L’effondrement des Alpes (suite) // The collapse of the Alps (continued)

Comme je l’ai expliqué à plusieurs reprises, le dégel du pergélisol dans les Alpes provoque des chutes de pierres et des glissements de terrain qui peuvent devenir une menace pour les localités situées en aval. Un exemple récent a été donné par Brienz, un petit village (moins de 100 habitants) des Alpes suisses, dans le canton oriental des Grisons, dont la population a été évacuée car la montagne menace de s’effondrer. On craint que les fortes pluies de ces derniers jours déstabilisent deux millions de mètres cubes de roche qui pourraient dévaler la pente et atteindre les maisons. Les villageois ont eu seulement 48 heures pour emballer leurs affaires et abandonner leurs domiciles. Ils doivent maintenant attendre, dans des logements temporaires, que la montagne s’effondre, en espérant qu’elle épargnera leurs maisons. Même les vaches ont été évacuées après que les géologues ont averti que le glissement de terrain était imminent.
La situation à Brienz a soulevé des questions sur la sécurité de certaines localités de montagne, car le réchauffement climatique modifie l’environnement alpin. Le village, jugé à risque géologique depuis un certain temps, est construit sur un terrain qui s’affaisse en direction de la vallée, ce qui a provoqué l’inclinaison de la flèche de l’église et l’apparition de profondes fissures dans les bâtiments.
Source : BBC News.

————————————-

As I explained several times before, the thawing of permafrost in the Alpes is causing rockfalls and landslides which can become a threat to communities downslope. A recent example was given by Brienz, a small village (fewer than 100 residents) of the Swiss Alps, in the eastern canton of Graubünden, whose population has been evacuated as the mountain is threatening to collapse. Days of heavy rain could bring two million cubic metres of loosened rock crashing down the mountainside onto the houses. The villagers were given just 48 hours to pack what they could and abandon their homes. They now must wait, in temporary accommodation, for the rock to fall, and hope it misses their homes. Even the dairy cows were loaded up for departure after geologists warned a rockfall was imminent.

The situation in Brienz has raised questions about the safety of some mountain communities, as global warming changes the alpine environment. The village has been judged a geological risk for some time and is built on land that is subsiding down towards the valley, causing the church spire to lean and large cracks to appear in buildings.

Source : BBC News.

Source: BBC News.

Clonage d’animaux préhistoriques ? // Cloning prehistoric animals ?

Le dégel du permafrost sibérien a permis d’extraire, au cours de l’été 2022, le corps momifié d’un bison qui a vécu dans la région il y a quelque 9 000 ans. Aujourd’hui, des scientifiques russes espèrent cloner l’animal à partir d’échantillons de tissus.
Une fois récupéré, le bison momifié a été confié au Mammoth Museum de l’Université Ammosov. Bien que la carcasse de l’animal soit incomplète, ses membres antérieurs, sa tête et une partie de sa poitrine sont bien conservés. Les scientifiques ont pu retirer le cerveau et prélever des échantillons de peau, de laine, des muscles et des tissus mous. Cela incite les chercheurs à croire qu’ils seront peut-être capables de cloner le bison à partir des cellules recueillies.
Les scientifiques pensent que le bison avait entre 1,5 et 2 ans lorsqu’il est mort. Ils estiment qu’il vivait il y a entre 8 000 et 9 000 ans en se référant à l’âge géologique d’une espèce similaire découverte dans la région en 2009 et 2010. Les bisons ont été extraits du permafrost dans le nord-est de la Russie. Les chercheurs veulent y retourner pendant l’été 2023 en espérant trouver d’autres restes fossilisés.
Certains scientifiques pensent qu’il ne sera pas possible de cloner des animaux disparus à partir de tissus comme ceux du bison. Même si les tissus sont « exceptionnellement bien conservés », l’ADN qu’ils contiennent est probablement trop dégradé pour être cloné. Un chercheur a suggéré de séquencer le génome du bison et de le combiner avec l’ADN de l’espèce disparue et du bison d’aujourd’hui.
Ce ne sera pas la première fois que des scientifiques tentent d’inverser l’extinction d’une espèce. Les scientifiques du laboratoire TIGRR et de la société texane Colossal tentent de redonner vie au tigre de Tasmanie. Les scientifiques ont également réussi à cloner des loups arctiques en Chine. Le 28 mars 2023, la société australienne Vow qui commercialise de la nourriture a annoncé qu’elle était capable de produire des boulettes de viande de mammouth laineux élaborées en laboratoire alors qu’elle travaillait sur une « alternative plus écologique à la production de viande traditionnelle ». Toutefois, pour l’instant, les boulettes de viande de mammouth laineux ne sont pas considérées comme étant suffisamment sûres d’un point de vue sanitaire.
Source : Mammoth Museum of the Ammosov University

———————————————

An ancient bison was frozen inside Siberian permafrost for up to 9,000 years until the melting ice released its mummified body in summer 2022. Now scientists in Russia hope to clone the ancient beast from its tissue samples.

After scientists retrieved the mummified bison, they donated it to the Mammoth Museum of the. Ammosov North-Eastern Federal University for research. Though the carcass is incomplete, its forelimbs, head and part of its chest were well-preserved, meaning scientists were able to perform a necropsy to remove the brain and take samples of its skin, wool, muscles and soft tissues. That led researchers to believe they may be able to clone the bison from the preserved cells.

Scientists believe the bison was between 1.5 to 2 years old when it died. They estimated it lived between 8,000 and 9,000 years ago based on the geological ages of a similar species of bison discovered in the area in 2009 and 2010. The bison were found in northeastern Russia, and researchers want to return there in the summer 2023 to search for more fossilized remains.

Some escientists think it will not be possible to clone extinct animals from tissues like those of the bison. Even though the tissues are « exceptionally well-preserved », the DNA within them is likely too degraded to be cloned. One researcher has suggested sequencing the bison’s genome and combining it with DNA from the extinct species and from living bison.

It wouldn’t be the first time scientists have tried to reverse a species’ extinction. Scientists at the TIGRR Lab and Texas-based company Colossal are trying to bring the Tasmanian tiger back to life. Scientists have also successfully cloned arctic wolves in China. And on March 28th, 2023, Australian food company Vow announced it produced lab-grown woolly mammoth meatballs as it works toward a “more environmentally friendly alternative to traditional meat production.” But for now, the woolly mammoth meatballs are not considered safe for us modern humans to eat.

Source : Mammoth Museum of the M.K. Ammosov North-Eastern Federal University.

Crédit photo: Mammoth Museum of North-Eastern Federal University

Le dégel du permafrost de roche dans les Alpes (2ème partie) // The thawing of rock permafrost in the Alps (part 2)

Pour étudier le comportement du permafrost de roche, des capteurs de température ont d’abord été placés à l’Aiguille du Midi en 2005. A l’époque, les scientifiques passaient leurs journées à effectuer trois forages de 10 m de profondeur dans la paroi granitique. Aujourd’hui, les données de ces nombreux capteurs montrent de quelle manière le permafrost profond est affecté par la hausse des températures. Les mesures révèlent que les changements les plus destructeurs dans le permafrost se produisent généralement à six mètres ou plus sous la surface de la roche, là où les vagues de chaleur estivales font monter la température entre -2°C et 0°C.
Le dégel du permafrost peut entraîner le détachement d’un grand volume de roche de plusieurs façons. Le plus souvent, c’est l’eau accumulée dans une fissure existante qui crée une pression hydrostatique suffisamment forte pour élargir ou briser la fissure. Dans d’autres endroits, le permafrost peut être le seul élément qui maintient deux couches de roche collées l’une contre l’autre.
Les scientifiques tentent maintenant de mieux comprendre les processus physiques qui gèrent les effondrements de parois rocheuses. Par exemple, ils essayent de savoir quelle quantité d’eau pénètre dans la roche et d’où elle vient. Pour voir quelle quantité d’eau provient de la fonte de la neige, les scientifiques teignent les différentes accumulations de neige avec des couleurs fluorescentes. Ensuite, ils utilisent différentes méthodes pour connaître le temps mis par l’eau pour traverser la roche. Si elle est très ancienne, cela peut indiquer que c’est un vieux permafrost qui est en train de dégeler.
Dans les Alpes suisses, des chercheurs collectent des données sur le permafrost à partir d’un autre laboratoire de terrain : le Cervin et ses 4 478 m d’altitude. Alertés par les chutes de pierres survenues après la canicule de 2003, les scientifiques suisses ont commencé à mettre en place un réseau de capteurs sans fil en 2006. La tâche était plus difficile que sur l’Aiguille du Midi car il n’y a pas de téléphérique pour atteindre le sommet du Cervin. Au cours des 10 années suivantes, ils ont malgré tout réussi à mettre en place un réseau de 17 types de capteurs différents qui ont permis de collecter plus de 154 millions de points de données. Installé autour des emplacements de chutes de pierres les plus fréquents, le réseau comprend des capteurs de température, des caméras, des « fissuromètres » qui mesurent l’élargissement des fissures, des inclinomètres, des capteurs GPS et des capteurs sismiques qui permettent de mesurer la formation et la fonte de la glace dans les fractures profondes à l’intérieur de la roche.
Ces mesures sur le terrain et le travail en laboratoire permettent d’élaborer des modèles informatiques pour essayer de prévoir le comportement du permafrost de roche avec la hausse des températures. Les chercheurs espèrent que cela leur permettra d’identifier les endroits les plus dangereux dans d’autres chaînes de montagnes, à des altitudes similaires.
Toutefois, ce travail prendra probablement une vingtaine d’années et il faudra beaucoup plus de données avant que de tels modèles puissent être assez fiables pour prévoir d’importantes chutes de pierres. Ces données contribueront à rendre l’escalade plus sûre sur le Cervin. Le 22 juillet 2019, deux alpinistes – un guide de haute montagne et son client – sont décédés après être tombés d’une paroi. Au moment du drame, les deux hommes se déplaçaient, encordés, à une altitude d’environ 4300 mètres.
Certaines découvertes contribuent déjà à assurer la sécurité des alpinistes. Par exemple, on sait que les chutes de pierres les plus fréquentes dans les faces nord des Alpes se produisent à une altitude plus basse et avec une fréquence plus élevée que sur les faces sud. Grâce au réseau de capteurs, les scientifiques ont identifié le moment le moins dangereux de la journée pour traverser le couloir du Goûter en été – de 9h à 10h – même si les randonneurs doivent vérifier les conditions avant d’entreprendre l’ascension du Mont Blanc.

Selon les scientifiques, le problème du permafrost dans les Alpes est beaucoup plus large et ne se limite pas aux simples parois rocheuses. Dans les Alpes françaises, il existe 947 infrastructure telles que des refuges de montagne ou des téléphériques dans les stations de ski qui sont sous la menace du dégel du permafrost. En conséquence, assurer la sécurité des Alpes et des nombreuses personnes qui les visitent sera un défi de plus en plus grand dans les prochaines années.
Source : La BBC.

————————————————–

In order to study the behaviour of rock permafrost, temperature sensors were first placed at Aiguille du Midi in 2005. Back then, the scientists spent days drilling three 10m-deep boreholes in the granite wall. Now, data from numerous types of sensors is providing a clearer view of how this deep permafrost is affected by rising temperatures. The readings reveal that the most destructive changes to the permafrost are usually happening six or more meters beneath the rock surface as summer heatwaves cause the temperature there to rise to between -2°C and 0°C.

There are a few ways in which the thawing of ice can cause the detachment of a large volume of rock. Most commonly, water accumulated in an existing fracture can build hydrostatic pressure strong enough to widen or break the crack. In other places, the permafrost may be the only thing keeping two rock layers glued together.

Scientists are now trying to learn more about the physical processes involved in rockface collapses. For instance, they want to know how much water is going into rock and where it is coming from. To see what amount of the water is coming from the snow melt, scientists are dyeing the different snow packs with fluorescent colours. Next, cientists apply different methods to find out how much time the water they are collecting has spent in the rock. If it is very old, then it might indicate that ancient permafrost is now melting.

In the Swiss Alps, reserachers collect data from another remarkable permafrost field laboratory : the 4,478m-high Matterhorn. Motivated by rockfalls that occurred after the 2003 heatwave, Swiss scientists started setting up a wireless sensor network in 2006. The task was more difficult than on the French Aiguille du Midi because there is no cable car that leads to the top of Matterhorn. Over the following 10 years, however, they managed to build a network comprised of 17 different sensor types, which have allowed to gather more than 154 million data points. Built around the worst of the rockfall locations, the network includes temperature sensors, cameras, « crackmeters » that measure the widening of the fractures, inclinometers, GPS sensors and seismic sensors that help them measure the formation and melting of ice in fractures deep within the rock.

All these field measurements and laboratory experiments are contributing to computer models to help predict the behaviour of the mountain permafrost in rising temperatures. Researchers hope it will allow them to identify the most dangerous locations in any mountain range at similar altitudes.

But it could take another 20 years, and a lot more data, until such models could be good enough to forecast large rockfalls. This data would help make rock climbing safer on the Matterhorn. On July 22nd, 2019, two climbers – a mountain guide and his client – died after falling from a rock. At the time of the tragedy, the two men were moving, roped, at an altitude of about 4300 meters.

Meanwhile, some of the findings are already directly helping to keep mountaineers safe. For example, it’s known that the most frequent rockfalls in the north faces in the Alps occur at a lower elevation and with higher frequency than on the south faces. Thanks to the sensor network, scientists have identified the least dangerous time of the day for crossing the Goûter couloir in summer – from 9am to 10am – although climbers are still encouraged to check conditions before setting off.

Scientists warn that the problem about permafrost is much wider. In the French Alps, there are 947 elements of infrastructure located in the permafrost regions, from mountain huts to ski resort cable cars. Some of them were already affected by thawing. As a consequence, ensuring safety of the Alps and the many people who visit them will only be a growing challenge.

Source : The BBC.

En Suisse, le Cervin est une zone à risques pour les alpinistes (Photo: C. Grandpey)

Le dégel du permafrost de roche dans les Alpes (1ère partie) // The thawing of rock permafrost in the Alps (part 1)

On peut lire sur le site Web de la BBC un article très intéressant et bien documenté sur le dégel du permafrost et ses conséquences dans les Alpes.
En général associé aux régions polaires, le permafrost – ou pergélisol – fait référence au sol et aux matériaux rocheux qui restent gelés en permanence pendant au moins deux ans. Normalement, il se trouve sous une couche active qui alterne fonte et gel selon la saison. Le permafrost recouvre la majeure partie du sol de l’Arctique, mais on le trouve aussi à haute altitude sur nos montagnes. Il constitue la « colle »qui assure la cohésion et la stabilité des parois rocheuses des Alpes.
Dans les Alpes, le permafrost dégèle de plus en plus chaque année. On a tendance à le trouver au-dessus de 2 500 m. A cette altitude, la glace s’enfonce profondément dans les fissures de la roche solide et permet de la maintenir en place. Sans elle, les flancs des montagnes pourraient devenir instables.
Le dégel du permafrost de roche se produit à deux échelles de temps différentes. D’une part, des dégels de courte durée surviennent chaque été, mais les vagues de chaleur de plus en plus fréquentes font des ravages dans les Alpes françaises depuis 2015. Avec les étés plus chauds, la couche active, celle qui fond toujours en été, devient de plus en plus profonde chaque année. Cela signifie qu’une partie de la couche dégèle pour la première fois, ce qui peut provoquer une déstabilisation de la roche dans son ensemble.
L’autre échelle de temps est visible grâce aux données sur le long terme collectées à partir du réseau de capteurs intégrés dans la paroi rocheuse. On constate que tous les 10 ans la température moyenne au plus profond de la roche augmente de 1°C, en raison de l’approfondissement progressif du dégel estival. Ce réchauffement régulier et lent peut provoquer des chutes de pierres.
Les vieux alpinistes de Chamonix se souviennent de l’histoire de deux Allemands qui, en 1997, escaladaient la face ouest de l’Aiguille du Dru. En fin de journée, ils ont installé leur bivouac pour passer la nuit sur la corniche dans la partie haute de la paroi granitique. Jusqu’alors, leur ascension s’était déroulée comme prévu. Puis, pendant des heures, ils ont entendu des bruits inquiétants qui provenaient des profondeurs de la montagne. Ils ont appelé les secours en montagne. Peu de temps après leur évacuation par hélicoptère, un énorme éboulement d’environ 27 000 mètres cubes de roche a emporté la face ouest de Dru. Une autre importante chute de pierres en 2011 a été révélé que le coupable probable était la glace encore visible dans les fractures à l’intérieur de la roche. Cela n’a fait que confirmer que la principale cause des chutes de pierres était la dégradation de l’ancien permafrost qui remplit les fissures profondes à l’intérieur des parois.
La canicule de 2003 en Europe a provoqué de nombreuses chutes de pierres. Les scientifiques ont alors décidé de mettre en place un réseau de surveillance dans le massif du Mont Blanc, avec des observateurs humains et des caméras, ce qui a permis de collecter des données sur plus de 1 500 chutes de pierres majeures. Au cours des dernières années, le nombre d’événements importants a rapidement augmenté dans de nombreuses régions des Alpes. On craint que, dans les décennies à venir, des chutes de pierres encore plus importantes modifient radicalement les paysages dans la région.
En raison du dégel du permafrost de roche et des chutes de pierres qui en résultent, le danger se fait plus grand pour les randonneurs et les alpinistes. J’ai expliqué sur ce blog comment, en 2017, un effondrement sur le Pizzo Cengalo, à la frontière entre l’Italie et la Suisse, a déclenché une avalanche de roches et de terre qui a parcouru la vallée et tué huit personnes. D’autres événements continuent de causer des dégâts à la montagne. L’itinéraire qui a été le plus sérieusement affecté est la voie la plus facile vers le sommet du Mont Blanc, avec le fameux « couloir de la mort », un passage particulièrement dangereux. Ce tronçon a été le théâtre de plus d’une centaine d’accidents mortels depuis le début des années 1990. Au cours des derniers étés, les chutes de pierres ont été presque constantes. En juillet 2022, elles ont contraint les guides de haute montagne de Chamonix à cesser de conduire des clients sur cet itinéraire. Des études scientifiques ont montré que la température du sol dans la partie supérieure du couloir augmente de 2°C par décennie.

Source : La BBC.

——————————————–

One can read on the BBC website a very interesting and well documented article about permafrost thawing and its consequences in the Alps.

Most commonly associated with the polar regions, permafrost trfers to soil and rocky material that stays frozen continuously for at least two years. Normally it lies beneath an active layer that melts and freezes depending on the season. Permafrost covers most of the soil in the Arctic. Less well known is that it can also be found on steep mountain walls. It is the frozen « glue » that helps hold the rock faces of the Alps together.

In the European Alps, more and more of it is thawing each year and it is threatening the very mountains it is found in. Permafrost in the Alps tends to be found above 2,500m where it runs deep into cracks in the solid rock, helping to glue them together. Without it, the mountainsides can become unstable.

The thawing of rock permafrost is happening on two different timescales. On the one hand, short-term thaws occur each summer, but heatwaves, which have been more frequent in this part of the French Alps since 2015, are taking their toll. With the warmer summers, the active layer, the one that is always thawing in the summer, is becoming deeper every year. This means that part of the layer now thaws for the first time ever, which can provoke destabilisation in the rock.

The other timescale can be seen through the long-term data collected from the sensor network embedded in the rockface. It shows that every 10 years the average temperature deep inside the rock has increased by 1°C, due to the gradual deepening of the summer thaw. This steady and slow warming can also provoke rockfalls.

Older climbers from Chamonix still remember an anecdote about two Germans who in 1997 were  climbing on the west face of Aiguille du Dru. At the end of the day, they settled to spend the night on the ledge in the upper part of the granite wall. Up to this point their ascent had gone according to plan. Then, for hours they listened to frightening sounds coming from the depths of the mountain. They got woried and called the mountain rescue service in the morning. Shortly after the helicopter lifted climbers from the wall, a massive rockfall of about 27,000 cubic metres in volume, swept down the Dru west face. Another massive rockfall in 2011 revealed that the probable culprit was the remains of ice that could be seen beneath the fracture. It only confirmed that the main cause of unusually large rockfalls was the degradation of ancient permafrost that fills the cracks deep inside the walls.

The European heat wave in 2003 triggered numerous rockfalls. Scientists then decided to set up a monitoring network in the Mont Blanc massif using human observers and cameras, which has enabled them to collect data from more than 1,500 larger rockfalls. In the last few years, the number of more significant events has been rapidly increasing in many parts of the Alps. There are fears that, in the coming decades, even larger rockfalls will drastically change the landscape of the mountains in the region.

As a consequence of the thawing rock permafrost and the ensuing rockfalls, the danger for hikers and mountaineers is growing too. I explained on this blog how, in 2017, large rockfalls from Pizo Cengalo, on the border of Italy and Switzerland, triggered an avalanche of rock and dirt that travelled down the valley, killing eight people. More events continue to cause damage to the mountain. The route that was most seriously affected was the easiest path to the top of Mont Blanc, with the famous, but extremely dangerous « death couloir ». This section of the so-called Goûter route up the mountain has been the scene of more than a hundred fatal incidents since the start of the 1990s. During the last few summers, flying rocks have been an almost constant occurrence. In July 2022, they forced mountain guides from Chamonix to stop taking clients on this route. Scientific research has shown that the ground temperature in the upper part of the couloir is increasing at a rate of 2°C per decade.

Source : The BBC

 

Aiguille du Midi. La roche restera-t-elle assez solide pour suporter les pylônes du formidable téléphérique qui permet d’accéder au sommet? (Photo: C. Grandpey)