmes autour de la coulée de lave.
– Les chercheurs ont constaté que l’eau était très boueuse. Au fur et à mesure que la lave se déverse, elle se refroidit, se craquelle et est réduite en miettes de plus en plus petites par l’action des vagues. On voit alors apparaître des «bombes volcaniques» – comme celle qui s’est écrasée sur le bateau de touristes -, des roches et de fines particules de limon et d’argile, qui restent en suspension, ce qui donne à l’eau son aspect boueux. Un scientifique a expliqué que l’eau ressemble à « la Baie de Hilo après une grosse pluie. »
– La troisième mesure concerne le pH, autrement dit l’acidité de l’eau. L’eau de mer est légèrement basique à pH 8 et le pH 7,2 est le plus bas à avoir été mesuré. A 7.0, le  pH est neutre. Connaître les niveaux de pH est important car cela permet de savoir dans quelles proportions les écosystèmes côtiers sont affectés par l’éruption.

Ce sont la chaleur et les sédiments dans l’eau qui auront les impacts les plus significatifs sur les écosystèmes côtiers.
C’est la première fois depuis des décennies que ce type de données est collecté. La dernière campagne de mesures a été effectuée à la fin des années 1980 et au début des années 1990 par un groupe de chercheurs de l’Université d’Hawaii à Manoa. Une des grandes différences avec les mesures du passé est que cette fois il y a beaucoup plus de lave qui se déverse dans l’océan.
Un autre avantage est apporté par les avancées technologiques. Avec le Wave Glider, les mesures sont prises toutes les deux minutes, ce qui fournit des données précises qui n’étaient pas disponibles dans les années 1980 et 1990.
L’impact de la lave sur l’eau entraîne également un impact sur la vie marine. Pour les animaux et les organismes, survivre à une coulée de lave dépend de leur degré de mobilité. Par exemple, un corail au fond de l’océan va mourir dès qu’il sera atteint par la lave de l’éruption car il ne peut pas bouger. En revanche, les poissons peuvent s’échapper s’ils réagissent rapidement. Par contre, si les « tide pools » sont envahis par la lave, la vie marine qui s’y trouve à marée basse sera piégée au moment de l’arrivée de la lave. .
La chaleur est le principal danger pour la vie marine, mais il faudra que le niveau de pH repasse à un état quasi normal pour que les organismes marins puissent commencer à repeupler l’endroit. Bien qu’il n’y ait plus de vie dans les récifs envahis par la lave en ce moment, on prévoit d’y étudier son retour une fois que le fond de l’océan se sera stabilisé. Cependant, on n’en est pas encore là. Le processus menant à une vie marine normale le long de la côte peut prendre des décennies…
Source: Hawaii Tribune Herald.

Voici une vidéo expliquant le fonctionnement du Wave Glider :

https://youtu.be/RKMqAwmh5hk

——————————————————

The lava entering the Pacific Ocean in Lower Puna is not only changing the landscape; it is also altering the seascape, impacting the water and sea life within.

A professor in the Marine Science Department at the University of Hawaii at Hilo used to study life in the tide pools near Vacationland before they were lost to the lava earlier this summer. The focus of his research was the impacts of freshwater on coastal ecosystems.

The loss of the tide pools to lava forced him to change the finality of his work. He is now collaborating with Liquid Robotics, a company in Kawaihae Harbor, on the use of their Wave Glider technology to help understand the distribution of the hot water where lava is entering the ocean and its impact on the environment.

The Wave Glider is a sort of robot that is collecting data while floating at the surface of the ocean. The device is roughly the size of a stand-up paddle board, but slightly thicker to hold batteries, a computer for navigation and communication and instruments for science

By using this unmanned technology, scientists have the rare opportunity to study the effects of the lava entering the ocean, the plume it creates, and the interactions of the lava and seawater directly from the surface of the ocean. It should be noted that very few volcanic eruptions and lava flows have ever been monitored in real time from the ocean.

The professor and his team have looked at three different aspects of the data: water temperature, sediment and pH levels.

– Water is boiling right where the lava enters the ocean, and researchers are observing temperatures greater than 38°C three kilometres off the coast. Some days, that distance may be farther, while other days not so far. How much hot water there is seems to fluctuate day by day and is partly related to how much lava is pouring into the ocean. The reference water temperature while they were sampling was 26°C.The scientists noted that hot water tends to flow away from the shoreline instead of spreading out along the coast. It moves off shore, and cool water is either coming in along the shoreline or coming up from the depths to replace the water where the lava pours in. Proceeding this way, it provides some protection for the ecosystems surrounding the lava flow.

– Another observation is that the water is very muddy. As the lava pours in, it cools, cracks and is broken down into smaller and smaller pieces by waves. It produces “lava bombs” like the one that crashed onto the tourist boat, rocks, and fine bits of silt and clay, and the small particles stay suspended. One scientist explained that the water looks like “Hilo Bay after a big rainfall; the water is that muddy.”

– The third measurement is the pH, or acidity, of the water. Ocean water is slightly basic at pH 8, and pH 7.2 is the lowest that has been measured. A 7.0 on the pH scale is neutral. Knowing the pH levels is important as it allows to know to what extent coastal ecosystems can be affected by the eruption. The heat and sediment in the water are going to have big impacts on near-shore ecosystems.

This is the first time in decades this kind of data has been collected. The last such effort was done in the late 1980s or early 1990s by a group at UH-Manoa,. One of the big differences with the past measurements is that this time there is much more lava pouring into the ocean.

A new advantage is brought by the technological advances. With the Wave Glider, measurements are taken every two minutes, providing high resolution data that was not available in the 1980s and 1990s.

Impact to the water also means impact to the marine life there. For animals and organisms, surviving a lava flow depends on how mobile they are. For example, a coral at the bottom of the ocean will die as soon as it is struck the lava from the eruption because it cannot move.

On the other hand, the fish can escape if they react quickly. Some of the tide pools also are “ponded,” so marine life in there at low tide will be trapped when lava arrives. .

 Heat is the biggest concern for marine life, but the pH levels will have to return a fairly normal state before any marine organism can begin to inhabit the place. While there is no life in the affected reefs at the time, there are plans to monitor what returns once the sea floor stabilizes. However, researchers are nowhere near that point yet. The process leading to a normal marine life along the shore may take decades.

Source: Hawaii Tribune Herald.

Here is a video about the Wave Glider :

https://youtu.be/RKMqAwmh5hk

Vue du Wave Glider face à l’éruption (Crédit photo: Liquid Robotics)

Le changement climatique modifie la flore en altitude // Climate change alters flora at high altitudes

Selon une étude parue dans la revue Nature, la « grande accélération » touche désormais les cimes. Sous l’effet du réchauffement climatique, les sommets des montagnes européennes accueillent des plantes inédites. Avec une certaine logique du fait de la hausse des températures, les plantes remontent de plus en plus rapidement des niveaux inférieurs, avec des sommets cinq fois plus « colonisés » de nouvelles espèces ces dix dernières années qu’au cours de la décennie 1957-1966. L’étude a analysé 302 sites dans les Alpes, les Pyrénées, les Carpates, au Svalbard (Norvège), en Écosse ou en Scandinavie.

Le CNRS souligne que la « grande accélération » biologique, météorologique ou chimique, observée depuis les années 1950 par la communauté scientifique sous l’effet des activités humaines, est « aujourd’hui perceptible dans les sites les plus reculés de la planète comme les sommets des montagnes. »

Selon cette étude, basée sur 145 ans de relevés botaniques, le nombre d’espèces s’est enrichi sur 87% des sites. Au cours de la période 1957-66, un sommet a accueilli en moyenne 1,1 espèce nouvelle; en 2007-2016, il en a accueilli 5,4. Cette migration concerne même des plantes réputées pour se déplacer lentement.

L’équipe de 53 chercheurs issus de 11 pays indique que cette tendance concorde avec l’augmentation des températures et rappelle que les montagnes subissent un réchauffement particulièrement rapide. L’étude écarte en revanche le rôle d’autres facteurs comme les retombées azotées des polluants, les changements de précipitations ou la fréquentation humaine, très différents d’une région à l’autre.

Ces écosystèmes montagnards pourraient en outre être « fortement perturbés à l’avenir » ; en effet, si dans un premier temps la biodiversité croît, sans extinction observée dans l’immédiat, cela pourrait ne pas durer. Les chercheurs mettent en garde contre la disparition de certaines plantes des sommets, incapables de rivaliser avec les espèces généralistes plus compétitives venues des niveaux inférieurs. Les plantes des sommets pourront éventuellement supporter des variations de températures, mais pas forcément la compétition, avec le risque de voir des espèces généralistes supplanter des espèces emblématiques, et souvent endémiques, qu’on ne trouve qu’à ces altitudes.

La Plateforme intergouvernementale sur la biodiversité (IPBES) vient de produire un nouveau bilan alarmant de l’état de la biodiversité dans le monde. En Europe, 42% des espèces d’animaux et de plantes terrestres ont vu leur population décliner ces dix dernières années.

——————————————-

According to a study published in the journal Nature, the « great acceleration » now affects the mountain peaks. Under the effect of global warming, the peaks of European mountains welcome new plants. With a certain logic because of the rise in temperatures, plants are climbing faster from lower levels, with peaks five times more « colonized » with new species in the last ten years than in the decade 1957-1966 . The study analyzed 302 sites in the Alps, Pyrenees, Carpathians, Svalbard (Norway), Scotland or Scandinavia.
The CNRS stresses that the great biological, meteorological or chemical acceleration observed since the 1950s by the scientific community as a result of human activities, is « now perceptible in the most remote sites of the planet such as the mountain peaks. »
According to this study, based on 145 years of botanical surveys, the number of species was enriched on 87% of the sites. During the period 1957-66, a summit hosted an average of 1.1 new species; in 2007-2016, it hosted 5.4. This migration even concerns plants that are known to move slowly.
The team of 53 researchers from 11 countries indicates that this trend is consistent with the increase in temperatures and recalls that mountains undergo a particularly rapid warming. On the other hand, the study rules out the role of other factors such as nitrogen fallout from pollutants, changes in precipitation or human use, which are very different from one region to another.
These mountain ecosystems could also be « strongly disturbed in the future »; indeed, if initially biodiversity grows, without any extinction observed in the immediate future, it could not last. The researchers warn against the disappearance of certain summit plants, unable to compete with more competitive generalists from lower levels. Summit plants may be able to withstand variations in temperature, but not necessarily competition, with the risk of seeing generalist species supplanting emblematic, and often endemic, species found only at these altitudes.
The Intergovernmental Platform on Biodiversity (IPBES) has just produced a new alarming assessment of the state of biodiversity in the world. In Europe, 42% of terrestrial animal and plant species have declined in population over the past decade.

Photos: C. Grandpey

Le rôle des petits glaciers dans les écosystèmes // The part played by small glaciers in the ecosystems

Selon une étude de l’Université de Fairbanks, les petits glaciers qui s’accrochent aux hautes pentes des montagnes en Alaska et ailleurs dans le monde semblent jouer un rôle important au niveau des aquifères et des systèmes fluviaux loin de la mer.
L’étude porte sur les glacier Jarvis et Gulkana, dans l’est de l’Alaska, et les torrents qui s’en échappent. Le glacier Jarvis donne naissance au ruisseau du même nom qui s’écoule ensuite dans la Tanana River, qui alimente à son tour le fleuve Yukon.

Comparé aux grands glaciers côtiers spectaculaires qui attirent les navires de croisière, le glacier Jarvis est minuscule et, comme les autres glaciers, il fond et recule. La couverture glaciaire dans le bassin versant de la Tanana River a diminué de 12% entre 1950 et 2010. Le glacier Jarvis a reculé d’environ 1,7 km entre 1949 et 2015, et ces dernières années il s’est considérablement aminci. Le glacier Gulkana Glacier a lui aussi perdu de son épaisseur.
L’accélération de la fonte des deux glaciers représente 15% à 28% du débit annuel du torrent Jarvis. Cependant, seulement environ la moitié de cette eau atteint le confluent de ce torrent avec un autre cours d’eau. L’autre moitié s’infiltre dans le sol et alimente la nappe phréatique avant de rejoindre les rivières plus en aval comme la Tanana River et, finalement, le fleuve Yukon.
Dans sa conclusion, l’étude fait remarquer que les glaciers de montagne dans les hautes latitudes représentent une source souvent oubliée de contribution aux rivières subarctiques et à la recharge des nappes phréatiques. La découverte que la fonte de glacier contribue à recharger les nappes phréatiques de la région a des implications pour d’autres régions du globe où l’on rencontre des montagnes arides avec des glaciers de haute altitude.
En raison du réchauffement climatique, la quantité d’eau produite par le glacier Jarvis est temporaire. Au bout du compte, le glacier et ses eaux de fonte vont disparaître, tout comme les autres glaciers de montagne dont certains sont si petits qu’ils n’ont même pas de noms. De tels petits glaciers ont été sous-estimés quant à leur rôle dans l’écosystème. Ainsi, en Alaska, leur impact sur le saumon est intéressant. Les eaux de source, lorsqu’elles sortent dans les lits des rivières, s’écoulent librement, même en hiver, alors que la surface des rivières gèle rapidement. Ces eaux souterraines donnent naissance à des zones plus chaudes dans les rivières, et les saumons les fréquentent au moment de la fraie. L’écosystème connaîtra donc de grands changements lorsque les glaciers ne pourront plus alimenter les nappes phréatiques.
Les auteurs de l’étude indiquent que cette nouvelle situation pourrait malgré tout avoir des effets bénéfiques pour les personnes. La réduction de l’eau souterraine d’origine glaciaire pourrait permettre aux cours d’eau de geler plus rapidement et donc de faciliter les déplacements.
Source: Alaska Dispatch News.

—————————————-

According to a University of Alaska Fairbanks-led study, the small and sometimes patchy glaciers that cling to high mountain slopes in Alaska and elsewhere in the world appear to be big players in groundwater and river systems far from the sea.

The study focused on Jarvis Glacier in the eastern Alaska Range, the nearby Gulkana Glacier and the points downstream from them. Jarvis Glacier feeds into Jarvis Creek which then flows into the Tanana River, which feeds the Yukon River.

Compared to the big coastal glaciers that draw cruise ship sightseers, Jarvis Glacier is tiny. And like other glaciers, it is shrinking. Glacial coverage in the Tanana River watershed decreased by 12 percent from 1950 to 2010. Jarvis Glacier receded about 1.7 km from 1949 to 2015, and in recent years has thinned dramatically. Gulkana Glacier is also thinning.

The glaciers’ accelerated melt accounts for 15 percent to 28 percent the annual flow in Jarvis Creek. However, only about half of the streamflow comes out of the mouth end of the creek. About half filters down into an aquifer, flowing through the soil and then into lowland rivers like the Tanana and, ultimately, the Yukon.

The study concludes by saying that high-latitude mountain glaciers represent an overlooked source to subarctic river discharge and aquifer recharge. The discovery that glacial melt is recharging the area’s aquifer has implications for other arid mountain regions with high-altitude glaciers.

Due to global warming and glacier melting, the big flow of water from Jarvis Glacier is temporary. Ultimately, Jarvis Glacier and the meltwater it produces will disappear, as will similar mountain glaciers, some of them so small that they don’t even have names. Such small mountain glaciers have been under-appreciated, and so has their role in the ecosystem. In Alaska, their impact on salmon is interesting. Groundwater, when it springs up into the beds of the rivers, is free-flowing, even in winter, when the rivers’ surfaces are frozen fast. The groundwater seeps are warm spots in the rivers, and salmon use them to spawn. So there will be big changes in the ecosystem when glaciers are no longer able to contribute to the aquifers.

On the other hand, the author of the study indicated there might be some beneficial effects to people. Reductions in glacial-fed groundwater might leave the rivers more solidly frozen and safer for travel.

Source : Alaska Dispatch News.

Exemples de petits glaciers en Alaska (Photo: C. Grandpey)