Le changement climatique fait s’effondrer la Route n°1 à Big Sur (Californie) // Climate change causes Highway 1 to collapse in California’s Big Sur

Les événements extrêmes provoqués par le changement climatique peuvent avoir des conséquences désastreuses pour l’environnement et perturber les activités humaines. C’est ce qui s’est passé en Californie le 31 janvier 2021 lorsqu’une partie de la célèbre et spectaculaire route littorale, la Highway 1, s’est effondrée dans l’océan. L’événement a été provoqué par un glissement de terrain qui va entraîner la fermeture de 37 kilomètres de cette route pendant des mois.

Au cours de la dernière semaine de janvier, une violente tempête hivernale a provoqué l’ouverture d’une brèche de 45 mètres dans la route qui serpente le long de Big Sur. Des torrents d’eau ont emporté du béton, des arbres et de la boue qui se sont déversés dans la mer en contrebas. [NDLR: Big Sur fait référence à une partie du littoral californien qui s’étend sur environ 140 km entre Carmel-in-the-Sea et San Simeon.]

Les glissements de terrain sont fréquents le long de la Highway 1. Avec le changement climatique, l’afflux de véhicules et le tourisme de masse qui fragilisent les infrastructures et les écosystèmes dans la région côtière, les problèmes ne feront que s’aggraver. En raison de problèmes récurrents, il se dit que la route n’a jamais été pleinement opérationnelle du nord au sud depuis sa mise en service. Entre les dégâts causés par la mer et les effondrements des flancs de falaises, l’entretien de la route est devenu une tâche sans fin. En 2017, un glissement de terrain au niveau de Mud Creek a recouvert 400 mètres de chaussée avant de se déverser dans la mer. La reconstruction a duré plus d’un an et a coûté environ 54 millions de dollars.

Le glissement de terrain du 31 janvier a probablement été causée par un ensemble de circonstances environnementales : une saison d’incendies encore jamais observée suivie de puissantes tempêtes hivernales. Les incendies ont duré plusieurs mois et détruit la végétation qui protégeait les falaises abruptes le long de la côte. Puis vint la pluie. Une «rivière atmosphérique» qui déverse  de fortes quantités de pluie ou de neige lorsqu’elle touchele sol, a inondé la région avec 40 centimètres de pluie, soit près du double de la quantité que la région connaît en moyenne en janvier. Le sol n’a pas pu absorber cette quantité d’eau qui a provoqué l’écoulement de la boue sur la falaise mise à nu par les incendies. Cette boue a ensuite obstrué un tuyau de drainage sous la route qui  a été submergée et s’est effondrée sous le poids des matériaux.

Une telle combinaison de conditions météorologiques extrêmes n’est plus exceptionnelle. Ils s’inscrivent dans la lignée des modèles de crise climatique marqués par des étés chauds et secs, des incendies plus importants et de longues périodes de sécheresse entrecoupées de pluies intenses qui provoquent des inondations et des glissements de terrain.

Cependant, ce ne sont pas seulement les incendies, la pluie et les glissements de terrain qui menacent la Highway 1. La mer est également à prendre en compte. Des digues et des enrochements ont été rompus par les vagues le long du rivage. La Californie a dépensé des millions de dollars pour effectuer des réparations d’urgence alors que le littoral continue de s’éroder à raison d’environ 35 centimètres en moyenne chaque année. D’autres catastrophes se produiront. Selon certaines projections scientifiques alarmistes, le niveau de la mer pourrait s’élever de plus de 2,50 mètres en Californie d’ici la fin de ce siècle.

Il est clair que la route s’effondre parce que l’océan ronge les falaises. Une solution pourrait être d’anticiper les problèmes, sans attendre qu’ils surviennent. Pendant ce temps, les personnes qui vivent le long de la Highway 1 dans la région de Big Sur doivent s’adapter. Elles doivent être prêtes à vivre isolées pendant tout un hiver. Beaucoup d’entre elles ont stocké des aliments lyophilisés et des boîtes de conserve, ainsi que beaucoup de bois de chauffage. Ces habitants ont également acheté des groupes électrogènes. Malgré les dangers, ils ne veulent pas partir. L’un d’eux a déclaré: « C’est l’un des plus beaux endroits de la planète. C’est très isolé et ce n’est pas pour tout le monde, mais je ne partirai jamais. »

Source: The Guardian.

Voici un document qui montre une série d’effondrements sur la Highway 1 à Big Sur. Elle est magnifique, mais il est fortement déconseillé de l’emprunter en cas de très mauvais temps.

https://youtu.be/aG3fqYKR97U

——————————————–

Climate change has led to more and more extreme events that may have disastrous consequences for the environment and disrupt human activities. An example was given by California on January 31st, 2021 when a portion of the famed and dramatic coastal road, the Highway 1, collapsed into the ocean. Highway 1 has been ruptured by a landslide that is expected to keep 37 kilometres of the iconic road closed for months.

In the last week of January, a severe winter rain storm caused the opening of a 45-metre fissure along the picturesque thoroughfare tucked against Big Sur, with concrete, trees and mud falling into the sea below. [Personal note : Big Sur refers to a portion of the Californian coastline that stretches over about 140 km between Carmel-in-the-Sea and San Simeon.]

Landslides have been a longstanding feature of Highway 1. And with climate change and a deluge in tourism and traffic overwhelming both infrastructure and environmental ecosystems in the coastal region, the problems are only expected to get worse. Because of recurrent problems, it is rumoured the highway has never been fully operational from north to south for more than a year since its inauguration. Caught between rising tides and crumbling cliff sides, maintaining the highway has become somewhat of a sisyphean task. In 2017, the Mud Creek slide covered a 400-metre of the highway with a huge chunk of land falling into the sea. The rebuild took more than a year to complete, and cost roughly 54 million dollars.

The 31 January slide was probably caused by the disastrous environmental combination of a record-breaking fire season followed by big winter storms. The months-long fire destroyed the vegetation that no longer protected the steep cliff sides along the coast. Then came the rain. An “atmospheric river”, a flowing column of condensed water vapour that spills severe amounts of rain or snow when it makes landfall, flooded the region, dropping 40 centimetres of rainfall, nearly twice the amount the area has seen for the entire month on average. The soil was unable to absorb that amount of cascading water, causing mud and debris to flow, ultimately blocking and then overwhelming a drainage pipe under the highway.

Such severe weather combinations are no longer an anomaly. They fall in line with climate crisis trends and models marked by hot dry summers, bigger fires and long periods of drought peppered by intense rainstorms that cause floods and landslides.

However, it is not just fires, rain and landslides that threaten Highway 1. The sea is also an important threat. Smashed seawalls built to buy more time against the encroaching waves already line the shore. California sank millions into emergency restorations as the coastline continued to erode by roughly 35 centimetres on average each year. More dangers lie ahead. By some worst-case scientific projections, sea levels could rise more than 2.50 metres in California by the end of this century.

It is clear that the roadway is crumbling because the ocean is just eating away at the cliffs. One solution might be to anticipate the problems and not wait until they happen. Meanwhile, residents living along Highway 1 in the Big Sur area have been forced to adapt. They need to be prepared to be isolated for an entire winter. Many of them have stored dried and canned food, as well as lots of firewood. They also bought backup generators. Despite the dangers, they do not want to leave. One person said: “It is one of the most beautiful places on the planet. It is very isolated and it is not for everybody, but I am never going to leave.”

Source : The Guardian.

Here is a document showing collapses of Highway 1. The road is very beautiful but it is not advised to drive on it in very bad weather

https://youtu.be/aG3fqYKR97U

Exemple d’un effondrement de la Highway 1 à Big Sur (Source : CalTrans)

Un glacier s’effondre et provoque une catastrophe dans l’Himalaya // A glacier collapses and causes a disaster in the Himalayas

Le 7 février 2021, au moins 9 personnes ont été tuées et au moins 150 autres sont portées disparues après l’effondrement d’un glacier himalayen sur un barrage. Cet événement a provoqué une énorme inondation dans l’État de l’Uttarakhand, dans le nord de l’Inde. Les autorités ont également déclaré qu’au moins 16 autres personnes avaient été piégées é l’intérieur un tunnel. L’énorme déversement d’eau a endommagé deux barrages et plusieurs maisons. Des équipes de secours ont été envoyées sur place.

Il est à craindre que les ouvriers qui travaillaient sur un projet hydroélectrique voisin aient été emportés par l’énorme vague, ainsi que d’autres villageois qui se trouvaient près de la rivière au moment de la catastrophe. Les vidéos diffusées par les médias montrent que le barrage était dans l’incapacité de résister au poids de la déferlante :

https://actu.orange.fr/societe/videos/himalaya-la-rupture-d-un-glacier-provoque-de-fortes-crues-au-moins-trois-morts-et-150-disparus-CNT000001wYagt.html

Une vaste opération de secours est actuellement en cours dans la région pour tenter de retrouver des survivants. Des milliers d’habitants ont déjà été évacués, mais l’ampleur des dégâts ne pourra être évaluée qu’une fois que la crue aura pris fin.

La presse indienne a expliqué qu’une partie du glacier de Nanda Devi s’était tétachée dimanche matin, deux jours après qu’une avalanche se soit déclenchée sur le même glacier. Lorsque le glacier s’est effondré, il a libéré de l’eau, de la boue et d’autres débris qui étaient retenus en amont. Cette masse de matériaux s’est à son tour écrasée dans d’autres plans d’eau, provoquant un effet d’accumulation et une crue gigantesque de la rivière.

En raison du changement climatique et du réchauffement de la planète l’État d’Uttarakhand dans la région de l’Himalaya est sujet à de fortes inondations. En juin 2013, des précipitations record ont provoqué des inondations dévastatrices qui ont fait près de 6 000 morts.

Source: Indian Express.

———————————————

At least 9 people have been killed and at least 150 are missing after a Himalayan glacier crashed into a dam o February 7th, 2021 and triggered a huge flood in the northern state of Uttarakhand. Authorities also said that more than 16 people were trapped inside a tunnel.

Several rescue teams were sent in after the sudden barrage of water damaged two dams and several homes.

It is feared that workers from a nearby hydropower project were swept away by the flood as well as other villagers who were near the river at the time.

The videos shared on news media showed how the dam was unable to hold back the sheer weight of water.

https://actu.orange.fr/societe/videos/himalaya-la-rupture-d-un-glacier-provoque-de-fortes-crues-au-moins-trois-morts-et-150-disparus-CNT000001wYagt.html

A huge operation is now underway in the region to try to find those missing. Thousands of residents have already been evacuated but experts say it will only be clear how extensive the damage is once the floodwaters recede.

The Indian press said that part of the Nanda Devi glacier broke off on Sunday morning, two days after an avalanche was triggered on the same glacier. When the glacier broke off, it released water, mud and other debris that had been trapped behind it. These in turn crashed into other bodies of water causing a knock-on effect further down the river.

Due to climate change and global warming, the Uttarakhand state in the mountainous Himalayas region is prone to heavy flooding. In June 2013, record-breaking rainfall led to devastating floods that left almost 6,000 people dead.

Source : The Indian Express.

Glaciers himalayens vus depuis l’espace (Source : NASA)

Le Merapi (Indonésie) toujours menaçant // Mt Merapi still a threat in Indonesia

Selon le Centre indonésien de gestion des risques géologiques (CVGHM), il se pourrait qu’une puissante éruption soit imminente sur le Merapi. La couleur de l’alerte aérienne est passée au Rouge. De plus, les autorités ont également relevé le niveau d’alerte volcanique de 2 à 3 (Siaga), sur une échelle de 4 niveaux, le 5 novembre 2020 suite à une augmentation significative de la sismicité. Comme je l’ai déjà écrit, quelque 500 personnes vivant dans quatre villages à proximité du volcan ont été évacuées. D’autres mesures d’urgence pour l’évacuation des personnes vivant à moins de 6 km du cratère sont en préparation.

J’ai indiqué dans plusieurs notes au cours des derniers mois que le dôme sommital était en phase de croissance. Il n’y a pas eu de nouvelle évolution depuis le 5 novembre, mais la sismicité et la déformation du sommet continuent. En conséquence, les volcanologues locaux pensent qu’une éruption explosive est susceptible de se produire, ou bien une extrusion rapide de magma peut survenir, accompagnée de coulées pyroclastiques sur de longues distances. Source: CVGHM.

En cas d’éruption, il faudrait procéder dès le début à une évacuation à grande échelle de la population en se référant à la carte à risques du Merapi. Il ne faudra pas le faire pas à pas, en fonction des événements, comme ce fut le cas en 2010 où 347 personnes ont été tuées par l’éruption.

——————————————

According to the Indonesian Center for Volcanology and Geological Hazard Mitigation (CVGHM), a significant eruption may be imminent at Merapi whose Aviation Colour Code has been raised to Red. Moreover, authorities also raised the volcanic alert level from 2 to 3, on a scale of 4 levels on November 5th, 2020 after a significant increase in seismicity. As I put it before, about 500 people from four villages in the vicinity of the volcano have been evacuated. More emergency measures to evacuate people living within 6 km of the crater are being prepared.

I indicated in several posts during the past months that th summit dome was growing. However, there has been no new lava dome growth since November 5th, but both seismicity and deformation are still increasing. As a consequence, local volcanologists think an explosive eruption might occur or fast magma extrusion might be observed, accompanied by long-distance pyroclastic flows.

Source : CVGHM.

Should an eruption occur, a large-scale evacuation should be performed from the start with reference to Mt Merapi’s hazard map. It should not be done step by step according to the events like in 2010 when 347 people were killed by the eruption.

Carte à risques du Merapi établie après l’éruption de 2010

Bezymianny (Kamchatka): Effondrement et renaissance d’un volcan // Bezymianny (Kamchatka): The collapse and rebirth of a volcano

L’activité volcanique faisant suite à l’effondrement d’un volcan peut contribuer à la naissance d’un nouvel édifice. Le processus accompagnant une telle renaissance n’avait pas été étudié jusqu’à présent. Pour la première fois, des chercheurs du Centre National de Recherche pour les Sciences de la Terre de Potsdam et des volcanologues russes ont pu analyser le cycle de vie d’un volcan, depuis son effondrement jusqu’à sa renaissance. Ils ont présenté l’analyse de données photogrammétriques sur un laps de temps de 70 ans à propos du volcan Bezymianny dans la péninsule du Kamtchatka. Les images montrent la renaissance du volcan après son effondrement.
Le versant oriental du Bezymianny s’est effondré en 1956. Grâce à des techniques modernes, les chercheurs du GFZ Potsdam ont examiné des photographies de survols d’hélicoptères datant de l’époque soviétique, et les ont comparées avec des données satellitaires plus récentes.
Les images montrent le volcan après son effondrement en 1956. Sa première phase de reconstruction a commencé à partir de plusieurs bouches distantes d’environ 400 m les unes des autres.
L’activité volcanique s’est intensifiées au bout d’une vingtaine d’années. Elle est devenue plus effusive avec une migration des bouches qui se sont rapprochées à moins de 200 m les unes des autres.
50 années plus tard, l’activité s’est concentrée sur une bouche unique, ce qui a permis l’édification d’un stratovolcan couronné par un cratère sommital
Les chercheurs ont estimé le rythme de croissance moyen à  26 400 mètres cubes par jour. Cela a leur a permis d’estimer le regain de taille précédent le prochain effondrement.
Les résultats ont également permis aux scientifiques de prévoir à quel moment l’édifice volcanique pourrait atteindre à nouveau la hauteur fatidique précédant un nouvel effondrement sous son propre poids.
Les résultats montrent que la désintégration et la reconstruction d’un volcan ont un impact majeur sur les conduits magmatiques en profondeur.
En conclusion, les volcans qui se sont effondrés puis se sont reconstitués montrent une sorte de mémoire de leur niveau de contraintes. En conséquence, il faudrait intégrer l’histoire de la naissance et de l’effondrement d’un volcan dans les prévisions à venir car ces informations fourniront des indications sur les éruptions probables ou les effondrements imminents.

Référence : « The rebirth and evolution of Bezymianny volcano, Kamchatka after the 1956 sector collapse » – Shevchenko, A. V. et al. – Nature Communications Earth and Environment.
Source: The Watchers.

—————————————————

Continued post-collapse volcanic activity can cause the rise of a new edifice. However, details of such edifice rebirth had not been documented up to now. For the first time, researchers from the GFZ German Research Center for Geosciences and volcanologists from Russia were able to analyse a volcano’s life cycle, from its 1956 collapse to its rebirth. They presented the results of 70-year-long photogrammetric data for Bezymianny volcano in the Kamchatka Peninsula. The images show the volcano’s rebirth after it collapsed.

The eastern sector of Bezymianny volcano collapsed in 1956. Using modern methods, researchers at the GFZ Potsdam studied photographs of helicopter overflights from Soviet times, combined with more recent satellite drone data.

The images show the volcano after its collapse. Its initial regrowth started at different vents around 400 m apart.

Volcanic activity increased after about 20 years. It became more effusive with vents migrating within ~200 m distance.

After 50 more years, activity focused on a single vent, allowing the growth of stratocone with a summit crater

The researchers identified an average growth rate of 26 400 cubic metres per day, allowing the researchers to estimate the regain of the pre-collapse size within the next 15 years.

The findings also allowed the scientists to predict when the volcanic building may reach a crucial height once again, so that it may collapse once more under its own weight.

The results show that the decay and re-growth of a volcano has a major impact on the pathways of the magma in the depth.

Thus, disintegrated and newly grown volcanoes show a kind of memory of their altered field of stress. The results indicate that the history of birth and collapse of a volcano must be included in future forecasts as the information will be able to provide estimates about probable eruptions or imminent collapses.

Reference: « The rebirth and evolution of Bezymianny volcano, Kamchatka after the 1956 sector collapse » – Shevchenko, A. V. et al. – Nature Communications Earth and Environment.

Source: The Watchers.

Vue du Bezymianny (Crédit photo : KVERT)