Nouveau volcan sous-marin // New underwater volcano

Un article publié sur le site web Live Science nous informe qu’une expédition océanographique dans l’Arctique a permis de découvrir un volcan sous-marin qui émet de la boue et du méthane à l’intérieur d’un autre cratère plus grand qui s’est probablement formé lors d’une éruption majeure à la fin de la dernière période glaciaire.
Les chercheurs ont découvert cette formation géologique étrange à environ 130 kilomètres au sud de Bear Island dans la mer de Barents. Le volcan, baptisé Borealis Mud Volcano, est seulement le deuxième du genre découvert dans les eaux norvégiennes.
Un volcan de boue sous-marin est une structure géologique formée par une expulsion de fluide boueux et de gaz, principalement du méthane. Le Borealis Mud Volcano mesure environ 7 mètres de diamètre et 2,50 mètres de hauteur. Le 7 mai 2023, les scientifiques ont utilisé un robot télécommandé pour obtenir des images du petit édifice qui émet en permanence un fluide boueux, qui, selon les chercheurs, est riche en méthane. Il est bon de rappeler que le méthane est un puissant gaz à effet de serre une fois qu’il atteint l’atmosphère et contribue au réchauffement climatique.
Le volcan se trouve au milieu d’un autre cratère beaucoup plus grand, qui mesure 300 mètres de large et 25 mètres de profondeur. L’ensemble se trouve à 400 mètres sous la surface de la mer et résulte probablement d’une puissante éruption de méthane à la fin la dernière période glaciaire, il y a 18 000 ans.
Les flancs du volcan regorgent de vie animale qui se nourrit de croûtes carbonatées, autrement dit des croûtes minérales qui se forment lorsque des micro-organismes consomment du méthane et produisent du bicarbonate. Les chercheurs ont également observé des anémones de mer, des éponges, des coraux, des étoiles de mer, des araignées de mer et divers crustacés.
Le seul autre volcan de boue connu dans les eaux norvégiennes est le Håkon Mosby Volcano. Cet édifice de 1 km de diamètre a été découverte à 1 250 mètres sous la surface, sur le plancher océanique au sud du Svalbard en 1995.
Les volcans de boue sous-marins sont difficiles à détecter et à cartographier, mais les chercheurs estiment qu’il pourrait y en avoir des centaines ou des milliers sur le plancher océanique à l’échelle mondiale. (NDLR : Une fois de plus, on remarquera que nous connaissons mieux la surface de Mars que les fonds de nos propres océans !) Ces volcans offrent une fenêtre sur les processus géologiques qui se produisent en profondeur sous la croûte terrestre, car ils émettent principalement de l’eau, des minéraux et des sédiments fins à ces profondeurs. Ils offrent des indices sur les environnements et conditions antérieurs sur Terre. Ils pourraient aussi donner un aperçu des systèmes sur d’autres planètes.
Source : Live Science.

——————————————-

An article released on the Live Science website informs us that ocean explorers in the Arctic have discovered an underwater volcano spewing mud and methane from inside another, larger crater that probably formed after a catastrophic eruption at the end of the last ice age.

Researchers spotted the unusual feature about 130 kilometers south of Norway’s Bear Island in the Barents Sea. The volcano, dubbed Borealis Mud Volcano, is only the second of its kind discovered in Norwegian waters.

A submarine mud volcano is a geological structure formed by an expulsion of muddy fluid and gas, predominantly methane. The Borealis Mud Volcano measures roughly 7 meters in diameter and is about 2.5 meters tall. On May 7th, 2023, the scientists used a remote-controlled rover to capture footage of the small mount continuously emitting a muddy fluid, which the researchers say is rich in methane. Methane is a powerful greenhouse gas once it reaches the atmosphere and contributes to climate change.

The volcano sits in the middle of another, much larger crater, which is 300 meters wide and 25 meters deep. The volcanic edifice sits 400 meters below the sea surface and likely resulted from a sudden and massive methane eruption after the last glacial period, 18,000 years ago.

The volcano’s flanks are teeming with animal life feeding off carbonate crusts, namely mineral crusts formed when microorganisms consume methane and produce bicarbonate as a byproduct. The researchers also observed sea anemones, sponges, corals, starfish, sea spiders and diverse crustaceans.

The only other known mud volcano in Norwegian waters is the Håkon Mosby volcano. This 1-km-wide feature was discovered 1,250 meters below the water’s surface on the seabed south of Svalbard in 1995.

Underwater mud volcanoes are difficult to spot and map, but researchers estimate there could be hundreds or thousands of them on the seafloor globally. (Personal note : Once again, we know the surface of Mars better than the seafloor of our own oceans!) These volcanoes provide a rare window into geological processes occurring deep below Earth’s crust, since they spout mainly water, minerals and fine sediment from these depths. They also offer clues about previous environments and conditions on Earth, and could give an insight into systems on other planets.

Source : Live Science.

Le Borealis Mud Volcano photographié par le robot télécommandé (Source : UiT/AKMA3)

Les volcans de boue // Mud volcanoes

L’événement a défrayé la chronique en 2006 mais aujourd’hui il est tombé dans l’oubli et personne ne parle plus d’une catastrophe environnementale qui a eu lieu le 29 mai 2006 dans la régence de Sidoarjo en Indonésie. Au cours de la nuit, le sol s’est rompu et le matin les habitants ont vu des nuages de vapeur qui montaient dans le ciel. Pendant les semaines suivantes, de l’eau, de la boue brûlante et du gaz naturel ont pris le relais de la vapeur. L’éruption s’est intensifiée et la boue a commencé à se répandre sur les champs, entraînant l’évacuation de nombreux habitants. Les semaines ont passé et la boue a englouti des villages entiers. Le gouvernement indonésien a commencé à construire des digues pour contenir cette boue et arrêter sa propagation. Lorsque la boue a recouvert les premières digues, il a fallu en construire de nouvelles. Le gouvernement a finalement réussi à arrêter l’avancée de la boue, mais les coulées avaient anéanti une douzaine de villages et obligé 60 000 personnes à partir.
Aujourd’hui, plus de 16 ans plus tard, l’éruption de Lusi continue, mais à un rythme beaucoup plus lent. La boue couvre une superficie d’environ 7 kilomètres carrés et est contenue derrière une série de digues d’une hauteur pouvant atteindre 30 mètres.
La catastrophe environnementale s’est accompagnée de batailles judiciaires visant à retrouver les coupables. Le début de l’éruption a eu lieu à proximité d’un puits de forage de gaz et tous les regards se sont tournés vers la compagnie pétrolière responsable du forage – Lapindo Brantas. Selon cette société, l’éruption était naturelle; elle avait été déclenchée par un séisme qui s’était produit plusieurs jours auparavant. En 2009, la Cour suprême indonésienne a rejeté les accusations de négligence dirigées contre l’entreprise. La même année, la police a abandonné les poursuites contre Lapindo Brantas et plusieurs de ses employés, invoquant un manque de preuves. Bien que les procès fassent partie du passé, le débat se poursuit, avec des groupes de recherche internationaux qui essayent de faire la lumière sur la – ou les – cause(s) de cet événement.

Lusi – une contraction de Lumpur Sidoarjo, qui signifie « boue de Sidoarjo » – est un exemple parfait de volcan de boue. Ces volcans se forment lorsqu’un ensemble de boue, de fluides et de gaz éclate à la surface de la Terre. Dans de nombreux cas, la boue remonte assez doucement à la surface, La surpression s’intensifie à l’intérieur de la Terre lorsque les fluides souterrains sont incapables de s’échapper sous le poids des sédiments sus-jacents. Les surpressions sont souvent observées lors de forages pétroliers et gaziers et sont généralement prévues. Le principal moyen utilisé pour gérer les surpressions consiste à remplir le puits de forage avec une boue de forage dense dont le poids suffit pour contenir les surpressions. En revanche, si le puits est foré avec un poids de boue insuffisant, le fluide en surpression peut se précipiter dans le puits de forage et exploser à la surface, entraînant une éruption spectaculaire. De telles éruptions se sont produites en 1901 au Texas et en 2010 dans le golfe du Mexique. Lors de ces événements, c’était du pétrole, et non de la boue, qui jaillissait des puits. Les éruptions peuvent être violentes et même tuer des personnes se trouvant à proximité, comme cela s’est produit dans les Macalube di Aragona (Sicile) en septembre 2014. De plus, la majeure partie du gaz émis par un volcan de boue est du méthane, qui est très inflammable et génère des éruptions de feu spectaculaires comme celle d’Otman Bozdagh en Azerbaïdjan :
https://youtu.be/FjzYUdlSs5w
Les volcans de boue sont utiles aux scientifiques car ce sont des fenêtres permettant de savoir ce qui se passe dans les profondeurs de la Terre. Ils peuvent faire remonter des matériaux situés jusqu’à 10 kilomètres sous la surface. Leur chimie et leur température peuvent fournir des informations utiles sur les processus profonds à l’intérieur de la Terre. Par exemple, l’analyse de la boue de Lusi a révélé que l’eau était chauffée par une chambre magmatique souterraine associée au complexe volcanique voisin d’Arjuno-Welirang.
Source : The Conversation, Yahoo Actualités.

———————————————

The event made the headlines in 2006 but today it is forgotten and nobody tells about this environmental disaster. On May 29th, 2006 in Sidoarjo Regency (Indonesia), the ground ruptured overnight and spewed out steam. In the following weeks, water, boiling-hot mud and natural gas were added to the mixture. When the eruption intensified, mud started to spread over the fields, forcing the evacuation of many residents. Weeks passed, and the spreading mud engulfed entire villages. The Indonesian government began to build levees to contain the mud and stop the spread. When the mud overtopped these levees, they built new ones behind the first set. The government eventually succeeded in stopping the mud’s advance, but not before the flows had wiped out a dozen villages and forced 60,000 people to relocate.

Today, more than 16 years after the eruption began, the Lusi structure in Indonesia continues to erupt, but at a much slower rate. Its mud covers a total area of roughly 7 square kilometers and is contained behind a series of levees that have been built up to a height of 30 meters.

The evironmental disaster was accompanied by legal battles aimed at finding the culprits. The initial rupture occurred close to a drilling gas exploration well, which led to accusations that the oil company responsible for the well – Lapindo Brantas – was at fault. The operator of the well countered that the eruption was natural, triggered by an earthquake that had occurred several days earlier. In 2009, the Indonesian supreme court dismissed a lawsuit charging the company with negligence. The same year, police dropped criminal investigations against Lapindo Brantas and several of its employees, citing a lack of evidence. Although the lawsuits have been settled, the debate continues, with international research groups lining up on both sides of the dispute.

The Indonesian Lusi structure – a contraction of Lumpur Sidoarjo, meaning “Sidoarjo mud” – is an example of a geological feature known as a mud volcanoes. They form when a combination of mud, fluids and gases erupt at the Earth’s surface. Overpressure within the Earth builds up when underground fluids are unable to escape from beneath the weight of overlying sediments. Overpressures are commonly encountered during drilling for oil and gas and are typically planned for. A primary way of dealing with overpressures is to fill the wellbore with dense drilling mud, which has sufficient weight to contain the overpressures. If the well is drilled with insufficient mud weight, any overpressured fluids can rush up the wellbore to explode out at the surface, leading to a spectacular blowout. Famous examples of blowouts occurred in1901 in Texas and in 2010 in the Gulf of Mexico. In those cases it was oil, not mud, that burst out of the wells .In most cases the mud bubbles up to the surface rather quietly. But sometimes the eruptions are quite violent and may even kill people standing close by as this happened at the Macalube di Aragona (Sicily) in September 2014. Furthermore, most of the gas coming out of a mud volcano is methane, which is highly flammable. This gas can ignite, creating spectacular fiery eruptions like the one at Otman Bozdagh in Azerbaijan :

https://youtu.be/FjzYUdlSs5w

Mud volcanoes are useful to scientists as windows into conditions deep inside the Earth. They can involve materials from as deep as 10 kilometers below the Earth’s surface, so their chemistry and temperature can provide useful insights into deep-Earth processes. For example, analysis of the mud erupting from Lusi has revealed that the water was heated by an underground magma chamber associated with the nearby Arjuno-Welirang volcanic complex.

Source : The Conversation, Yahoo News.

 

Lusi: une catastrophe humaine, écologique et économique  (Crédit photo:  Wikipedia)

Volcan de boue dans les Macalube di Aragona (Photo: C. Grandpey)

Le méthane, un poison pour le climat (2ème partie) // Methane, a poison for the climate (part 2)

À l’aide de l’EMIT (Earth Surface Mineral Dust Source Investigation), un outil conçu pour étudier l’impact de la poussière sur le climat, les scientifiques de la NASA ont identifié plus de 50 sites émetteurs de méthane dans le monde. Cette technologie pourrait aider à lutter contre le puissant gaz à effet de serre. Depuis son installation en juillet 2022 à bord de la Station spatiale internationale, l’outil a détecté des « super-émetteurs » de méthane en Asie centrale, au Moyen-Orient et dans le sud-ouest des États-Unis.
Les sites émetteurs de méthane nouvellement détectés – certains déjà connus et d’autres récemment découverts – comprennent de vastes installations pétrolières et gazières et de grands sites d’enfouissement des ordures. L’instrument de la NASA permettra de localiser les super-émetteurs de méthane afin que ces émissions puissent être stoppées à la source.
Effectuant une rotation autour de la Terre toutes les 90 minutes à bord de la Station spatiale à quelque 400 km d’altitude, l’EMIT est capable de scanner de vastes étendues de la planète sur des dizaines de kilomètres, avec la capacité de se concentrer sur des zones de la taille d’un terrain de football.
L’instrument, baptisé « spectromètre imageur », a été conçu principalement pour identifier la composition minérale de la poussière envoyée dans l’atmosphère terrestre par les déserts et d’autres régions arides, mais il s’est avéré apte à détecter d’importantes émissions de méthane.
Parmi les super-émetteurs de méthane nouvellement imagés, on relève un groupe de 12 panaches provenant d’infrastructures pétrolières et gazières au Turkménistan. Certains panaches s’étirent sur plus de 32 km. Les scientifiques estiment qu’ensemble des panaches du Turkménistan envoient dans l’atmosphère du méthane à raison de 50 400 kg par heure. C’est du même ordre que le débit de pointe du champ gazier d’Aliso Canyon en 2015 près de Los Angeles, qui est l’un des plus grands rejets accidentels de méthane de l’histoire des États-Unis.
Deux autres grands émetteurs sont un champ pétrolifère au Nouveau-Mexique et un complexe de traitement des déchets en Iran. Ils émettent ensemble près de 29 000 kg de méthane par heure. Le panache de méthane au sud de Téhéran mesure au moins 4,8 km de long. Aucun des deux sites n’était auparavant connu des scientifiques.
Source : Al Jazeera et agences de presse.

 ++++++++++

Using the Earth Surface Mineral Dust Source Investigation (EMIT), a tool designed to study how dust affects climate, NASA scientists have identified more than 50 methane-emitting hotspots around the world, a development that could help combat the potent greenhouse gas. Since the tool was installed in July onboard the International Space Station it has detected methane “super-emitters” in Central Asia, the Middle East and the southwestern United States.

The newly measured methane hotspots – some previously known and others just discovered – include sprawling oil and gas facilities and large landfill sites. NASA’s instrument will help “pinpoint” methane super-emitters so that such emissions can be stopped “at the source”.

Circling Earth every 90 minutes from its perch onboard the space station some 400km high, EMIT is able to scan vast tracts of the planet dozens of kilometres across while also focusing in on areas as small as a football field.

The instrument, called an imaging spectrometer, was built primarily to identify the mineral composition of dust blown into Earth’s atmosphere from deserts and other arid regions, but it has proven adept at detecting large methane emissions.

Examples of the newly-imaged methane super-emitters include a cluster of 12 plumes from oil and gas infrastructure in Turkmenistan, some plumes stretching more than 32 km. Scientists estimate the Turkmenistan plumes collectively spew methane at a rate of 50,400 kg per hour, rivalling the peak flow from the 2015 Aliso Canyon gas field blowout near Los Angeles that ranks as one of the largest accidental methane releases in US history.

Two other large emitters were an oilfield in New Mexico and a waste-processing complex in Iran, emitting nearly 29,000 kg of methane per hour combined. The methane plume south of the Iranian capital Tehran was at least 4.8 km long. Neither site were previously known to scientists.

Source: Al Jazeera and news agencies.

Image d’une source de méthane obtenue avec l’EMIT (Source: NASA)

Le méthane, un poison pour le climat (1ère partie) // Methane, a poison for the climate (part 1)

On sait aujourd’hui que les émissions de méthane (CH4) sont une menace majeure pour le climat de notre planète. Les scientifiques et les écologistes appellent à des mesures agressives pour limiter la production de ce gaz. Lors de la COP26 de Glasgow (Écosse) en 2021, plus de 100 pays se sont engagés à réduire de 30 % leurs émissions de méthane d’ici 2030. Toutefois, les décisions prises lors de ces conférences ne sont pas contraignantes, de sorte que peu de nations ont élaboré des plans clairs pour atteindre ce but.
En utilisant la surveillance par satellite, les scientifiques découvrent de nouvelles sources d’émissions, notamment des fuites au niveau des puits de pétrole et des gazoducs. Environ 60 % du méthane dans l’atmosphère provient de sources industrielles comme les oléoducs et les gazoducs, mais aussi des sites de forage, ainsi que des parcs d’engraissement du bétail, des terres cultivées et des décharges.
De plus en plus de recherches montrent que la réduction des émissions de méthane est essentielle pour maintenir le réchauffement planétaire à moins de 2 degrés Celsius au-dessus de l’époque préindustrielle afin d’éviter les pires catastrophes pour notre planète.
Après avoir été largement ignoré pendant des décennies, les scientifiques savent maintenant que le méthane est beaucoup plus nocif que le dioxyde de carbone (CO2) comme gaz à effet de serre à court terme, même s’il ne persiste qu’une décennie dans l’atmosphère avant de se décomposer, alors que le CO2 persiste pendant des siècles. Les scientifiques ont comparé les effets de réchauffement du méthane et du dioxyde de carbone sur un siècle; sur ce laps de temps, le méthane est 28 fois plus nocif, alors que sur 20 ans il l’est 80 fois plus.
L’impact climatique du méthane est doublement préoccupant car le monde est plus proche qu’on le pensait du «point de basculement» après lequel le réchauffement climatique ne peut plus être contrôlé. Une étude publiée en septembre 2022 a montré que certains événements susceptibles d’être déclenchés par le réchauffement climatique, comme la disparition de la calotte glaciaire du Groenland ou la fonte du pergélisol arctique, sont imminents.
Les trois cinquièmes des émissions mondiales de méthane proviennent de l’activité humaine ; le reste provient de sources naturelles comme les marécages ou le dégel du pergélisol, bien que cet impact soit encore mal connu.
Parmi les émissions d’origine humaine, les deux tiers proviennent de l’élevage et des combustibles fossiles, le reste provenant en grande partie des déchets en décomposition ainsi que de la riziculture. Ce qui est particulièrement inquiétant, c’est que les émissions de méthane s’avèrent être plus élevées que les normes définies par les agences climatiques.
Les scientifiques peuvent mesurer avec précision le niveau de méthane dans l’atmosphère, mais le plus important pour les décideurs qui cherchent à imposer des réglementations est d’en connaître la source.
Les entreprises pétrolières et les gouvernements font pression pour que le gaz naturel devienne un « carburant de transition » vers les énergies renouvelables dans le cadre de la lutte contre le changement climatique. Leur argument est que la combustion du gaz naturel émet deux fois moins de carbone par kilowatt que le charbon. Cependant, avec les fuites des plates-formes de forage, des pipelines et d’autres infrastructures, cet avantage peut rapidement être effacé.
De plus en plus de gouvernements exigent aujourd’hui que l’industrie pétrolière et gazière détecte et répare les fuites après que des études ont montré qu’elles étaient un énorme problème. L’Union Européenne a récemment accordé le label « vert » à certains projets de gaz naturel dans un désir de développement de ce secteur.
Source : Yahoo Actualités.

 ——————————————–

Methane emissions are known as a top threat to the global climate. Scientists and environmentalists are calling for aggressive action to curb the output. At last year’s COP26 in Glasgow (Scotland), more than 100 countries pledged a 30% cut from 2020 methane emissions levels by 2030. But the decisions made during these conferences are not binding, so that few nations have since worked out clear plans to reach that goal.

Scientists using satellite monitoring are discovering new emissions sources, including leaks from oil wells and natural gas pipelines. About 60% of the methane in the atmosphere comes from industrial sources, including oil and gas pipelines and drill sites, as well as feed lots, croplands and landfills.

Research increasingly shows that reducing emissions of methane is vital to keeping planetary warming to within 2 degrees Celsius above pre-industrial times to avert the worst impacts of climate change.

After being largely ignored for decades, scientists now know that methane is much more potent than carbon dioxide as a greenhouse gas in the short term, even though it lingers for only a decade in the atmosphere before breaking down while CO2 lingers for centuries. Scientists compare the warming effects of methane and carbon dioxide over one century, and over that timescale methane is 28 times worse. Over 20 years, however, methane is 80 times worse.

Methane’s climate impact is doubly worrying because the world is closer than previously thought to crossing « tipping points » at which climate global warming can no longer be controlled. A study in September 2022 suggested that some of the events that could be triggered by global warming, like the collapse of the Greenland Ice Sheet or the melting of Arctic permafrost, are imminent.

Three-fifths of the world’s estimated methane emissions are from human activity; the rest are from natural sources like swamps or the thawing of permafrost, although its impact is still unknown.

Of the human-caused emissions, two-thirds are from livestock farming and fossil fuels, with much of the rest from decomposing waste as well as rice cultivation. What is specially worrying is that methane emissions turn out to be higher than climate agencies said they should be.

While scientists can accurately measure the level of methane in the atmosphere, understanding where it is coming from is crucial for policymakers seeking to impose regulations that reduce the emissions.

Petroleum-producing companies and nations are lobbying hard for natural gas as a « bridge fuel » to renewables as the world undertakes a clean energy transition to fight climate change. Their argument: burning natural gas emits half as much carbon per kilowatt as coal. However, with leaks from drill pads, pipelines, compressors, and other infrastructure, those gains can quickly be erased.

World governments, including the United States, are introducing requirements that the oil and gas industry detect and repair leaks after studies showed leaks in the industry were a huge problem. The European Union recently endorsed labeling some natural gas projects as « green » in a major boost to the industry.

Source: Yahoo News.

Source: AquaPortail