Le changement climatique fait s’effondrer la Route n°1 à Big Sur (Californie) // Climate change causes Highway 1 to collapse in California’s Big Sur

Les événements extrêmes provoqués par le changement climatique peuvent avoir des conséquences désastreuses pour l’environnement et perturber les activités humaines. C’est ce qui s’est passé en Californie le 31 janvier 2021 lorsqu’une partie de la célèbre et spectaculaire route littorale, la Highway 1, s’est effondrée dans l’océan. L’événement a été provoqué par un glissement de terrain qui va entraîner la fermeture de 37 kilomètres de cette route pendant des mois.

Au cours de la dernière semaine de janvier, une violente tempête hivernale a provoqué l’ouverture d’une brèche de 45 mètres dans la route qui serpente le long de Big Sur. Des torrents d’eau ont emporté du béton, des arbres et de la boue qui se sont déversés dans la mer en contrebas. [NDLR: Big Sur fait référence à une partie du littoral californien qui s’étend sur environ 140 km entre Carmel-in-the-Sea et San Simeon.]

Les glissements de terrain sont fréquents le long de la Highway 1. Avec le changement climatique, l’afflux de véhicules et le tourisme de masse qui fragilisent les infrastructures et les écosystèmes dans la région côtière, les problèmes ne feront que s’aggraver. En raison de problèmes récurrents, il se dit que la route n’a jamais été pleinement opérationnelle du nord au sud depuis sa mise en service. Entre les dégâts causés par la mer et les effondrements des flancs de falaises, l’entretien de la route est devenu une tâche sans fin. En 2017, un glissement de terrain au niveau de Mud Creek a recouvert 400 mètres de chaussée avant de se déverser dans la mer. La reconstruction a duré plus d’un an et a coûté environ 54 millions de dollars.

Le glissement de terrain du 31 janvier a probablement été causée par un ensemble de circonstances environnementales : une saison d’incendies encore jamais observée suivie de puissantes tempêtes hivernales. Les incendies ont duré plusieurs mois et détruit la végétation qui protégeait les falaises abruptes le long de la côte. Puis vint la pluie. Une «rivière atmosphérique» qui déverse  de fortes quantités de pluie ou de neige lorsqu’elle touchele sol, a inondé la région avec 40 centimètres de pluie, soit près du double de la quantité que la région connaît en moyenne en janvier. Le sol n’a pas pu absorber cette quantité d’eau qui a provoqué l’écoulement de la boue sur la falaise mise à nu par les incendies. Cette boue a ensuite obstrué un tuyau de drainage sous la route qui  a été submergée et s’est effondrée sous le poids des matériaux.

Une telle combinaison de conditions météorologiques extrêmes n’est plus exceptionnelle. Ils s’inscrivent dans la lignée des modèles de crise climatique marqués par des étés chauds et secs, des incendies plus importants et de longues périodes de sécheresse entrecoupées de pluies intenses qui provoquent des inondations et des glissements de terrain.

Cependant, ce ne sont pas seulement les incendies, la pluie et les glissements de terrain qui menacent la Highway 1. La mer est également à prendre en compte. Des digues et des enrochements ont été rompus par les vagues le long du rivage. La Californie a dépensé des millions de dollars pour effectuer des réparations d’urgence alors que le littoral continue de s’éroder à raison d’environ 35 centimètres en moyenne chaque année. D’autres catastrophes se produiront. Selon certaines projections scientifiques alarmistes, le niveau de la mer pourrait s’élever de plus de 2,50 mètres en Californie d’ici la fin de ce siècle.

Il est clair que la route s’effondre parce que l’océan ronge les falaises. Une solution pourrait être d’anticiper les problèmes, sans attendre qu’ils surviennent. Pendant ce temps, les personnes qui vivent le long de la Highway 1 dans la région de Big Sur doivent s’adapter. Elles doivent être prêtes à vivre isolées pendant tout un hiver. Beaucoup d’entre elles ont stocké des aliments lyophilisés et des boîtes de conserve, ainsi que beaucoup de bois de chauffage. Ces habitants ont également acheté des groupes électrogènes. Malgré les dangers, ils ne veulent pas partir. L’un d’eux a déclaré: « C’est l’un des plus beaux endroits de la planète. C’est très isolé et ce n’est pas pour tout le monde, mais je ne partirai jamais. »

Source: The Guardian.

Voici un document qui montre une série d’effondrements sur la Highway 1 à Big Sur. Elle est magnifique, mais il est fortement déconseillé de l’emprunter en cas de très mauvais temps.

https://youtu.be/aG3fqYKR97U

——————————————–

Climate change has led to more and more extreme events that may have disastrous consequences for the environment and disrupt human activities. An example was given by California on January 31st, 2021 when a portion of the famed and dramatic coastal road, the Highway 1, collapsed into the ocean. Highway 1 has been ruptured by a landslide that is expected to keep 37 kilometres of the iconic road closed for months.

In the last week of January, a severe winter rain storm caused the opening of a 45-metre fissure along the picturesque thoroughfare tucked against Big Sur, with concrete, trees and mud falling into the sea below. [Personal note : Big Sur refers to a portion of the Californian coastline that stretches over about 140 km between Carmel-in-the-Sea and San Simeon.]

Landslides have been a longstanding feature of Highway 1. And with climate change and a deluge in tourism and traffic overwhelming both infrastructure and environmental ecosystems in the coastal region, the problems are only expected to get worse. Because of recurrent problems, it is rumoured the highway has never been fully operational from north to south for more than a year since its inauguration. Caught between rising tides and crumbling cliff sides, maintaining the highway has become somewhat of a sisyphean task. In 2017, the Mud Creek slide covered a 400-metre of the highway with a huge chunk of land falling into the sea. The rebuild took more than a year to complete, and cost roughly 54 million dollars.

The 31 January slide was probably caused by the disastrous environmental combination of a record-breaking fire season followed by big winter storms. The months-long fire destroyed the vegetation that no longer protected the steep cliff sides along the coast. Then came the rain. An “atmospheric river”, a flowing column of condensed water vapour that spills severe amounts of rain or snow when it makes landfall, flooded the region, dropping 40 centimetres of rainfall, nearly twice the amount the area has seen for the entire month on average. The soil was unable to absorb that amount of cascading water, causing mud and debris to flow, ultimately blocking and then overwhelming a drainage pipe under the highway.

Such severe weather combinations are no longer an anomaly. They fall in line with climate crisis trends and models marked by hot dry summers, bigger fires and long periods of drought peppered by intense rainstorms that cause floods and landslides.

However, it is not just fires, rain and landslides that threaten Highway 1. The sea is also an important threat. Smashed seawalls built to buy more time against the encroaching waves already line the shore. California sank millions into emergency restorations as the coastline continued to erode by roughly 35 centimetres on average each year. More dangers lie ahead. By some worst-case scientific projections, sea levels could rise more than 2.50 metres in California by the end of this century.

It is clear that the roadway is crumbling because the ocean is just eating away at the cliffs. One solution might be to anticipate the problems and not wait until they happen. Meanwhile, residents living along Highway 1 in the Big Sur area have been forced to adapt. They need to be prepared to be isolated for an entire winter. Many of them have stored dried and canned food, as well as lots of firewood. They also bought backup generators. Despite the dangers, they do not want to leave. One person said: “It is one of the most beautiful places on the planet. It is very isolated and it is not for everybody, but I am never going to leave.”

Source : The Guardian.

Here is a document showing collapses of Highway 1. The road is very beautiful but it is not advised to drive on it in very bad weather

https://youtu.be/aG3fqYKR97U

Exemple d’un effondrement de la Highway 1 à Big Sur (Source : CalTrans)

Glissements de terrain en série // A series of landslides

Nous sommes en décembre mais il ne fait pas froid dans les hautes latitudes. En conséquence, le sol est à peine gelé ou pas du tout. Lorsque de fortes pluies s’abattent sur ces régions, elles peuvent déclencher d’importants glissements de terrain. C’est ce qui vient de se passer en Colombie-Britannique au Canada, dans l’est de l’Islande et en Alaska

Un glissement de terrain majeur a frappé Bute Inlet en Colombie-Britannique. Tel un tsunami, le flot de débris a causé des ravages dans la forêt, détruisant au passage l’habitat de nombreux animaux. En arrivant dans la mer, le flot de boue a mis en danger le trafic maritime dans la région. On pense que le glissement de terrain s’est produit fin novembre, à la suite de fortes pluies. A la source, le glissement de terrain a probablement été provoqué par un bloc de glace qui s’est détaché d’un glacier et a terminé sa course dans le lac glaciaire. Ce dernier, à son tour, a éventré la moraine qui le retenait et propulsé une énorme vague de boue, d’arbres et de débris en aval. L’événement a complètement modifié le cours de la rivière Southgate qui est un refuge pour de nombreux animaux comme les saumons, les grizzlys, les lynx et les wapitis.

Source: CBC.CA

Une alerte a été déclenchée le 15 décembre 2020 à Seyðisfjörður, dans les Fjords de l’Est de l’Islande, en raison de glissements de terrain. L’alerte est également valable pour le reste des fjords de l’Est. Cinquante maisons ont été évacuées suite à des glissements de terrain à Seyðisfjörður. Le sol en partie gelé sur le flanc des montagnes est complètement saturé après six journées inhabituelles de fortes pluies. De nouvelles précipitations sont prévues, probablement sous forme de neige en montagne. Quelque 120 personnes ont dû évacuer leurs maisons. Aucun blessé n’a été signalé et il est difficile de savoir pour le moment s’il y a eu des dégâts importants.

Source: Iceland Monitor.

La semaine dernière, un glissement de terrain majeur s’est produit à Haines (Alaska) après que de fortes pluies aient frappé la région. Deux personnes sont toujours portées disparues et des centaines d’autres ont dû être évacuées. Plusieurs maisons ont été détruites par la boue.

Source : Anchorage Daily News.

———————————————–

We are in December but it is not cold in high latitudes so that the ground is not frozen or only half frozen. When heavy rains fall on these regions, they may trigger significant landslides. This is what has just happened in Canada’s British Columbia, in eastern Iceland and in Alaska

A massive landslide hit Bute Inlet in British Columbia, triggering a wave of debris that caused a lot of destruction to the forest, wiping out critical habitat for many animals, and causing hazards for marine traffic in the area. The landslide is believed to had happened in late November, following heavy rains that struck the region.

The landslide probably originated with a block of glacier that crashed into the glacial lake. This in turn caused the lake to break the moraine that retained it and send a huge flow of mud, trees and debris downslope. The event completely changed the course of the Southgate River which is a refuge to many animal populations such as salmon, grizzly bears, bobcats, and elk.

Source: CBC.CA

An alert phase was declared on December 15th, 2020 in Seyðisfjörður, East Fjords (Iceland), due to landslides. A warning was also issued for the rest of the East Fjords for the same reason. Fifty houses were evacuated after landslides occurred in Seyðisfjörður. The partly frozen soil in the mountain slopes is completely saturated after six days of unusually heavy rain. There is more precipitation in the forecast, which will likely be in the form of snow in the mountains.

About 120 people had to evacuate their homes. No injuries have been reported and it is unclear whether there has been damage to property.

Source: Iceland Monitor.

Last week, a major landslide occurred in Haines (Alaska) after heavy rains impacted the region. Two persons are still reported missing and hundreds had to be evacuated. Several houses were destroyed by the mud.

Source : Anchorage Daily News.

Photo: C. Grandpey

Risque de tsunami en Alaska (rappel) // Tsunami hazard in Alaska (reminder)

Dans une note intitulée «Risque de tsunami en Alaska», publiée le 25 mai 2020, j’ai attiré l’attention sur le glacier Barry, à 90 km à l’est d’Anchorage, l’un des nombreux glaciers d’Alaska qui viennent vêler dans la mer. J’expliquais que les scientifiques ont découvert que le glacier Barry – qui se jette dans le Prince William Sound – pourrait provoquer un glissement de terrain et un tsunami catastrophiques dans les prochaines décennies. Le port de Whittier, qui se trouve à proximité, pourrait être menacé. Je vous invite à lire à nouveau ma note qui donne plein de détails sur la situation:
https://claudegrandpeyvolcansetglaciers.com/2020/05/25/risque-de-tsunami-en-alaska-tsunami-hazard-in-alaska/

Un article qui vient de paraître sur le site Web The Watchers confirme qu’un important glissement de terrain dans la région de Barry Arm pourrait générer un  puissant tsunami. Les dernières observations confirment elles aussi qu’un tel événement générerait 11 fois plus d’énergie et entraînerait 16 fois plus de matériaux que le glissement de terrain de Lituya Bay en 1958, qui a déplacé 40 millions de mètres cubes de terre et déclenché une vague de 510 m de hauteur, considérée comme la plus haute de l’histoire moderne.
Des fractures ont été observées sur une falaise surplombant le fjord de Barry Arm début 2019, mais on n’a relevé aucun indice annonçant un glissement de terrain imminent. Cependant, un peu plus tard dans l’année, l’analyse d’un ensemble de données haute résolution a révélé que tout le flanc de la montagne à proximité du glacier Barry se déplaçait lentement.

——————————————

In a post entitled “Tsunami hazard in Alaska”, released on May 25th, 2020, I drew attention to the Barry Glacier, 90 km east of Anchorage, one of the numerous Alaskan glaciers that end up calving in the sea. I explained that scientists have discovered that the Barry Glacier – which calves into Prince William Sound – is increasing the risk of a catastrophic landslide and tsunami within a few decades. Whittier, which lies a short distance away, might be under threat. I invite you to read again my post which gives plenty of details about the situation:

https://claudegrandpeyvolcansetglaciers.com/2020/05/25/risque-de-tsunami-en-alaska-tsunami-hazard-in-alaska/

An article on the website The Watchers confirms that a massive landslide in Barry Arm area might generate a mega-tsunami. Recent research findings show that the collapse would generate 11 times more energy and release 16 times more debris than the 1958 Lituya Bay landslide which dropped 40 million cubic metres of land, and triggered a 510 m wave believed to be the tallest in modern history.

Some fractures were observed on a cliff overlooking the Barry Arm fjord in 2019, but there was no strong evidence of an impending landslide. However, analysis of a high-resolution dataset later that year revealed that the entire mountainside near Barry Glacier was slowly moving.

Vue satellite du fjord de Barry Arm en 2020 (Source : NASA)

Vue des glaciers de la région (Photo : C. Grandpey)

Les inondations glaciaires de Lituya Bay (Alaska) // Glacial floods in Lituya Bay (Alaska)

Lituya Bay est un fjord situé sur la côte sud-est de l’Alaska. Il mesure 14,5 km de long et 3,2 km à son point le plus large. La baie a été mentionnée en 1786 par Lapérouse, qui l’a baptisée Port des Français. Vingt et un de ses hommes ont péri quand un tsunami s’est déclenché dans la baie alors qu’ils tentaient d’en cartographier l’entrée. Lituya Bay a toujours eu la réputation d’un endroit dangereux. Les marées hautes peuvent faire s’élever de 3 mètres le niveau de l’eau et les courants à l’entrée de la baie peuvent atteindre une vitesse de près de 10 km/h. Lituya Bay a également subi plusieurs tsunamis, en 1854, 1899 et1936. Les habitants du sud-est de l’Alaska ne sont pas près d’oublier le séisme de 1958 qui a tué cinq personnes. Il a déclenché un glissement de terrain qui a généré l’un des plus puissants tsunamis au monde, avec une vague d’une hauteur d’au moins 510 mètres.
En août 2020, à l’occasion de la première journée de la saison de pêche au chinook (le plus grand de tous les saumons du Pacifique), un pêcheur de Sitka était dans son bateau avec ses deux petits-fils. Il s’apprêtait  à profiter de la marée dans la baie pour y jeter l’ancre pour la nuit. Il fut surpris de constater que le courant s’était inversé. L’eau était boueuse, pleine d’arbres et d’autres débris. En plus, il y avait des icebergs partout dans la baie.
En regardant les images satellites (voir ci-dessous), un géologue du National Park Service a constaté des changements importants dans le delta de la rivière qui passe entre le Lituya Glacier et Lituya Bay. Les chenaux dans lesquels circule normalement l’eau de fonte du glacier vers l’océan ne présentaient plus leur morphologie habituelle. Les anciens chenaux avaient disparu et de nouveaux s’étaient formés à des endroits différents. En fait, ce que l’on voyait sur les images satellites n’était autre que la conséquence de la rupture d’un barrage glaciaire avec libération d’un énorme volume d’eau. Ce phénomène de crue glaciaire a été baptisé jökulhlaup par les Islandais.
Ce qui s’est passé dans Lituya Bay est assez facile à expliquer. Juste au-dessus du Lituya Glacier se trouve la Vallée de la Désolation qui héberge un lac de 10 kilomètres carrés qui recueille les eaux de fonte de Desolation Glacier et Fairweather Glacier à proximité. Le Lituya Glacier joue normalement le rôle de barrage et retient l’eau du lac. Suite à la rupture de ce barrage, une énorme quantité d’eau, de débris et de glace s’est précipitée vers l’aval. Le débit horaire moyen peut être semblable à celui de l’Amazone. La quantité d’eau représente environ 20 fois le volume libéré par le glacier Mendenhall dans le Suicide Basin près de Juneau quand se produit un tel événement chaque été. C’est la raison pour laquelle Lituya Bay peut devenir un endroit mortel.
Les images satellites archivées et les observations précédentes montrent que ce n’est pas la première fois que le phénomène se produit. En raison du changement climatique et de la fonte plus rapide des glaciers, une répétition de ces crues glaciaires est très probable à l’avenir. L’étude de la bathymétrie au cours des dernières décennies permettra de voir s’il y a eu des changements notables du niveau d’eau. Ces données permettront de repérer les zones sujettes aux glissements de terrain subaquatiques, aux mini tsunamis ou à tout autre événement dans Lituya Bay.
Source: Anchorage Daily News.

————————————————

Lituya Bay is a fjord located on the coast of the south-east part of Alaska. It is 14.5 km long and 3.2 km wide at its widest point. The bay was noted in 1786 by Jean-François de Lapérouse, who named it Port des Français. Twenty-one of his men perished in the tidal current in the bay while trying to chart the entrance to the bay.. Lituya Bay has always be known as a dangerous place. It is known for its high tides, which have a range of approximately 3 metres. Tidal currents in the entrance may reach a speed of nearly 10 km/h. Lituya Bay is also famous for several tsunamis, in 1854, 1899, 1936. Southeast Alaska residents remember the 1958 earthquake that killed five people. It triggered a rockfall in the bay that generated one of the world’s tallest tsunamis, at least 510 metres tall.

During the first day of the August 2020 chinook (the largest of all Pacific salmon) season, a Sitka commercial fisherman was out in his boat with his two grandsons preparing to ride the flood tide into the bay to anchor up for the night. Instead, the current was flowing out, the other way. The water was muddy, full of trees and other debris. And icebergs could be seen everywhere into the bay.

Looking at satellite images (see below),a geologist with the National Park Service, saw significant changes with the braided river delta between Lituya Glacier and Lituya Bay. The active channels that normally carry meltwater from the glacier down to the ocean had been completely revamped. Pre-existing channels were gone and new channels have formed in other places. What ha saw on the images was the aftermath of a glacial dam release, a phenomenon called jökulhlaup in Iceland.

What happened is quite easy to explain. Just above Lituya Glacier is Desolation Valley. In it, a 10-square-kilometre lake is collecting meltwater from other nearby Desolation and Fairweather glaciers. Lituya Glacier normally acts as a dam, holding the lake’s water in place. With the rupture of the dam, an enormous amount of water, debris and ice was released downstream. The average hourly discharge may be similar to that of the Amazon River. The amount of water is roughly 20 times the volume released by Mendenhall Glacier from Suicide Basin near Juneau in a similar event every summer. This is the reason why Lituya Bay can be a deadly place to be.

Archived satellite images and previously reported observations suggest this was not the first time rhe phenomenon had happened. Because of climate change and faster glacier melting, an acceleration is highly likely. The study of the bathymetry over the past decades will allow to see if there was any noticeable changes in the water level. Thisdata will help discover areas prone to underwater landslides, mini tsunamis, or any other events in Lituya Bay.

Source: Anchorage Daily News.

Carte de localisation de Lituya Bay (Source : ADN)

Image satellite montrant Lituya Bay, Lituya Glacier, et Desolation Lake avant et après l’événement d’août 2020 (Source : NASA)

Formation d’un barrage glaciaire dans Lituya Bay (Photo : C. Grandpey)

Zone d’accumulation du glacier Fairweather (Photo : C. Grandpey)

La fonte du permafrost menace l’accès au Parc National du Denali (Alaska) // Permafrost thawing threatens access to Denali National Park

 À l’approche de la saison touristique estivale en Alaska, la route qui traverse le Parc National du Denali inquiète les autorités. La Denali Park Road (147 kilomètres) est le seul moyen de pénétrer dans le parc. Les voitures particulières ne sont pas autorisées au-delà de la borne indiquant le Mile 15, et chaque année des centaines de milliers de visiteurs montent à bord d’autobus privés pour visiter le parc. Par exemple, en 2017, le Parc National du Denali a enregistré plus de 600 000 visites et les touristes ont dépensé 632 millions de dollars.
Le National Park Service a l’intention d’ouvrir la route début juin. Le problème, c’est que des évolutions spectaculaires du relief l’exposent de plus en plus souvent aux glissements de terrain. Les services du parc ont fermé plusieurs fois la route l’été dernier pendant de fortes pluies, avec des chutes de pierres et des coulées de boue. Au mois d’août, quelque 300 personnes et 17 bus sont restés bloqués pendant plusieurs heures au beau milieu du parcours. En décembre, les autorités ont averti qu’une fermeture partielle de la route pourrait être décidée en 2020. Une fermeture de la route du Denali sur une longue période pendant la saison touristique doit absolument être évitée car cela aurait un effet désastreux sur les activités commerciales en l’Alaska.

L’un des principaux problèmes à résoudre concerne l’instabilité du flanc de la montagne le long de la route vers la moitié du trajet. Les derniers relevés effectués par le National Park Service ont révélé que depuis le mois de septembre 2019, le glissement de terrain s’est considérablement accéléré. La cause du phénomène est le dégel du permafrost en raison des températures de plus en plus élevées en Alaska. En conséquence, la route s’est affaissée de près de 5 centimètres chaque jour depuis le mois d’août de l’année dernière. Le sol riche en argile au-dessus du pergélisol peut glisser plus facilement en période de pluie.
Plusieurs solutions sont proposées pour réparer la route, notamment la déviation d’une portion ou la construction d’un pont au-dessus des zones instables. Il a été jugé inconcevable de creuser des tunnels sous la zone du glissement de terrain ou d’édifier des structures pour contrer le glissement de terrain.
J’ai voyagé à deux reprises sur la Denali Park Road et j’ai eu beaucoup de chance car le temps était beau. La route offre des vues spectaculaires sur le Denali, la plus haute montagne d’Amérique du Nord. Pendant le voyage, on peut généralement voir des moutons de Dall, des ours et d’autres animaux comme des élans ou des rennes.
Source: Anchorage Daily News, Service des parcs nationaux.

L’ouverture du Parc National du Denali reste bien sûr conditionnée à l’évolution du coronavirus aux Etats Unis.

—————————————————–

As the summer tourism season approaches in Alaska, there is anxiety around the fate of the road that runs through Denali National Park. The Denali Park Road is the only way to drive into the park. Private vehicles are restricted along the 147- kilometre road past Mile 15, but hundreds of thousands of visitors each year rely on buses run by commercial operators to take them into the park. In 2017, Denali saw more than 600,000 visits, and visitors spent $632 million.

The National Park Service says it intends to open the entire road by early June. The problem is that dramatic changes are making the road increasingly vulnerable to landslides. The park service closed parts of the road multiple times last summer amid heavy rains, rockfall and mudslides, including an incident in August that left around 300 people and 17 buses stranded for a few hours about halfway down the road. In December, the park service issued a warning about the possibility of a partial closure in 2020. A long-term road closure during the summer tourism season the Denali road must absolutely be avoided because it would have a disastrous cascade effect on businesses throughout Alaska.

A slowly advancing slide near the road’s halfway point is one of many areas along the road that is unstable. Recent National Park Service surveys found that since September 2019, the speed of the landslide has increased dramatically: The cause of the phenomenon is the thawing of permafrost because of higher and higher temperatures in Alaska. As a consequence, the road was slumping nearly 5 centimetres every day after August last year. The clay-rich soil that sits at an incline on top of thawing permafrost can slide when it gets wet.

There are multiple solutions proposed for fixing the road, including rerouting a segment or building a bridge across the unstable areas. Tunneling below the landslide or building up supports against landslides was deemed unfeasible.

I travelled twice along the Denali Park Road and was very lucky because the weather was fine. The park offered dramatic views of Denali, North America’s tallest mountain. During the trip, you can usually see Dall sheep, bears and other animals like moose or reindeer.

Source : Anchorage Daily News, National Park Service.

The opening of Denali National Park will necessarily depend on the evolution of COVID-19 in the United States.

++++++++++

La route avance dans l’immensité du Parc, avec le Denali en toile de fond…

La toundra est omniprésente…

Au détour d’une courbe, le géant apparaît dans toute sa majesté…

La faune est abondante… Ici un renard…

Là des moutons de Daal…

…un élan…

…des rennes…

…ou un ours en train de se gaver de baies dans la toundra.

Photos: C. Grandpey

Glissements de terrain et éruptions // Landslides and eruptions

Une nouvelle étude publiée dans Nature Scientific Reports, montre qu’il existe un lien entre les éruptions volcaniques majeures et les glissements de terrain, mais laisse aussi entendre que les glissements de terrain peuvent déclencher des éruptions.
Le coeur de l’étude est le Pic du Teide (3718 meres), un volcan actif sur l’île de Tenerife aux Canaries. Sur une période de plusieurs centaines de milliers d’années, le Teide a connu un cycle d’éruptions, d’effondrements et de phases de reconstruction de l’édifice volcanique. Des recherches antérieures effectuées par des scientifiques du Centre National d’Océanographie (CNO) basé à Southampton (Angleterre) ont révélé que les éruptions du passé ont pu être liées à d’énormes glissements de terrain de plusieurs niveaux sous la surface de l’océan.
En approfondissant l’étude des dépôts laissés par ces glissements de terrain, les scientifiques du CNO ont remarqué que les matériaux provenant des éruptions volcaniques explosives ne se trouvaient que dans les couches supérieures de chaque dépôt de glissement de terrain. Cela prouve que les phases initiales de chaque glissement de terrain se sont produites sous l’eau et avant chaque éruption. Ces résultats laissent supposer que la phase initiale des glissements de terrain a pu être le déclencheur de chacune des éruptions.
Les scientifiques ont ensuite étudié les minces couches d’argile volcanique entre les dépôts de glissement et les dépôts éruptifs, et ils ont estimé à environ dix heures le délai minimum entre le glissement sous-marin initial et l’éruption qui a suivi. Ainsi, la nouvelle étude montre qu’après le glissement sous-marin initial, il pourrait s’écouler entre dix heures et plusieurs semaines jusqu’au déclenchement de l’éruption. Cette observation est très différente du déclenchement quasi-instantané du glissement de terrain qui a précédé l’éruption du Mt St Helens en 1980. Les conclusions de l’étude pourraient aider à définir des stratégies de gestion des risques pour des volcans semblables au Teide, comme le Mt St Helens ou Soufriere Hill sur l’île de Montserrat.
Ce délai jusqu’au déclenchement de l’éruption est peut-être dû au fait que la chambre magmatique peu profonde du Teide ne contient pas suffisamment d’éléments volatiles pour provoquer immédiatement des éruptions explosives. Cependant, l’évacuation de matériaux volcaniques par des glissements de terrain peut entraîner l’ascension du magma depuis la chambre magmatique plus profonde riche en éléments volatiles ; ce magma se mélange ensuite au magma peu profond et provoque des éruptions explosives susceptibles d’ouvrir une caldeira de plusieurs kilomètres de diamètre. Ces éruptions donnant naissance à une caldeira sont parmi les plus puissantes sur Terre et mettent en oeuvre d’énormes quantités d’énergie, tandis que les glissements de terrain qui les accompagnent comptent parmi les mouvements de masses les plus importants sur Terre et peuvent générer des tsunamis potentiellement dévastateurs.
Cette compréhension du lien entre les grandes îles volcaniques et les éruptions donnant naissance à des caldeiras permettra une meilleure évaluation des risques géologiques sur les îles volcaniques, et fait partie des recherches en cours du CNO sur les risques géologiques des fonds marins.
Source: Science Daily.

——————————————

A new study published in Nature Scientific Reports, not only implies a link between catastrophic volcanic eruptions and landslides, but also suggests that landslides may trigger eruptions.

The heart of the study is Teide (3718 meres), an active volcano on the Canary island of Tenerife. Over a period of several hundred thousand years, Teide has undergone a repeated cycle of very large eruptions, collapse, and regrowth. Previous research by scientists at the National Oceanography Centre (NOC) based at Southampton (England) revealed that past eruptions may have been linked to huge multi-stage submarine landslides.

By studying these landslide deposits further, NOC scientists noticed that material from explosive volcanic eruptions was only found in the uppermost layers of each landslide deposit. This demonstrates that the initial stages of each landslide occurred underwater and before each eruption. These results suggest that the initial stages of the landslides may have triggered each of the eruptions.

The scientists then investigated the thin volcanic clay layers between landslide and eruption deposits, and based upon the time required for clay to settle out of the ocean, estimated the minimum time delay between the initial submarine landslide and a subsequent eruption as approximately ten hours. Thus, the new research shows that after the initial submarine landslide there could be between ten hours to several weeks until the eruption is finally triggered. This is very different from the near-instantaneous landslide triggering of the 1980 Mt St Helens eruption. This information could help inform hazard mitigation strategies for volcanoes similar to Teide, such as Mt St Helens or Montserrat.

This delay could be because the shallow magma chamber in Teide does not contain enough volatiles to immediately create explosive eruptions. However, removal of volcanic material by landslides may cause magma to rise from the lower volatile-rich magma chamber, which mixes with the shallow magma, causing explosive volcanic eruptions after a delay and leaving a large caldera that may be several kilometres across. These ‘caldera-forming’ eruptions are among the largest volcanic eruptions on Earth and involve huge energies, while the associated landslides are among the largest mass movements on Earth and can generate potentially damaging tsunamis.

This new understanding of the linkage between large volcanic islands and caldera-forming eruptions will help advise future geohazard assessments of volcanic islands, and forms part of the NOC’s on-going research into marine geohazards.

Source: Science Daily.

Tenerife et le Teide vus depuis l’espace (Crédit photo: NASA)

Photos: C. Grandpey

La Palma (Iles Canaries) et le risque de tsunami // La Palma (Canary Islands) and the tsunami hazard

Il y a quelques jours, j’ai publié une note faisant état d’une hausse de la sismicité sur le volcan Cumbre Vieja sur l’île de La Palma aux Canaries. Cet essaim sismique sera-t-il suivi d’une éruption ? Personne ne le sait. Toutefois, la seule mention de La Palma et de Cumbra Vieja a fait renaître la crainte d’un effondrement majeur de cette île des Canaries. En effet, le flanc ouest du volcan Cumbre Vieja est instable, avec le risque d’un gigantesque glissement de terrain. Un modèle suisse a montré que le phénomène générerait un méga tsunami dont l’amplitude initiale serait de 650 mètres et dont la vitesse serait de 720 km/h. La vague géante pourrait, malgré l’atténuation, créer des dégâts jusqu’à 20 km à l’intérieur des terres aux Etats Unis. Si un tel évènement devait avoir lieu, il n’y a pas que les côtes américaines qui seraient impactées ; toutes les îles environnantes – comme les Bahamas – seraient ravagées ainsi que des littoraux d’Afrique, voire d’Espagne ou même de France.

Le 10 avril 2017, dans une note intitulée « La Bible et les volcans », j’avais rappelé différents écroulements ou glissements de terrain qui se sont produits sur des édifices volcaniques en générant de terribles raz-de-marée. Le Cumbre Vieja faisait partie des zones à risques…

https://claudegrandpeyvolcansetglaciers.com/2017/04/10/la-bible-et-les-volcans-the-bible-and-the-volcanoes/

———————————————

A few days ago I posted a note about an increase in seismicity on the Cumbre Vieja volcano on the island of La Palma in the Canary Islands. Will this seismic swarm be followed by an eruption? Nobody knows. However, the only mention of La Palma and Cumbra Vieja has rekindled the fear of a major collapse of this island. Indeed, the western flank of Cumbre Vieja is unstable, with the risk of a gigantic landslide. A Swiss model has shown that the phenomenon would generate a mega tsunami with an initial amplitude of 650 metres and a speed of 720 km / h. The giant wave could, despite the mitigation, create damage up to 20 km inland in the United States. If such an event were to take place, not only the American coasts would be impacted; all the surrounding islands – like the Bahamas – would be ravaged, as well as the coastlines of Africa, and even Spain or France.
On April 10th, 2017, in a note entitled « The Bible and the Volcanoes », I recalled various collapses or landslides that occurred on volcanoes and generated terrible tidal waves. Cumbre Vieja was one of the zones at risk …

https://claudegrandpeyvolcansetglaciers.com/2017/04/10/la-bible-et-les-volcans-the-bible-and-the-volcanoes/

Cumbre Vieja vu depuis l’espace (Source: NASA Visible Earth)