Dégel du pergélisol : Une nouvelle découverte inquiétante // Permafrost thawing : Another disturbing discovery

Voici une histoire qui a fait sourire une chroniqueuse de France Info et les journalistes présents dans le studio, mais qui n’est peut-être pas aussi drôle que cela.

Des scientifiques russes ont déterré une créature qui avait séjourné dans le pergélisol de l’Arctique pendant des dizaines de milliers d’années. Ils lui ont apporté un peu de chaleur et ladite créature a repris goût à la vie. Elle a réussi à survivre à 24 000 années d’inertie grâce à la capacité de son corps à se mettre en hibernation une fois que la température est descendue à un certain niveau.

Les chercheurs russes ont expliqué leur découverte dans un article publié dans la revue Current Biology. La petite créature en question est un rotifère bdelloïde. Ces animaux multicellulaires vivent en milieu aquatique et ont la réputation d’être particulièrement résistants aux très basses températures. De toute évidence, ils sont capables de survivre au processus de congélation puis de décongélation, et ils ne sont pas les seuls à avoir cette capacité. Toutefois, on ignore pendant combien de temps un animal doit être congelé pour ne plus pouvoir reprendre vie. Si une créature peut survivre à la congélation pendant un an, cela ne signifie pas forcément qu’elle pourra également survivre à la congélation pendant 10 ou 100 ans, ou dans le cas du rotifère bdelloïde, pendant 24 000 ans.

Les chercheurs russes ont découvert cette créature en Sibérie, et ce n’est pas la première fois que de telles formes de vie sont retirées du permafrost puis ramenées à la vie. De minuscules vers ont également été découverts récemment dans la couche de sol gelé de la région. Une fois que les scientifiques ont eu la possibilité d’augmenter leur température dans un environnement contrôlé, ils ont repris goût à la vie.

De telles recherches et découvertes font naître bon nombre de questions. Lorsqu’on déterre quelque chose qui a été gelé pendant des dizaines de milliers d’années, il y a toujours le risque qu’il soit porteur d’une maladie ou d’un virus encore inconnu. Si un jour nous n’avons pas les moyens de faire face à une maladie ramenée à la vie par un animal congelé, nous risquons de devoir faire face à une chaîne d’événements catastrophique.

Je ne peux m’empêcher de garder à l’esprit l’histoire que j’ai racontée dans une note publiée le 16 avril 2020. J’y expliquais qu’en août 1997, une équipe scientifique a exhumé au Svalbard les corps de jeunes Norvégiens morts de la grippe espagnole. Les chercheurs ont prélevé des échantillons de tissus des poumons, du cerveau et des reins. Les organes étaient relativement bien conservés…et le virus aussi !

Les chercheurs qui effectuent ces travaux prennent des précautions pour s’assurer que des épidémies ne sortent pas des laboratoires. De plus, les créatures qui reviennent à la vie après un séjour dans le sol gelé ne vivent souvent pas assez longtemps pour que de réels problèmes apparaissent. Pourtant, il est inquiétant de savoir que ces animaux sont âgés de dizaines de milliers d’années mais qu’ils sont toujours bien vivants.

J’ai mis en garde à plusieurs reprises sur ce blog sur les risques de fonte du pergélisol dans les années à venir. En plus des émissions de gaz à effet de serre tels que le dioxyde de carbone et le méthane, la fonte du sol gelé peut raviver des microbes et des virus jusque-là inconnus. Nous pouvons voir à quel point la pandémie de COVID-19 peut être mortelle. Rien ne prouve que de nouvelles épidémies ne seront pas causées par des bactéries jusque-là emprisonnées dans le sol gelé.

Source : Yahoo News.

————————————

It sounds like a story coming out of a science fiction movie, but it is something real: Scientists have unearthed something that had been buried in the Arctic permafrost for tens of thousands of years and warmed it up a bit. The creature then stirred as its cells slowly woke up from their long stasis. It travelled 24,000 years thanks to its body’s ability to shut itself down once temperatures reached a certain low.

In a new paper published in the journal Current Biology, researchers reveal their discovery of a microscopic animal frozen in the Arctic permafrost for an estimated 24,000 years. The tiny creature is called a bdelloid rotifer. These multicellular animals live in aquatic environments and have a reputation for being particularly hardy when it comes to frigid temperatures. They are obviously capable of surviving the process of being frozen and then thawed, and they are not the only tiny animal to have this ability.

However, there is always the question of just how long an animal can be frozen before it can no longer be woken back up. If a creature can survive being frozen for a year, that does not automatically mean that it can also survive being frozen for 10 years or 100, or in the case of the bdelloid rotifer, 24,000.

This discovery was made in Siberia, and it us not the first time that frozen creatures have been pulled from the ground there and then woken back up. Tiny worms were also discovered in the frozen soil layer in the region not long ago and, once scientists had the opportunity to raise their temperature in a controlled environment, they sprung back to life.

There are always big questions about the safety of conducting research like this. When unearthing something that has been frozen for tens of thousands of years there is always the possibility that it carries some kind of disease that has not been seen by humans before. If life on Earth today is not well-equipped to deal with an illness brought back to life by a frozen animal, it could trigger a truly catastrophic chain of events.

I can’t help keeping in mind the story I told in a post released on April 16th, 2020. In August 1997, a scientific team exhumed in Svalbard the bodies of young Norwegians who had died of the Spanish flu. They took samples of tissues from the lungs, the brain and the kidneys. The organs were relatively well preserved, which means that the terrible virus was too!

Researchers conducting this kind of work take precautions to ensure outbreaks do not occur, and the creatures that come back to life from the frozen ground often do not live long enough for containment issues to be much of a concern anyway. Still, it is disturbing to know that these animals are technically tens of thousands of years old but still alive and well.

I have repeatedly warned on this blog about the risks of the melting permafrost in the coming years. In addition to greenhouse gas emissions such as carbon dioxide and methane, the melting of the frozen soil can revive previously unknown microbes and viruses. We can see how deadly the COVID-19 pandemic can be. There is nothing to prove that new epidemics will not be caused by bacteria so far frozen in the ground.

Source: Yahoo News.

Zones recouvertes par le permafrost (Source : NOAA)

Le dégel du permafrost dans l’Arctique russe // Permafrost thawing in the Russian Arctic

 En raison du changement climatique et du réchauffement qui l’accompagne, le pergélisol dans l’Arctique se dégrade beaucoup plus rapidement que prévu. Cette situation est parfaitement visible en Yakoutie, également connue sous le nom de République de Sakha, la région la plus grande mais aussi la plus froide de la Fédération de Russie.

La couche supérieure du pergélisol, d’une quarantaine de mètres d’épaisseur, dégèle à une vitesse inquiétante dans cette région, ce qui provoque l’effondrement des bâtiments et tranfforme des routes autrefois parfaitement planes en montagnes russes qui posent même des problèmes aux SUV les plus robustes. Les photos publiées par The Siberian Times sont particulièrement révélatrices :

https://siberiantimes.com/other/others/news/building-breaks-in-middle-and-collapses-10-metres-as-thawing-permafrost-no-longer-supports-stilts/

Il a fallu seulement deux ans pour qu’un bâtiment de la ville portuaire de Chersky sur la rivière Kolyma, dans le nord-est de la Yakoutie, se brise par le milieu. En dégelant, le pergélisol autrefois dur comme du béton ne pouvait plus maintenir la structure sur ses supports.

Le pergélisol, mélange de terre, de sable et de glace, se trouve sous les villes, et les vastes zones peu peuplées de Yakoutie. C’est le plus grand réservoir de carbone organique au monde, qui se transforme en gaz à effet de serre comme le méthane quand il dégèle. La température du pergélisol ne cesse d’augmenter, et il est en train d‘atteindre le point où il commencera à dégeler partout, et très rapidement. Comme l’a expliqué un scientifique russe, «nous nous dirigeons vers une boucle de rétroaction, ce cercle vicieux à l’intérieur duquel le réchauffement climatique accélère le dégel du pergélisol qui, à son tour, accélère le réchauffement climatique qui accélère à son tour le dégel du permafrost. jusqu’à ce que le pergélisol se vide de tout le carbone actif qu’il contient.»

Vous pourrez obtenir plus d’informations sur la dégradation du pergélisol et les changements qu’elle entraîne pour les personnes qui vivent dans l’Arctique russe en regardant le documentaire d’Alexandre Fedorov Permafrost melts due to climate change. Are we doomed?  (Le pergélisol fond à cause du changement climatique. Sommes-nous condamnés?) Le film – en russe sous-titré en anglais – a été tourné avec le soutien de Greenpeace Russie. https://youtu.be/HkMX_hYdo-w

Source: The Siberian Times.

—————————————————–

 Due to climate change and global warming, permafrost in the Arctic is degrading much faster than expected. These effects can clearly be seen in Russia’s Yakutia, also known as Sakha Republic, the biggest, and the coldest constituent region in the Russian Federation.

The top layer of the 40-metre-deep body of permafrost is thawing worryingly fast in this region, leading buildings to collapse and previously even roads becoming rollercoasters which even the sturdiest of SUVs struggle to drive. Just look at the photos in The Siberian Times:

https://siberiantimes.com/other/others/news/building-breaks-in-middle-and-collapses-10-metres-as-thawing-permafrost-no-longer-supports-stilts/

It took two years for a building in the port town of Chersky on the Kolyma River, in northeastern Yakutia, to snap in the middle after the once solid permafrost could no longer hold its supporting stilts.

Permafrost, the mixture of soil, sand and ice lies under cities and vast unpopulated areas of Yakutia. It is the world’s biggest reservoir of organic carbon which converts into greenhouse gases like methane once it thaws.

The temperature of the permafrost is rising, and it is reaching the point when it will begin to thaw everywhere, and very actively. As a Russian scientists explained, “we are heading towards a vicious circle when climate warming will speed up the thawing of permafrost, which will in turn add to faster climate warming and further accelerate the thawing, until all active carbon is released from permafrost.”

You can see more on degrading permafrost and the change it brings to people living in Russian Arctic in Alexander Fedorov’s documentary Permafrost melts due to climate change. Are we doomed?  The film – in Russian with English subtitles – was shot with the support of Greenpeace Russia.

https://youtu.be/HkMX_hYdo-w

Source: The Siberian Times.

Coupe du permafrost extraite du film d’Alexander Fedorov

Effets du dégel du permafrost sur le réseau routier en Alaska (Photo : C. Grandpey)

Nouveau cratère en Sibérie // New crater in Siberia

Un article du Siberian Times informe ses lecteurs qu’un nouveau cratère s’est ouvert la semaine dernière dans la péninsule russe de Yamal, avec des blocs de terre et de glace qui ont été projetés à des centaines de mètres de distance.
Le nouveau gouffre récemment formé est le 17ème du genre – et considéré comme le plus grand –  à s’être formé dans la Péninsule de Yamal depuis que le phénomène a été observé pour la première fois en 2014. Le nouveau cratère été découvert par hasard depuis un hélicoptère par une équipe de la télévision de Vesti Yamal qui passait par là
https://youtu.be/q3fQok8iQ94

Un groupe de scientifiques s’est ensuite rendu sur place pour examiner le grand cratère cylindrique qui présente une profondeur d’une cinquantaine de mètres. On pense que ces cratères parfois en forme d’entonnoir se forment par accumulation de méthane dans les poches de dégel du pergélisol.
Ces phénomènes géologiques ont été baptisés hydrolaccolithes ou bulgunnyakhs par les scientifiques car avant d’exploser, ils présentent un type de relief basé sur des buttes, elles-mêmes baptisées pingos. Ce sont des collines de glace recouvertes de terre et qui se rencontre dans les régions arctiques, subarctiques et antarctiques. Ces pingos explosent lorsque le méthane s’accumule sous une épaisse calotte de glace.
Des scientifiques russes ont affirmé que les activités humaines, comme les forages de gaz dans la Péninsule de Yamal, pourraient être un facteur déclencheur des explosions. Ces mêmes scientifiques sont préoccupés par le risque de catastrophes écologiques si des pingos se forment à proximité d’un gazoduc, d’une installation de production gazière ou de zones habitées. Dans un certain nombre d’endroits, les pingos – comme on le peut le voir sur les images satellites et sur le terrain – supportent littéralement des conduites de gaz.
Vous verrez d’autres cratères sur cette page du Siberian Times.
https://siberiantimes.com/other/others/news/giant-new-50-metre-deep-crater-opens-up-in-arctic-tundra/

———————————————–

An article in The Siberian Times informs its readers that a new massive sinkhole opened up last week in the Russian Yamal Peninsula, with blocks of soil and ice thrown hundreds of metres from the hole.

The recently-formed new sinkhole is the 17th – and considered the largest – such hole to form in the Yamal Peninsula since the phenomenon was first observed in 2014. It was initially spotted by chance from the air by a Vesti Yamal TV crew.

https://youtu.be/q3fQok8iQ94

A group of scientists then made an expedition to examine the large cylindrical crater which has a depth of up to 50 metres. Such funnels are believed to be caused by the build up of methane gas in pockets of thawing permafrost under the surface.

These holes are called hydrolaccoliths or bulgunnyakhs by scientists because before exploding they form small hills also called pingos. Explosions have happened in swelling pingos which erupt when the gas builds up under a thick cap of ice.

Russian scientists previously claimed that human activities, like drilling for gas from the vast Yamal reserves could be a factor in the eruptions. They are concerned at the risk of ecological disasters if pingos build up close to a gas pipelines, production facilities or residential areas.  In a number of placess, pingos – as seen both from satellite data and on the field – literally prop up gas pipes.

More craters can be seen on this page of The Siberian Times.

https://siberiantimes.com/other/others/news/giant-new-50-metre-deep-crater-opens-up-in-arctic-tundra/

Vue du nouveau ‘cratère’ tel qu’il a été filmé par l’équipe de télévision Vesti Yamal au mois de juillet 2020.

Le dégel du pergélisol de la Sibérie à l’Alaska // Permafrost thawing from Siberia to Alaska

L’écroulement d’un  réservoir de mazout à Norilsk (Sibérie) à la fin du mois de mai 2020, et la pollution que l’accident a occasionnée, ont quelque peu réveillé les médias qui ont daigné consacrer quelques reportages à cette catastrophe environnementale. Il est à noter que les autorités russes ont été assez longues à admettre que l’écroulement de la citerne de carburant était dû au dégel du pergélisol. A cause du réchauffement climatique, le sol normalement gelé s’est affaissé sous le poids de la citerne, envoyant quelque 21 000 tonnes de mazout dans la nature. Par comparaison, le naufrage de l’Exxon Valdez avait libéré 37 000 tonnes de pétrole en Alaska en 1989.

Norilsk n’est pas un cas isolé et ce genre d’accident est appelé à se multiplier. On estime que la limite du pergélisol s’est déplacée de 130 km vers le nord au Québec entre 1960 et 2010. J’ai expliqué comment les installations gazières devaient être contrôlées et réajustées régulièrement dans la Péninsule de Yamal en Sibérie. Les fondations de l’usine Yamal LNG font appel à une ingénierie unique expliquée à cette adresse : https://www.ep.total.com/fr/domaines/gaz-naturel-liquefie/yamal-lng-decouvrir-notre-projet-en-russie/fondations-sur-permafrost

Le pergélisol recouvre la plus grande partie de l’Arctique, mais les infrastructures pétrolières ou gazières ne sont pas présentes partout. En Alaska, c’est le terminal pétrolier de Prudhoe Bay qui est le plus menacé. En 1978, le pergélisol à 20 mètres de profondeur à Prudhoe Bay avait une température de -8,7°C. En 2018, le température était montée à -5,2°C.
Les entreprises alaskiennes ont mis en place des stratégies pour faire face aux variations des températures saisonnières avec des unités de réfrigération souterraines pour maintenir la stabilité du sol. Mais l’impact du réchauffement se fera aussi sur les infrastructures environnantes, y compris la Dalton Highway, route non goudronnée (NDLR : aux multiples ornières ! Prudence si vous l’empruntez !) reliant les champs pétrolifères à l’intérieur de l’Alaska.

Les géologues expliquent que les risques de déversements d’hydrocarbures au Canada ne sont pas liés au dégel du pergélisol car il n’y a pas d’énormes réservoirs comme à Norilsk. En revanche, on parle de problèmes liés au trafic maritime qui va forcément augmenter dans l’Arctique avec la fonte de la glace de mer prévue pendant l’été à partir de 2040.

Quand on avance le risque de marée noire qui ne manquera pas d’apparaître avec l’intensification du trafic maritime dans l’Océan Arctique, certains font remarquer que les microbes ont une capacité étonnante de dégradation des hydrocarbures, malgré le froid. La grande inconnue sera toutefois la glace car on ne sait pas si les microbes seront aussi efficaces pour dégrader les couches d’hydrocarbures sur la glace.

Pour essayer de contrer le réchauffement climatique et le dégel du pergélisol, différentes techniques sont déjà mises en œuvre dans les villes avec la construction d’immeubles sur pilotis pour permettre la circulation de l’air. Une solution souvent envisagée est de pomper de l’air froid dans le sol durant l’hiver, pour accélérer le refroidissement saisonnier sous les infrastructures menacées.

L’un des points peu étudiés à propos du dégel du pergélisol est la formation de nappes d’eau souterraine, un phénomène inquiétant car la circulation souterraine de l’eau pourrait accélérer le dégel du pergélisol et créer des affaissements importants. On a vu apparaître brutalement des thermokarsts, affaissements de sols localisés, très spectaculaires, faisant souvent des dizaines de mètres de large et plusieurs mètres de profondeur, au milieu des terres arctiques.

Source : Presse canadienne.

——————————————-

The collapse of an oil tank in Norilsk (Siberia) at the end of May 2020, and the pollution the accident caused, have somewhat woken up the media, that have accepted to devote a few reports to this environmental disaster. It should be noted that the Russian authorities took quite a while to admit that the collapse of the fuel tank was due to the thawing of permafrost. Due to global warming, the normally frozen ground sank under the weight of the tank, sending some 21,000 tonnes of fuel oil into the wild. By comparison, the sinking of  Exxon Valdez released 37,000 tonnes of oil in Alaska in 1989.
Norilsk is not an isolated case and such accidents are set to multiply. It is estimated that the permafrost limit shifted 130 km northward in Quebec between 1960 and 2010. I explained how gas installations have to be checked and readjusted regularly in the Yamal Peninsula in Siberia. The foundations of the Yamal LNG factory use unique engineering explained at this address: https://www.ep.total.com/fr/domaines/gaz-naturel-liquefie/yamal-lng-decouvrir-notre-projet-en-russie/fondations-sur-permafrost

Permafrost covers most of the Arctic, but oil and gas infrastructure is not everywhere. In Alaska, the Prudhoe Bay oil terminal is the most threatened. In 1978, the permafrost 20 meters deep at Prudhoe Bay had a temperature of -8.7°C. In 2018, the temperature rose to -5.2°C.
Alaskan companies have strategies in place to deal with seasonal temperature variations with underground refrigeration units to maintain soil stability. But the impact of global warming will also be on the surrounding infrastructures, including the Dalton Highway, a gravel road (Editor’s note: with multiple potholes! Be careful if you drive on it!) connecting the oil fields to the interior of Alaska .
Geologists explain that the risk of oil spills in Canada is unrelated to thawing permafrost because there are no huge tanks like in Norilsk. The problems will rather be related to maritime traffic which will inevitably increase in the Arctic with the melting of sea ice expected during the summer from 2040.
When one puts forward the risk of an oil spill which will inevitably appear with the intensification of maritime traffic in the Arctic Ocean, some point out that microbes have an astonishing capacity for degrading oil, despite the cold. The big unknown, however, will be the ice because it is not known whether the microbes will be as effective in breaking down the oil layers on the ice.
To try to face global warming and the thawing of permafrost, different techniques are already implemented in cities with the construction of buildings on stilts to allow air circulation. A solution often considered is to pump cold air into the ground during winter, to speed up seasonal cooling under threatened infrastructure.
One of the little-studied points about thawing permafrost is the formation of underground water pockets, a disturbing phenomenon because the underground circulation of water could accelerate the thawing of permafrost and create significant subsidence. We have seen the sudden appearance of thermokarsts, localized, dut very spectacular subsidence of soil, often tens of meters wide and several meters deep, in the middle of the Arctic tundra.
Source: Canadian Press.

Hausse de température du pergélisol à 20 m de profondeur à Prudhoe Bay (Alaska) entre 1979 et 2019 (Source : Université de Fairbanks)

Oléoduc transalaskien entre Prudhoe Bay au nord et Valdez au sud (Photo : C. Grandpey)

Thermokarst en Sibérie (Crédit photo : Wikipedia)

Le diesel de Norilsk (Sibérie) : une pollution à très long terme // Norilsk’s diesel (Siberia) : a long term pollution

Fin mai 2020, un réservoir de stockage de diesel s’est renversé à Norilsk (Sibérie) en raison du dégel du pergélisol. L’accident a répandu dans la nature 20 000 tonnes de mazout. Les vents violents qui soufflaient à ce moment-là ont favorisé sa propagation jusqu’à plus de 20 kilomètres de la source, contaminant au passage les rivières, les lacs et le sol à proximité. Il s’agit d’une catastrophe environnementale majeure aux conséquences graves et difficiles à évaluer.
Les biologistes qui étudient les écosystèmes arctiques s’inquiètent de l’impact à long terme de tout ce mazout sur un environnement où la vie a du mal à s’installer. Alors que les bactéries sont bien connues pour leur capacité à nettoyer les nappes d’hydrocarbures ailleurs dans le monde, dans l’Arctique c’est différent ; elles sont beaucoup moins nombreuses et leur activité est beaucoup plus lente, ce qui signifie que le diesel qui s’est répandu à Norilsk restera présent pendant des années, voire des décennies.
Le problème, c’est que le diesel de Norilsk est différent des autres, par exemple celui qui s’est échappé de l’Exxon Valdez à Valdez (Alaska) en 1989. A Valdez, il s’agissait de pétrole brut épais qui reste à la surface de l’eau de mer. Pour ce type de marée noire, les solutions de nettoyage sont bien connues. En revanche, à Norilsk, on a affaire à du gasoil plus fin et moins visqueux dans l’eau douce, ce qui rend le nettoyage plus difficile.
Le diesel contient entre 2 000 et 4 000 types d’hydrocarbures qui se décomposent de façon différente dans l’environnement. En règle générale, la moitié ou un peu plus peut s’évaporer en quelques heures ou quelques jours, ce qui peut causer des problèmes respiratoires à la population que se trouve à proximité.
D’autres éléments chimiques plus résistants peuvent adhérer aux algues et aux micro-organismes dans l’eau et couler en créant une boue toxique qui se dépose sur le lit d’une rivière ou d’un lac. On a l’impression que la contamination a disparu et qu’elle n’est plus une menace, mais ces boues peuvent persister pendant des mois ou des années.
Au bas de la chaîne alimentaire dans les rivières et les lacs, il y a des plantes microscopiques et des algues qui ont besoin de la lumière du soleil pour créer de l’énergie par la photosynthèse. Lorsque le pétrole pénètre dans l’eau pendant un accident comme celui de Norilsk, il reste à la surface et forme un écran qui bloque les rayons du soleil, de sorte que ces organismes diminuent rapidement en nombre. Le zooplancton qui s’en nourrit finit également par mourir.
Au départ, le pétrole recouvre les particules du sol, réduisant leur capacité à absorber l’eau et les nutriments ; cela affecte négativement les organismes dans le sol car ils sont incapables d’accéder à la nourriture et à l’eau essentielles à leur survie. Cette couverture huileuse peut rester des années car il est très difficile de s’en débarrasser. La seule solution est souvent de l’évacuer physiquement à l’aide de pelleteuses et bulldozers.
Dans les premiers jours de juillet, Nornickel, la société minière propriétaire du réservoir de diesel, a déclaré avoir retiré 185 000 tonnes de sol pollué qui ont été stockées sur place pour être décontaminées début septembre. Une fois « nettoyé », ce sol retrouvera probablement son emplacement d’origine. L’équivalent de 13 piscines olympiques d’eau contaminée par le diesel a été pompé de la rivière et acheminé vers un site industriel voisin où les produits chimiques nocifs seront mis à l’écart. L’eau «propre» sera probablement déversée dans la rivière.
De telles mesures ont le mérite d’avoir été prises, même si des toxines resteront probablement dans l’eau et le sol. Au fil des mois et des années, ces toxines s’accumuleront dans la chaîne alimentaire, à commencer par les organismes microscopiques, et finiront par causer des problèmes de santé à des organismes plus gros comme les poissons et les oiseaux.
Normalement, les conditions froides de l’Arctique font obstacle à l’activité microbienne et à la biodégradation. Cependant, la vague de chaleur récemment observée dans la région pourrait accélérer ce processus. Cela permettrait aux micro-organismes qui attaquent le pétrole de se développer, de se reproduire et de consommer ces contaminants plus rapidement qu’habituellement.

Le réservoir de stockage de diesel de Norilsk s’est renversé en raison du dégel rapide du pergélisol. Comme le pergélisol constitue la majeure partie du sol de cette partie de la Russie, la région est très sensible au réchauffement climatique. Comme je l’ai déjà écrit, la plupart des gisements de pétrole et de gaz dans l’Arctique russe sont menacés par l’instabilité des infrastructures. Sans réglementation plus stricte pour améliorer les infrastructures existantes, de nouveaux accidents sont susceptibles de se produire, avec d’importants phénomènes de pollution..
Source: The Conversation.

————————————————

In late May 2020, a diesel storage tank in Norilsk, Siberia, collapsed because of the thawing of permafrost and released 20,000 tonnes of diesel fuel into the environment. Strong winds caused the oil to spread more than 20 kilometres from the source, contaminating nearby rivers, lakes and the surrounding soil. This spill was a major disaster with serious implications.

Biologists who study Arctic ecosystems are worried about the long-term impacts of this diesel spill in an environment where life is limited. While bacteria are known to help clean up oil spills elsewhere in the world, in the Arctic, their numbers are low and their rate of activity is slow, which means that the Norilsk diesel will linger for years, if not decades.

The problem is that the Norilsk diesel is different from others like the one that came out of the Exxon Valdez in Valdez (Alaska) in 1989. The Valdez diesel involved thick crude oil that sits on the surface of seawater. For this sort of spills, clean-up practices are well known. On the contrary, the recent Norilsk spill involved thinner, less gloopy diesel oil in freshwater, making clean-up more difficult.

Diesel oil contains between 2,000 and 4,000 types of hydrocarbon which break down differently in the environment. Typically, 50% or more can evaporate within hours and days, possibly causing respiratory problems for people nearby.

Other, more resistant chemicals can bind with algae and microorganisms in the water and sink, creating a toxic sludge on the bed of the river or lake. This gives the impression that the contamination has been removed and is no longer a threat. However, this sludge can persist for months or years.

At the bottom of the food chain in rivers and lakes, there are microscopic plants and algae that need sunlight to create energy through photosynthesis. When oil enters the water during a spill, it sits on the surface and forms a screen that blocks the sunrays, so that these organisms rapidly decrease in number. Zooplankton  that feeds on them also eventually dies off.

Initially, oil coats soil particles, reducing their ability to absorb water and nutrients, negatively affecting soil organisms as they are unable to access food and water essential for survival. This oily coat can last for years as it is very hard to wash off, so often the soil has to be physically removed.

In the first days of July, Nornickel, the mining company that owned the storage tank, said it had removed 185,000 tonnes of contaminated soil. The polluted soil is being stored on site to be treated by early September. The “cleaned” soil will then likely be returned to its original site. The equivalent of 13 Olympic swimming pools of fuel-contaminated water has been pumped from the river to a nearby industrial site where harmful chemicals will be separated and the “clean” water will likely by returned to the river.

This is better than nothing, although toxins will likely remain in both the water and soil. Over months and years, these toxins will build up within the food chain, starting with the microscopic organisms and eventually causing health problems in larger organisms such as fish and birds.

Normally, cold Arctic conditions are an obstacle to microbial activity and biodegradation. However, the recently observed Arctic heatwave might speed up this process, enabling oil-degrading microorganisms to grow, reproduce and consume these contaminants more rapidly than normal.

The fuel tank in Norilsk collapsed due to rapidly thawing permafrost. With permafrost underlying most of Russia, the region is highly vulnerable to climate warming. As I put it before, most oil and gas extraction fields in the Russian Arctic are at risk of infrastructure instability. Without more stringent regulations to improve existing infrastructure, more spills are likely to occur, with more pollution.

Source : The Conversation.

Sur cette image satellite, on peut voir le mazout (en rouge foncé) se répandre dans la rivière Ambarnaya près de Norilsk (Source: European Space Agency)

Le dégel du pergélisol, une catastrophe annoncée

Je n’insisterai jamais assez sur les conséquences désastreuses du dégel du pergélisol, le sol gelé en permanence qui recouvrait jusqu’à ces dernières années les terres arctiques. J’ai en mémoire les récits des chercheurs d’or du Yukon canadien qui devaient briser le sol dur comme du béton pour essayer d’atteindre le minerai tant convoité. Aujourd’hui, leur tâche serait plus aisée car le permafrost – comme l’appelle les Anglo-saxons – est en en train de devenir une espèce en voie de disparition.

Chercheurs d’or dans le Klondike

Les vagues de chaleur à répétition qui affectent la Sibérie, avec des pointes à 38°C au cours du mois de juin 2020, devraient alerter l’opinion, mais elles restent au rang de faits divers dans les bulletins d’information. On parle beaucoup d’écologie, mais pas assez – à mon goût – du réchauffement climatique. Quand on en parlera vraiment, il sera trop tard !

En Sibérie orientale, la république de Yakoutie est le parfait exemple pour illustrer la catastrophe en cours et à venir. La totalité de ce territoire repose sur le pergélisol. La couche de sol gelé dépasse – ou plutôt dépassait – parfois 1000 mètres d’épaisseur. Aujourd’hui, la couche « active » du sol, celle qui est dégelée, atteint 3 mètres de profondeur. Cela pose un réel problème dans la vie quotidienne des Yakoutes, ne serait-ce que lors des enterrements. Les morts sont enterrés traditionnellement en été à 2 mètres sous terre, ce qui supposait, il n’y a pas si longtemps, de verser de l’eau bouillante pour dégeler les 50 derniers centimètres. Aujourd’hui, plus besoin de faire fondre la glace car la terre est déjà molle !

Yakoutie, ou République de Sakha (Source : Wikipedia)

Dans les zones non habitées, les effets du dégel du pergélisol sont parfaitement visibles. J’ai vu des portions de rivage de l’Océan Arctique qui s’étaient effondrées. En Alaska, ces glissements de terrain littoraux ont emporté des maisons. J’ai vu aussi des « forêts ivres » avec les troncs d’arbres inclinés en tous sens car le gel ne maintient plus les racines. Comme je l’ai indiqué à plusieurs reprises, ce dégel du pergélisol risque fort de libérer des microbes et des virus. Nous aurons tout intérêt à avoir de bonne s réserves de masques !!

 Forêt ivre dans le Yukon (Photo : C. Grandpey)

En milieu urbain, le dégel du permafrost est en train de poser des problèmes aux fondations des structures édifiées au cours des dernières décennies. A Yakoutsk, la capitale de la région, le sol gelé offrait un support de construction d’une dureté parfaite. Comme je l’ai expliqué précédemment, les constructions sont perchées sur des pilotis enfoncés dans le pergélisol. Sur la photo ci-dessous, on peut voir qu’un espace de 1 à 2 mètres est laissé vide entre le rez-de-chaussée et le sol 1) pour que la chaleur des habitations ne fasse pas fondre le sol en dessous, et 2) afin que l’air ambiant refroidisse la couche active de pergélisol. Jusqu’en l’an 2000, la loi obligeait les constructeurs à planter des pilotis de 8 mètres pour soutenir les immeubles. Avec le réchauffement climatique, ces immeubles, parfois de cinq étages, ne sont plus maintenus que sur les 5 derniers mètres et des fissures apparaissent dans les murs. Certains bâtiments se sont même effondrés. Plusieurs centaines de constructions ont été jugées «inhabitables» par les autorités et plusieurs dizaines d’entre elles doivent être détruites.

 Immeuble sur pilotis en Yakoutie (Crédit photo : Wikipedia)

L’enfoncement des pilotis dans le sol dégelé, c’est ce qui s’est passé à Norisk, au nord du Cercle polaire arctique. Une cuve de diesel qui n’était plus soutenue s’est déséquilibrée et a déversé son contenu dans une rivière en provoquant la pollution que l’on sait.

Le dégel du pergélisol affecte également les pistes des aéroports et le réseau routier qui doit être remis en état en permanence. Ainsi, la circulation est retardée par de très nombreux chantiers sur les routes d’Alaska.

 Effet du dégel du pergélisol sur les routes de l’Arctique. Etudes pour essayer d’y remédier (Photos : C. Grandpey)

Les structures industrielles sont elles aussi confrontées à de sérieux problèmes. Dans la péninsule de Yamal, il faut contrôler et corriger en permanence les déformations des gazoducs. Il ne faudrait pas oublier que les réserves de gaz naturel les plus importantes de Russie ont été découvertes dans cette péninsule. Elles sont actuellement exploitées par le géant gazier russe Gazprom. La péninsule est reliée à l’Europe par plusieurs gazoducs, dont le Yamal-Europe.

 Infrastructures gazières de Yamal (Crédit photo : Groupe Total)

Les autorités russes essayer de résoudre en urgence les problèmes provoqués par le dégel du pergélisol. Dans les zones habitées, des rangées de «thermosiphons» sont installées le long des immeubles les plus menacés (voir image ci-dessous). Ils ressemblent à des radiateurs inversés dont le pied est planté dans le sol. Ces appareils captent l’air froid ambiant et, grâce à un liquide de refroidissement, injectent du froid dans la couche active du pergélisol pour qu’elle regèle plus rapidement. Sans ces mesures, il y aurait un fort risque d’affaissements de terrain et d’effondrements de bâtiments.

 Fondations à thermosiphons verticaux à Inuvik (Canada) [Source  Wikimedia]

Avec la hausse des températures et la modification du climat, la Sibérie connaît des précipitations plus intenses qui provoquent des inondations. Les pluies anormalement importantes viennent de la fonte accélérée de la calotte glaciaire arctique qui ne recouvre plus l’océan. Les masses d’air humides venues du nord dérèglent le climat et décuplent les précipitations. Les habitations qui ont été envahies par l’eau pendant l’été n’ont pas le temps de sécher avant le retour du froid hivernal et tout doit être abandonné. Il n’y a pas de budget pour aider la population et le gouvernement de la république de Yakoutie n’est pas préparé pour faire face à ce genre de catastrophe.

A côté de ces inondations, on vient de voir que la chaleur qui dégèle le permafrost met également le feu à la végétation, avec des incendies qui couvent parfois tout l’hiver dans la tourbe de la toundra avant de se régénérer au printemps.

 Incendies en Sibérie (Satellite Copernicus Sentinel-2)

J’aimerais que ces quelques lignes attirent l’attention du public sur une catastrophe annoncée. Ce qui se passe en Sibérie et dans l’Arctique en général en ce moment aura forcément des répercussions sur nos latitudes. Il faudrait que nos gouvernants cessent de pratiquer la politique de l’autruche et voient un peu plus loin que le bout de leur nez…

On attend toujours que les COP ne se limitent pas seulement à des échanges de belles paroles et que des mesures concrètes et efficaces soient prises à l’échelle de la planète et non pas seulement à celle de la France où elles restent d’ailleurs quasiment inefficaces. Quid de la réduction du transport routier et du développement du ferroutage ? Quid des mesures incitatives pour utiliser des énergies alternatives ? En refusant trois des mesures proposées par la Convention citoyenne pour le climat, le Président Macron a montré clairement le poids des lobbies dans la politique climatique qu’il prétend entreprendre.

Exemple de ferroutage entre l’Allemagne et l’Italie (Crédit photo : Wikipedia)

Sources: Organes de presse nationale et internationale et observations personnelles dans l’Arctique.