Le mercure du permafrost, une autre menace pour notre environnement // The mercury in permafrost, another threat to our environment

On savait déjà que la fonte du permafrost dans l’Arctique libère d’importantes quantités de gaz à effet de serre. Aujourd’hui, les scientifiques révèlent qu’il recèle aussi des quantités considérables de mercure, une neurotoxine agressive qui représente une menace sérieuse pour la santé humaine.
Selon une étude menée par des scientifiques du National Snow and Ice Data Center à Boulder (Colorado) et publiée dans la revue Geophysical Research Letters, il y aurait l’équivalent de cinquante piscines olympiques de mercure piégées dans le permafrost. C’est deux fois plus que ce que contient l’ensemble des sols, l’atmosphère et les océans ailleurs dans le monde. Selon l’étude, lorsque le pergélisol (autre nom du permafrost) dégèlera dans les prochaines années, une partie de ce mercure sera libérée dans l’environnement, avec un impact non encore estimé – mais considérable – sur les gens et sur nos ressources alimentaires. Les scientifiques ont effectué leurs recherches en prélevant des carottes de pergélisol à travers l’Alaska. Ils ont mesuré les niveaux de mercure et ensuite extrapolé pour calculer la quantité de mercure dans le permafrost ailleurs dans le monde, en particulier au Canada, en Russie et dans d’autres pays nordiques.
Le mercure, un élément naturel, se lie à la matière vivante à travers la planète, mais l’Arctique est particulier. Normalement, lorsque les plantes meurent et se décomposent, le mercure est libéré dans l’atmosphère. La différence dans l’Arctique, c’est que les plantes ne se décomposent pas complètement. Au lieu de cela, leurs racines sont gelées et ensuite enterrées sous plusieurs couches de sol. Cela retient le mercure qui se trouvera libéré si le permafrost vient à fondre.
La quantité de mercure libérée dépend du dégel du permafrost qui, à son tour, dépend du volume des émissions de gaz à effet de serre et du réchauffement de la planète. Le dégel du permafrost a commencé dans certaines régions et les scientifiques prévoient qu’il se poursuivra au cours du 21ème siècle. L’étude indique que si les niveaux d’émissions de gaz à effet de serre actuels se poursuivent jusqu’en 2100, le permafrost se sera réduit de 30 à 99%.
La question est de savoir où ira le mercure dans un tel contexte, et quels seront ses effets sur la Nature et sur l’Homme. Il pourrait contaminer les rivières qui se jettent dans l’océan Arctique. Il pourrait aussi se propager dans l’atmosphère, ou dans ces deux univers. Le problème est que le mercure, bien que naturel, représente un danger pour les humains et la faune, en particulier sous certaines formes. Nous rejetons déjà du mercure en faisant brûler du charbon. Il se répand alors dans l’atmosphère où il parcourt de longues distances. Quand il pleut sur l’océan ou sur les lacs, le mercure pénètre dans la chaîne alimentaire. Il s’accumule d’abord à l’intérieur des micro-organismes, puis en concentrations de plus en plus élevées dans l’organisme des prédateurs, tels les poissons, qui se nourrissent de ces petits organismes. Lorsque les humains consomment du poisson contenant du mercure en quantités trop importantes, cela peut être dangereux, surtout pour les femmes enceintes.
Dans l’Arctique, le mercure peut également s’accumuler dans les organismes de grands mammifères comme les ours polaires ou les narvals, phénomène qui a fait l’objet de plusieurs études. Si les concentrations de mercure dans l’Arctique continuaient à augmenter, ce serait une nouvelle preuve de l’impact du changement climatique sur les communautés autochtones qui y vivent.
Les résultats de l’étude sont inquiétants car elle nous apprend que le permafrost n’est pas seulement une colossale zone de stockage de carbone susceptible de modifier le climat de la planète ; c’est aussi une importante zone de stockage de mercure qui risque d’être rejeté dans notre environnement avec le dégel du pergélisol. Cela est particulièrement préoccupant au vu de la prédominance des écosystèmes de zones humides dans l’Arctique.
Source: The Washington Post.

————————————

We already knew that thawing Arctic permafrost would release powerful greenhouse gases. Now, scientists reveal it could also release massive amounts of mercury which is a potent neurotoxin and serious threat to human health.

According to a study led by scientists with the National Snow and Ice Data Center in Boulder, Colorado and published in the journal Geophysical Research Letters, there is the equivalent of 50 Olympic swimming pools of mercury trapped in the permafrost. This is twice as much as the rest of all soils, the atmosphere, and ocean combined. According to the study, when permafrost thaws in the future, some portion of this mercury will get released into the environment, with unknown impact to people and our food supplies. The scientists performed the research by taking cores from permafrost across Alaska. They measured mercury levels and then extrapolated to calculate how much mercury there is in permafrost across the globe, where it covers large portions of Canada, Russia and other northern countries.

Mercury, a naturally occurring element, binds with living matter across the planet, but the Arctic is special. Normally, as plants die and decay, they decompose and mercury is released back to the atmosphere. But in the Arctic, plants often do not fully decompose. Instead, their roots are frozen and then become buried by layers of soil. This suspends mercury within the plants, where it can be remobilized again if permafrost thaws.

How much mercury would be released depends on how much the permafrost thaws, which in turn depends on the volume of greenhouse-gas emissions and subsequent warming of the planet. However, permafrost thaw has begun in some places and scientists project that it will continue over the course of the century. The study says that with current emissions levels through 2100, permafrost could shrink by between 30 and 99 percent.

The question is to know where this mercury will go, and what it will do. It could spread through rivers that into the Arctic Ocean. Or it could enter the atmosphere. Or both. The problem is that mercury, although naturally occurring, is damaging to humans and wildlife, especially in certain forms. We are already causing mercury to enter the atmosphere by burning coal, which lofts the element into the atmosphere where it travels long distances. When it rains out into the ocean or lakes, mercury enters the food chain, first accumulating in the bodies of microorganisms and then growing increasingly concentrated in predators – like fish – that feed off smaller organisms. When humans consume mercury-laden fish in quantities too large, it can be dangerous, especially for pregnant women.

In the Arctic, mercury can also accumulate in the bodies of major mammal predators, such as polar bears or narwhal, a phenomenon that has been documented. If the Arctic mercury burden further increases, it could be another way that climate change affects the native communities living there.

The results of the study are concerning because what we are learning is that not only is permafrost a massive storage for carbon that will feedback on global climate, but permafrost also stores a globally significant pool of mercury, which is at risk of being released into the environment when permafrost thaws. This is especially concerning, given the predominance of wetland ecosystems in the Arctic.

Source: The Washington Post.

Carte montrant l’étendue du permafrost dans l’Arctique (Source: National Snow and Ice Data Center)

Publicités

L’avenir du permafrost en Alaska // The future of Alaska’s permafrost

Comme je l’ai écrit à plusieurs reprises sur ce blog, le permafrost (ou pergélisol) fond à une vitesse incroyable dans l’Arctique, avec des conséquences importantes pour l’environnement. Un article récemment publié dans le New York Times apporte plus de détails sur le phénomène.
L’Arctique se réchauffe environ deux fois plus vite que d’autres parties de la planète, et la hausse des températures est fortement ressentie en Alaska. La glace de mer et certains biotopes disparaissent; la hausse du niveau de la mer menace les villages côtiers. Pour les scientifiques du Woods Hole Research Center qui sont allés en Alaska étudier les effets du changement climatique, le problème le plus sérieux réside dans la fonte du permafrost.
Logé entre quelques dizaines de centimètres et quelques mètres sous la surface, le permafrost contient de grandes quantités de carbone dans la matière organique ; ce sont des plantes qui ont absorbé du dioxyde de carbone de l’atmosphère il y a des siècles, sont mortes et ont gelé avant de pouvoir se décomposer. Sur la planète, on pense que le permafrost contient aujourd’hui deux fois plus de carbone que l’atmosphère. Une fois que cette matière organique décongèle, les microbes en transforment une partie en dioxyde de carbone et en méthane qui peuvent passer dans l’atmosphère et accélérer son réchauffement.
En juillet 2017, les scientifiques du Woods Hole Research Center ont installé une station temporaire au bord d’un lac à 90 km au nord-ouest de Bethel, une ville située près de la côte ouest de l’Alaska, à environ 640 km d’Anchorage. Ils ont prélevé des carottes de permafrost, ainsi que des échantillons de sédiments et d’eau et enfoncé des sondes thermiques dans le sol gelé. Plus tard, dans le laboratoire de l’institution, ils ont entrepris le processus d’analyse des échantillons pour déterminer la teneur en carbone et en nutriments. L’objectif est de mieux comprendre comment la fonte du permafrost affecte le paysage et, en fin de compte, quelle quantité de gaz à effet de serre est évacuée dans l’atmosphère.
Même dans le nord de l’Alaska où le climat est plus froid et où le permafrost dans la région de North Slope descend à plus de 600 mètres sous la surface, les scientifiques voient des changements importants. La température à deux mètres de profondeur a augmenté de 3 degrés Celsius au cours des dernières décennies. Les changements à la surface ont été encore plus importants. Sur l’un des sites de mesures, la température du permafrost en surface est passée de moins 8 degrés Celsius à moins 3. A ce rythme, cette température deviendra positive vers le milieu du siècle. En plus des émissions de gaz à effet de serre, la fonte du permafrost a une incidence sur les infrastructures et provoque des affaissements de terrain lorsque la glace perd de son volume en fondant. J’ai précédemment donné l’exemple de la rue principale de Bethel, une agglomération où les bâtiments s’enfoncent et se fissurent.
La fonte du permafrost est un processus graduel. Le sol est totalement gelé en hiver et commence à décongeler de haut en bas lorsque la température de l’air augmente au printemps. À mesure que les températures moyennes augmentent, cette couche décongelée ou active en subit les effets en profondeur. Les chercheurs s’intéressent à la manière dont les feux de forêt affectent le permafrost. Comme les incendies font disparaître en surface une partie de la végétation qui agit comme un isolant, on pense que le feu et la combustion qu’il entraîne peuvent accélérer la fonte du pergélisol.
La fonte du permafrost sous un lac ou en bordure de celui-ci peut provoquer l’évacuation de l’eau, un peu comme une baignoire qui fuit. Cette fonte peut aussi entraîner des variations de niveau du sol, ce qui peut entraîner des changements dans l’écoulement de l’eau ; ainsi, certaines parties de la toundra peuvent s’assécher et d’autres être transformées en tourbières. Au-delà des effets sur la vie végétale et animale, les changements apportés au paysage peuvent avoir un impact important sur le changement climatique en modifiant la quantité de dioxyde de carbone et de méthane qui est émise. Bien que le méthane ne persiste pas dans l’atmosphère aussi longtemps que le dioxyde de carbone, il a une capacité de piégeage thermique beaucoup plus grande et peut contribuer à un réchauffement plus rapide. Si le permafrost en décomposition est humide, il y aura moins d’oxygène disponible pour les microbes, de sorte qu’ils produiront plus de méthane. Si le pergélisol est sec, la décomposition entraînera plus de dioxyde de carbone.
Les estimations varient en ce qui concerne la quantité de carbone émise lors de la fonte du permafrost dans le monde, mais on estime que les émissions d’ici la fin du siècle pourraient atteindre environ 1,5 milliard de tonnes par an, soit environ les émissions annuelles actuelles provenant de combustibles fossiles aux États-Unis.
La hausse des émissions de carbone dans la toundra de l’Alaska est tenue pour responsable de la hausse des températures et de la fonte du permafrost. Dans une étude publiée au début de cette année, les chercheurs ont constaté que la décomposition bactérienne du permafrost décongelé, ainsi que le dioxyde de carbone produit par la végétation vivante, se poursuit plus tard dans l’automne parce que le gel en surface est retardé. Selon les chercheurs, la hausse des émissions de CO2 a été si importante que l’Alaska pourrait passer du stade de simple réserve à celui de véritable source de carbone.
Source: The New York Times.

————————————–

As I put it several times in this blog, permafrost is thawing at an incredible speed in the Arctic, with significant consequences for the environment. An article recently published in The New York Times brings more details about the phenomenon.

The Arctic is warming about twice as fast as other parts of the planet, and even in sub-Arctic Alaska the rate of warming is high. Sea ice and wildlife habitat are disappearing; higher sea levels threaten coastal native villages. To the scientists from Woods Hole Research Center who have gone to Alaska to study the effects of climate change, the most urgent is the fate of permafrost.

Starting just a few tens of centimetres below the surface and extending a few metres down, it contains vast amounts of carbon in organic matter, plants that took carbon dioxide from the atmosphere centuries ago, died and froze before they could decompose. Worldwide, permafrost is thought to contain about twice as much carbon as is currently in the atmosphere. Once this ancient organic material thaws, microbes convert some of it to carbon dioxide and methane, which can flow into the atmosphere and cause more warming.

In July, Woods Hole scientists set up a temporary field station on a lake 90 km northwest of Bethel, a city located near the west coast of Alaska, approximately 640 km from Anchorage. They drilled permafrost cores, took other sediment and water samples and embedded temperature probes in the frozen ground. Later, back in the lab at Woods Hole, they began the process of analyzing the samples for carbon content and nutrients. The goal is to better understand how thawing permafrost affects the landscape and, ultimately, how much and what mix of greenhouse gases is released.

Even in colder northern Alaska, where permafrost in some parts of the North Slope extends more than 600 metres below the surface, scientists are seeing stark changes. Temperatures at a depth of 2 metres have risen by 3 degrees Celsius over decades. Near-surface changes have been even greater. At one northern site, permafrost temperatures at shallow depths have climbed from minus 8 degrees Celsius to minus 3. If emissions and warming continue at the same rate, near-surface temperatures will rise above freezing around the middle of the century. In addition to greenhouse-gas emissions, thawing wreaks havoc on infrastructure, causing slumping of land when ice loses volume as it melts. I previously gave the example of the main road in Bethel where building foundations move and crack.

The thawing of permafrost is a gradual process. Ground is fully frozen in winter, and begins to thaw from the top down as air temperatures rise in spring. As average temperatures increase, this thawed, or active, layer can increase in depth. The researchers are especially interested in how wildfires affect the permafrost. Because burning removes some of the vegetation that acts as insulation, the theory is that burning should cause permafrost to thaw more.

Thawing permafrost underneath or at the edge of a lake can cause it to drain like a leaky bathtub. Thawing elsewhere can bring about small elevation changes that can in turn lead to changes in water flow through the landscape, drying out some parts of the tundra and turning others into bogs. Beyond the local effects on plant and animal life, the landscape changes can have an important climate change impact, by altering the mix of carbon dioxide and methane that is emitted. Although methane does not persist in the atmosphere for as long as carbon dioxide, it has a far greater heat-trapping ability and can contribute to more rapid warming. If the decomposing permafrost is wet, there will be less oxygen available to microbes, so they will produce more methane. If the permafrost is dry, the decomposition will lead to more carbon dioxide.

Estimates vary on how much carbon is released from thawing permafrost worldwide, but by one calculation emissions over the rest of the century could average about 1.5 billion tons a year, or about the same as current annual emissions from fossil-fuel burning in the United States.

Already, thawing permafrost and warmer temperatures are being blamed for rising carbon emissions in the Alaskan tundra. In a study earlier this year, researchers found that bacterial decomposition of thawed permafrost, as well as carbon dioxide produced by living vegetation, continues later into the fall because freezing of the surface is delayed. The rise in emissions has been so significant, the researchers found, that Alaska may be shifting from a sink, or storehouse, of carbon, to a net source.

Source: The New York Times.

Carte montrant (en bleu) l’étendue du permafrost en Alaska en 2010

Projection montrant (en orange) la perte probable de permafrost en 2050

 (Source : Woods Hole Research Center)

La fonte du permafrost (suite) // The thawing of permafrost (continued)

Sur plusieurs routes de l’Alaska, il faut rouler prudemment et être prêt à freiner car le goudron est déformé. Les maisons ont tendance à s’enfoncer dans le sol ; des fissures apparaissent sur les murs et les portes ferment mal. Le long des routes, les poteaux électriques s’inclinent, parfois dangereusement. Il y a de plus en plus de «forêts ivres» car les racines des arbres ne sont plus maintenues en place par le sol gelé. Le pergélisol dans la région de Bethel, le long de la côte sud-ouest de l’Alaska, fond et disparaît encore plus rapidement que dans la plupart des autres région de cet Etat. Les ingénieurs qui conçoivent de nouveaux bâtiments et des routes doivent se battre avec le dégel du pergélisol.
Le permafrost dans la région de Bethel est considéré comme «chaud», avec une température à peine inférieure à zéro ; il est donc sensible au moindre réchauffement de l’air ambiant. Au-dessus du pergélisol dans le sud-ouest de l’Alaska, on trouve une couche active de sol, souvent de la tourbe, qui gèle et dégèle chaque année. Avec le réchauffement de l’air, cette couche active devient plus importante, empiétant sur ce qui était considéré comme un sol gelé en permanence. Il y a trente ans, les ouvriers rencontraient le pergélisol à un ou deux mètres de profondeur. Aujourd’hui, ils le trouvent généralement à 2,50 mètres ou 3,50 mètres. Pour enfoncer des pieux capables de supporter une maison, ils devaient creuser jusqu’à environ 6 mètres de profondeur. Aujourd’hui, ils atteignent des profondeurs de 10 mètres.
La fonte du pergélisol devient un véritable problème pour les maisons. Une maison s’enfonce parfois tellement dans le sol que la pente n’est plus suffisante pour l’écoulement des eaux usées. Les baignoires se vident mal. Dans les toilettes, il faut tirer la chasse à plusieurs reprises dans une ville comme Bethel où beaucoup de gens s’auto rationnent en eau. Les points bas dans les canalisations deviennent des pièges à eau ; cette dernière gèle en hiver et la canalisation éclate. Beaucoup de maisons sont construites sur des poteaux placés sur des assises en bois qui agissent comme des raquettes ; cela empêche la structure de s’enfoncer dans le sable ou les graviers. Afin de réduire l’affaissement des maisons, on a recours à des matériaux de meilleure qualité, ainsi que des éléments qui, théoriquement, sont plus faciles à gérer lorsqu’une partie d’un bâtiment s’enfonce. Mais tout cela à un coût dans une région où les matériaux de construction sont déjà coûteux.
Les ingénieurs et les constructeurs adaptent les techniques à cette nouvelle situation. Le plus grand projet de construction à Bethel est l’extension de l’hôpital, pour un coût de 300 millions de dollars. Sous l’hôpital actuel, le pergélisol reste gelé dans certaines zones, mais il a tendance à fondre à la périphérie. Pour l’extension du bâtiment, les ingénieurs envisagent d’installer des sondes thermiques afin d’extraire la chaleur et maintenir le sol gelé pour assurer sa stabilité. Une autre solution serait de forer à 30 mètres de profondeur pour installer des supports en acier, capables de supporter les trois étages supplémentaires prévus dans la construction. En outre, le projet comprend une isolation de la base des bâtiments et, comme avec la toundra, une isolation à la surface du sol. Comme précaution supplémentaire, un système de refroidissement du sol est prévu sous le bâtiment afin de maintenir le sol gelé si les hivers deviennent trop chauds. Les ouvriers ont installé des capteurs de température dans le sol sur le site du projet et ils savent déjà que le sol se réchauffe.
Le signe le plus évident des effets de la fonte du permafrost à Bethel se trouve sur la route la plus fréquentée de la ville. Des panneaux ont été installés pour alerter les conducteurs. L’un des panneaux près de l’aéroport annonce des dénivelés sur les 6 prochains kilomètres. Les autorités locales prévoient des travaux dont le coût est estimé à près de 9 millions de dollars, mais il faudra d’abord mieux identifier les causes de ces déformations de la chaussée. On pense que la fonte du pergélisol est responsable. Il se pourrait aussi que le problème soit dû à des ponceaux qui piègent l’air sous la chaussée et accélèrent le dégel. En 1989, un projet avait ajouté des siphons à extraction de chaleur, mais il semble avoir été abandonné.

La route a été refaite pour la dernière fois en 2006 et les travaux comprenaient une assise de 15 centimètres de matériau d’asphalte en mousse isolante qui a permis de maintenir la route en état convenable jusqu’à maintenant. Certains habitants se souviennent de l’époque où la route était faite en gravier et ils affirment que c’était mieux ainsi. Il est vrai qu’une route de gravier peut être plus facilement nivelée, mais elle nécessite également une maintenance plus fréquente.

Source: Alaska Dispatch News.

—————————————–

Along many roads of Alaska, drivers need to brake for warped asphalt. Houses sink unevenly into the ground. Walls crack and doors stick. Utility poles tilt, sometimes at alarming angles. There are more and more « drunken forests » as the roots of the trees are no longer held in place by the frozen ground. Permafrost in and around Bethel, along the south-western coast, is deteriorating and shrinking even more quickly than most places in Alaska. Engineers designing new buildings and roads have to battle with permafrost thaw.

Permafrost in the Bethel area is considered « warm, » maybe a fraction of a degree below freezing, so it is sensitive to just a slight warming of the air. Above the permafrost in Southwest Alaska, an active layer of soil, often peat, freezes and thaws each year. With air temperatures warming too, the active layer is growing bigger, consuming what had been thought of as permanently frozen. Thirty years ago, crews would hit permafrost within one or two metres of the surface.. Now they typically find it 2.50 to 3.50 metres down. To install piling deep enough into permafrost to support a house, they used to drill down about 6 metres. Now they are going to depths of 10 metres.

The melting of permafrost becomes a real problem for houses. The whole house might sink so much that a wastewater line no longer has enough slope. Tubs won’t drain well. Toilets need repeat flushes in a town where many people ration their home-delivered water. Low spots in pipes become bellies that trap wastewater, then freeze and burst in wintertime. Many homes are built on posts set on wooden pads that act like snowshoes, preventing the structure from sinking into sand or gravel fill. Some of the problems are being addressed with better materials, along with designs that theoretically are easier to adjust when part of a building sinks. But that adds costs in a place where building materials already are expensive.

Engineers and builders are adjusting techniques and designs. The biggest construction project is the $300 million expansion and remake of the hospital in Bethel. Under the existing hospital, the permafrost stays frozen in some areas but has thawed near the perimeter. For the building expansion, engineers evaluated whether to add thermal probes, which extract heat and keep the ground frozen for stability. Or they could drill down 30 metres for steel supports, deep enough that the ground didn’t have to remain frozen for the three-story addition to be stable. In addition, the project includes insulation on the bottom of the buildings and, like the tundra, insulation on top of the ground. As further insurance, a ground loop cooling system is being installed under the building that can be powered up to keep the ground frozen if winters become too warm. Crews put temperature sensors into the ground at the project site and already know the soils are warming.

The most visible sign of disrupted infrastructure in Bethel is the roller coaster of a ride along the busiest road in town. Warning signs have been installed. One near the airport alerts drivers to dips for the next 6 kilometres. Local authorities are planning extensive repairs estimated to cost almost $9 million but first must better identify what is causing the heaves. Officials suspect thawing permafrost. Some of the problem might also stem from culverts that trap air under the roadway and hasten thaw. A project in 1989 added heat-extracting siphons but they no longer appear to be in place. Whether that would be a good solution now is something to investigate further.

The highway was last repaved in a project that began in 2006 and included a 15-centimetre base of insulating foam asphalt material that helped the pavement hold up this long. Some locals remember when the road was gravel and said it was better then. It’s true that a gravel road can be more easily evened out but it also requires more day-to-day maintenance.

Source: Alaska Dispatch News.

Carte montrant les régions de l’Alaska et du Canada où le thermokarst (ou cryokarst) est le plus susceptible d’apparaître avec le réchauffement climatique. (Source: University of Alaska Fairbanks)

Exemple des effets de la fonte du permafrost sur le réseau routier en Alaska (Photo: C. Grandpey)

 

Le permafrost sibérien révèle ses secrets // The Siberian permafrost reveals its secrets

drapeau-francaisDans plusieurs articles diffusés sur ce blog, j’ai indiqué qu’en Russie les scientifiques mettent en garde contre la menace d’explosions de méthane, aussi soudaines que spectaculaires, susceptibles de créer de nouveaux cratères géants dans le nord de la Sibérie. Ils utilisent les satellites pour surveiller des monticules de glace et de terre connus sous le nom de pingo, car ils pensent qu’il existe un réel risque d’explosion. Il est particulièrement élevé dans la péninsule de Yamal, là où se trouvent les plus grandes réserves de gaz naturel du monde.
Cette mise en garde fait suite à une étude détaillée de l’un parmi des dizaines de nouveaux cratères repérés dans les régions reculées de la Sibérie au cours des 18 derniers mois. Le plus célèbre – connu sous le nom B-1 – se trouve à 29 km du champ gazier de Bovanenkovo.

Les scientifiques pensent que ces cratères se sont formés à la suite de la fonte du permafrost (ou pergélisol) et la libération des gaz dans le vide laissé derrière. Au fur et à mesure de l’augmentation de la température et de la quantité de gaz, le gaz naturel sous pression s’est échappé violemment à la surface.
Le cratère de Batgaika, baptisé par le peuple Yakutien «porte d’entrée du monde souterrain», fait partie de ces cratères d’effondrement qui apparaissent au cœur de la Sibérie au fur et à mesure que le permafrost se transforme en boue en libérant du méthane. Au cours de son effondrement, ce cratère révèle des étapes de l’histoire du changement climatique dans la région ; il met aussi au jour des carcasses d’animaux et des forêts pétrifiées.
Le cratère, de 800 mètres de large et de 80 mètres de profondeur, se développe à raison de 10 à 30 mètres par an, à mesure que fond la glace sur ses bords, et il s’approfondit régulièrement. Une étude publiée dans la revue scientifique Quarternary Research indique que, tout en libérant des gaz à effet de serre, les parois du cratère révèlent une foule de données climatiques historiques. Jusqu’à présent préservées par le pergélisol, ces couches font ainsi apparaître du pollen qui prouve que la région était autrefois couverte par une toundra très dense. Le cratère montre également deux rangées de souches d’arbres, signe que la zone était autrefois occupée par une forêt dense. Les chercheurs ont aussi découvert les restes de mammouths, de boeufs musqués, et même un cheval vieux de 4 400 ans.
Tous ces éléments illustrent les changements progressifs du climat sur des dizaines de milliers d’années. Les chercheurs espèrent qu’ils permettront de prévoir ce qui va se passer dans les prochaines décennies. Selon un professeur de l’Université du Sussex, la Sibérie semble avoir connu pour la dernière fois la formation de ces cratères d’effondrement il y a 10 000 ans, quand la Terre a émergé de la dernière glaciation. Un reste de forêt se trouve même au-dessus d’un paysage encore plus ancien qui avait été fortement érodé. C’est probablement lorsque le pergélisol a fondu au cours d’un épisode passé du réchauffement climatique.
Cependant, il y a une différence majeure entre aujourd’hui et le passé: Le niveau de gaz à effet de serre dans notre atmosphère est beaucoup plus élevé aujourd’hui qu’autrefois. Les derniers relevés de CO2 dans l’atmosphère (sur le Mauna Loa à Hawaii) se situent à 407 ppm (parties par million). À l’époque, ils n’atteignaient que 280 ppm.
Source: News.au.com.

—————————————–

drapeau-anglaisIn several posts on this blog, I indicated that in Russia, scientists are warning of the threat of sudden and dramatic methane explosions creating new giant craters in northern Siberia. They are using satellites to monitor pingoes, mounds of earth-covered ice, which they fear can soon erupt.At special risk is the Yamal Peninsula, the location of the world’s largest natural gas reserves.
The warning followed detailed study of one of dozens of new craters spotted in remote regions of Siberia. The most famous – known as B-1 – is 29 km from Bovanenkovo gas field.  Scientists believe these craters formed as a result of ice beneath the surface melting and releasing gas into the void left behind. As temperatures have warmed and gas levels have increased, the natural gas erupted out of the ground with violent results.
The Batgaika crater, known to the local Yakutian people as the “doorway to the underworld,” is one of the largest of a growing number of pits collapsing across Siberia as the ice beneath the surface turns to slush and methane gas. During its collapse, this crater is revealing eons of climate change in the region, along with long-buried animal carcasses and petrified forests.

The 800-metre-wide, 80-metre-deep crater is growing at the rate of 10 to 30 metres a year as the ice around its edges gives way. Thus, it is getting gradually deeper.

A study in the science journal Quarternary Research says that, along with its ominous release of greenhouse gas, the stratified layers of the crater’s sides are releasing immense historical climate data. Preserved in the melting permafrost are layers of pollen revealing that the area was once covered by open tundra. But there are also two prominent bands of tree stumps, showing the land was once dense forest. Among it all are the remains of ancient mammoth, musk ox, and even a 4,400-year-old horse.

Put together, all these elements paint a picture of gradual changes in climate over the course of tens of thousands of years. Researchers hope it will help them predict what will happen in coming decades. According to a University of Sussex professor, the last time Siberia appears to have experienced the formation of pit craters was 10,000 years ago, when the Earth woke from the last ice age. One forest-bed remnant sits above an even older landscape that had been heavily eroded. This was probably when permafrost thawed in a past episode of climate warming.

However, there is a major difference between today and the past : Greenhouse gas levels in our atmosphere are much higher now than then. The latest CO2 figures are at 407 parts per million. Back then, it was 280 parts per million.

Source: News.au.com.

batgaika

Cratère de Batgaika (Crédit photo: Siberian Times)

Conséquences de la fonte du permafrost pour les rivières de l’Arctique // Consequences of permafrost thawing on Arctic rivers

drapeau-francaisIl ne faut pas se leurrer. Même si l’hiver actuel en Europe est moins doux que les précédents, le réchauffement climatique se poursuit dans l’Arctique où les températures hivernales sont toujours au-dessus de la moyenne. Le phénomène affecte la glace de mer, mais aussi le sol, les fleuves et les rivières.
Une nouvelle étude de l’USGS publiée dans la revue Geophysical Research Letters montre qu’avec le réchauffement du climat en Alaska et la fonte du permafrost (aussi appelé pergélisol), l’eau du fleuve Yukon connaît des modifications chimiques. Le Yukon circule sur plus de 3 000 km depuis montagnes de Colombie-Britannique jusqu’à la Mer de Béring et c’est l’un des plus grands fleuves arctiques au monde.
La surveillance du Yukon sur le long terme révèle que la teneur de l’eau en calcium, sodium, phosphore, magnésium et en sulfates est en augmentation. C’est la preuve de la fonte généralisée du pergélisol, ce qui a permis à l’eau de circuler librement dans les sols dégelés et riches en minéraux et de transporter certains d’entre eux jusque dans le fleuve. Les mesures indiquent une transformation profonde du bassin du Yukon dont la superficie est deux fois celle de la Californie ; c’est un important contributeur en eau dans le système marin de l’Arctique.
Les chercheurs ont utilisé les données fournies par un site de mesures installé le long du Yukon et un autre sur la Tanana, l’un de ses affluents. Ces deux stations de surveillance de l’USGS existent depuis des décennies, ce qui a permis aux scientifiques de remonter à 1982 pour étudier l’évolution de la situation. Non seulement les niveaux globaux des cinq éléments chimiques ont augmenté considérablement de 1982 à 2014, mais la périodicité des rejets s’est modifiée elle aussi. Bien que la plupart se produisent en été, la plus forte hausse pour certains éléments chimiques se situe à la fin du printemps ou à l’automne, ce qui indique un dégel annuel plus précoce et un regel du sol plus tardif au fil des ans.
On ne connaît pas encore suffisamment les effets des modifications chimiques observées dans l’eau du Yukon. La hausse de certains éléments chimiques et des sulfates a probablement des conséquences extrêmement négatives: on peut redouter une réaction en chaîne qui pourrait entraîner une augmentation du méthylmercure toxique dans l’eau du fleuve. Les sulfates sont absorbés par des bactéries qui transforment le mercure élémentaire en méthylmercure plus dangereux et qui s’accumule plus facilement dans l’organisme des poissons.
Les cinq plus grandes fleuves de l’Arctique – le Mackenzie au Canada ; la Lena, l’Ob et le Ienisseï en Sibérie, sans oublier le Yukon – sont considérés comme des sentinelles du changement climatique. Tous ont été étudiés scrupuleusement par les scientifiques, malgré les problèmes d’éloignement, les conditions d’observation difficiles et, pour le Yukon, des complications transfrontalières. Les scientifiques sont également été confrontés au manque de données historiques. Toutefois, pour le Yukon, il existe des archives liées à une tradition qui remonte à 1986. Elle permet de connaître les dates de débâcle du fleuve au niveau de la ville canadienne de Dawson City. En 2016, l’événement a eu lieu le 23 avril, date la plus précoce jamais enregistrée.
A côté des modifications chimiques de l’eau du Yukon, les habitants ont observé des changements physiques. Ainsi,  la plus forte érosion contribue à introduire davantage de sédiments dans le fleuve, ce qui obstrue parfois les systèmes de filtration d’eau potable. Le dégel du pergélisol et l’érosion vont de pair. De plus, le dégel provoque d’autres changements à la surface du sol avec l’assèchement de certaines zones et un apport d’eau dans d’autres. L’augmentation des sédiments et des matériaux charriés par le fleuve suscite des inquiétudes dans les villages où les habitants sont très inquiets pour les saumons et leur habitat.
Source: Alaska Dispatch News.

————————————-

drapeau-anglaisDon’t let us be mistaken. Even though the current winter looks less mild than the previous ones in Europe, global warming is going on in the Arctic where winter temperatures are still above average. The consequences of climate change affect the sea ice, but also the ground and the rivers.

A new USGS study published in the journal Geophysical Research Letters shows that as Alaska warms and permafrost thaws, the chemistry of the Yukon River’s water is transforming chemically. The Yukon runs more than 3,000 km from the mountains of British Columbia to the Bering Sea and is one of the world’s major Arctic rivers.

Long-term monitoring reveals that levels of calcium, sodium, phosphorus, magnesium and sulfates are increasing in the river’s waters. That is evidence of widespread permafrost loss, which has allowed water to flow freely through thawed, mineral-rich soils and carry some of those minerals into the river. The results indicate a profound transformation in the Yukon River basin, an area twice the size of California and a major contributor of water into the Arctic marine system.

The researchers used data from one site on the Yukon River and one on the Tanana River, a major Yukon tributary. Both sites have been USGS monitoring stations for decades, allowing this study to reach back to 1982 to investigate trends. Not only did overall levels of the five chemicals increase substantially from 1982 to 2014, but timing of the releases expanded as well. While most of the releases happen in the summer, the biggest percentage increases for some of the chemicals have been either in late spring or in the fall, indicating earlier annual thaws and later annual freeze-up of soil over time.

Just what will be the effects of the chemical changes is yet unclear. Increased loads of one of the minerals tracked, sulfates, have some potentially ominous implications : the specter of a chain reaction that could create more poisonous methylmercury in the river’s water. Sulfates are consumed by bacteria that convert simple elemental mercury into more-dangerous methylmercury form, which is more easily accumulated in fish.

The five biggest Arctic rivers – the Mackenzie of Canada – and three great Siberian rivers – the Lena, Ob and Yenisey, as well as the Yukon, are considered sentinels of climate changes. All have been watched carefully by scientists, though there are challenges of remoteness, harsh conditions and, for the Yukon, transboundary complications. Scientists are also challenged by gaps in the written historical record. But for the Yukon, some important historical information is available. A tradition, dating back to 1986, has provided a long record of Yukon River ice-breakup dates in the Canadian town of Dawson. The April 23rd 2016 breakup was the earliest ever recorded in the Yukon Territory town.

Apart from the chemical changes in the river are some physical changes that locals notice too. Advancing erosion is putting more soil sediment into the river, sometimes clogging drinking-water filter systems. Permafrost thaw and erosion go together. And the thaw is triggering other changes on the surface, drying out some areas and bringing additional water to others.

The increase in river sediment and debris is fueling concerns in the villages where residents are very nervous about salmon and its habitat.

Source: Alaska Dispatch News.

yukon-01

Vue aérienne du bassin du Yukon.

yukon-02

Le Yukon à travers la taïga.

yukon-03

Le Yukon et Dawson City au Canada.

(Photos: C. Grandpey)

La fonte du permafrost et ses conséquences // The melting of permafrost and its consequences

drapeau-francaisUne nouvelle étude intitulée «La répartition et le stockage du carbone dans les paysages thermokarstiques circumpolaires» et publiée dans la revue Nature Communications (http://www.nature.com/articles/ncomms13043) propose une nouvelle carte du permafrost (ou pergélisol) dans l’hémisphère nord. La carte – fruit d’un projet mené par l’Université de l’Alberta et celle d’Alaska à Fairbanks – fait ressortir les zones qui sont les plus vulnérables à la fonte du permafrost et aux affaissements qui s’ensuivent. Elle montre également quelles régions du Nord circumpolaire sont les plus exposées aux «thermokarsts» (également appelés « cryokarsts »), autrement dit les zones où la surface de la terre s’effondre lorsque la glace dégèle dans le sol, avant de s’évacuer sous forme d’eau. Les caractéristiques thermokarstiques peuvent être des cavités ouvertes dans le sol, des fossés, de nouvelles zones humides ou même des lacs.
Les gaz à effet de serre tels que le dioxyde de carbone et le méthane sont souvent tenus responsables de la hausse des températures et du changement climatique sur notre planète. Comme je l’ai souvent écrit, la fonte du pergélisol ne fera qu’accélérer le changement climatique provoqué par la combustion des combustibles fossiles.
L’étude a révélé que près de 20 pour cent du permafrost des régions nordiques est susceptible de donner naissance à un paysage thermokarstique. Environ la moitié du carbone organique souterrain est stockée dans ces zones potentiellement thermokarstiques, de sorte que le dégel des années à venir sera loin d’avoir des conséquences négligeables.
Parmi les zones les plus vulnérables figurent la région de North Slope en Alaska et le delta du Yukon. Les zones sensibles aux formations thermokarstiques sont celles qui détiennent des quantités relativement importantes de glace. L’étude n’identifie pas précisément les zones qui connaissent le plus fort réchauffement et elle ne précise pas non plus les zones qui deviendront thermokarstiques dans les prochaines années. Par contre, elle identifie les zones qui seront les plus sensibles au réchauffement.
Les thermokarsts devraient devenir de plus en plus fréquents au cours de ce siècle avec le réchauffement du climat arctique. Leur apparition sera liée à deux facteurs : d’une part le changement climatique et d’autre part les phénomènes tels que les incendies et les inondations qui accompagnent ce même changement climatique.

Source : Nature Communications.

—————————————–

drapeau-anglaisA new study entitled “Circumpolar distribution and carbon storage of thermokarst landscapes” and published in the journal Nature Communications (http://www.nature.com/articles/ncomms13043) includes a new map of northern hemisphere permafrost. The map – which is the product of a project led by the University of Alberta and the University of Alaska Fairbanks – identifies the areas that are most vulnerable to thawing and slumping. It shows which regions in the circumpolar north are susceptible to the permafrost formations known as « thermokarsts, » where the land surface collapses when ice within the soil thaws and drains away. Thermokarst features can be sinkholes, gullies, new wetlands or expanded lakes.

Greenhouse gases such as carbon dioxide and methane are often blamed for rising Earth temperatures and global climate change. As I often put it before, melting permafrost is expected to accelerate climate change caused by burning fossil fuels.

The study found that about 20 percent of the world’s northern permafrost region has potential to become a thermokarst landscape. About half of the underground organic carbon is stored in those thermokarst-prone areas, making future thaw especially significant.

Among the most vulnerable areas are Alaska’s North Slope and the Yukon River delta. Areas susceptible to thermokarst formations are those that hold relatively large amounts of ice. The study does not specifically identify the areas that have the most warming nor does it predict future thermokarst. Rather, it identifies areas that will be sensitive to warming.

Thermokarsts are expected to become more prevalent as the Arctic climate warms. According to the researchers, vulnerability to thermokarst development is likely to increase this century both due to climate change and associated higher frequencies of disturbances such as wildfire and floods.

Source : Nature Communications.

karst-01

karst-02

Répartition des zones thermokarstiques ou potentiellement thermokarstiques dans les régions nordiques et plus particulièrement en Alaska (Source: Nature Communications).

Acidification de l’Océan Arctique sibérien // Acidification of the Siberian Arctic Ocean

drapeau francaisJ’ai souvent insisté dans ce blog sur le rôle joué par la fonte du pergélisol dans le réchauffement climatique en raison des énormes quantités de méthane envoyées dans l’atmosphère.
Selon une nouvelle étude effectuée par une équipe scientifique de l’Université de l’Alaska à Fairbanks, l’Académie des Sciences de Russie et d’autres organismes en Russie et en Suède, la fonte du permafrost en Sibérie, conjuguée à l’effritement des côtes russes et l’effet érosif de grandes rivières – comme la Léna – qui se jettent dans l’Arctique, déverse de vastes quantités de carbone organique dans les eaux océaniques, accélérant leur acidification et mettant en danger dans un avenir proche l’ensemble de l’Océan Arctique.
Les scientifiques ont étudié pendant des années le plateau arctique de Sibérie orientale, une zone maritime qui représente environ le quart des eaux de l’Océan Arctique. Les observations faites depuis 1999 montrent que, dans certains secteurs, l’acidité a atteint des niveaux que les chercheurs ne pensaient pas observer avant l’année 2100, en partie à cause d’une très forte sous-saturation en aragonite.
L’aragonite est une forme de carbonate de calcium qui est omniprésente dans les eaux océaniques et qui contribue à maintenir leur pH à son niveau de base. Le carbone présent dans l’eau acidifie cette dernière et fait donc baisser le pH. La mesure de la saturation en aragonite donne une indication sur la teneur générale en calcium et, par voie de conséquence, sur l’augmentation de carbone dans l’eau. Lorsqu’il y a plus d’aragonite que l’eau peut en absorber, ont dit qu’elle est sursaturée ; l’excès de calcium est alors utilisé par les organismes marins pourvus de coquilles. Inversement, quand il y a moins d’aragonite que l’eau pourrait normalement absorber, elle est considérée comme sous-saturée. Comme le plateau arctique de Sibérie orientale joue un rôle important pour l’ensemble des eaux de l’Océan Arctique, les modifications chimiques pourraient avoir des effets profonds sur les écosystèmes marins de toute la région.
Les eaux de la Mer de Beaufort, la Mer des Tchouktches et la Mer de Béring sont déjà connues pour être vulnérables à l’acidification en raison de leurs températures froides qui gardent le carbone et d’autres composants. Les dernières recherches effectuées sur le plateau arctique de Sibérie orientale confirment l’accélération de l’acidification de l’Océan Arctique.
À l’échelle mondiale, on considère généralement que l’acidification des océans est un sous-produit des émissions de carbone dans l’atmosphère. Comme environ un quart du carbone est absorbé par les océans, les émissions anthropiques de dioxyde de carbone sont considérées comme la principale source d’acidification des océans dans le monde entier. Cependant, sur le plateau arctique de Sibérie orientale, le carbone déversé dans la mer par l’érosion du pergélisol et par les rivières qui y débouchent dépasse largement le carbone en provenance de l’atmosphère et peut à lui seul provoquer l’acidification.
Source: Alaska Dispatch Nouvelles: http://www.adn.com/

—————————————

drapeau-anglaisI have often insisted on the contribution of the thawing of the Arctic permafrost to the current global warming because of the huge quantities of methane it sends into the atmosphere.

According to a new study by a team of scientists from the University of Alaska Fairbanks, the Russian Academy of Sciences and other institutions in Russia and Sweden, as Siberian permafrost thaws, crumbling Russian coastlines and big rivers flowing north along eroding banks are dumping vast loads of organic carbon into marine waters, accelerating their acidification and signalling future danger for the entire Arctic Ocean.

The scientists have been studying for years the East Siberian Arctic Shelf, a marine area that accounts for about a quarter of the Arctic Ocean’s open waters. Observations made since 1999 showed signs that in some locations acidity has reached levels researchers didn’t expect to emerge until the year 2100, due in part to « extreme aragonite undersaturation. »

Aragonite is a form of calcium carbonate that is pervasive in the ocean and tilts the chemistry toward the base level of the pH scale. Carbon in the water tilts the pH scale toward the acid level. The degree to which the water is saturated with aragonite is a marker of overall calcium levels, and a marker of acidification caused by increasing loads of carbon in the water. When there is more aragonite than can be absorbed by the water, it is considered to be supersaturated, leaving excess amounts to be used by shell-bearing marine organisms. But when there is less aragonite than the water could normally absorb, it is considered undersaturated. Since the East Siberian Arctic Shelf is so important to the Arctic Ocean’s open water, the chemistry changes could have wide-ranging effects on marine ecosystems in the entire Arctic Ocean.

Marine waters in the far north – in areas like the Beaufort, Chukchi and Bering seas – are already known to be vulnerable to acidification because of their cold temperatures that hold carbon and other attributes. The research from the East Siberian Arctic Shelf now adds to evidence pointing to a faster-acidifying Arctic Ocean.

Globally, ocean acidification is generally considered a byproduct of carbon emissions into the atmosphere. Since about a quarter of that atmospheric carbon winds up absorbed by the ocean, human-caused carbon dioxide emissions are considered the major source of ocean acidification worldwide. However, on the East Siberian Arctic Shelf, the carbon washed into the sea by eroding permafrost and river outwash far outpaces the carbon coming from the atmosphere and is enough to cause acidification on its own.

Source: Alaska Dispatch News: http://www.adn.com/

Sibérie-arctique

Source: Climats et Voyages