Risque de tsunami en Alaska (rappel) // Tsunami hazard in Alaska (reminder)

Dans une note intitulée «Risque de tsunami en Alaska», publiée le 25 mai 2020, j’ai attiré l’attention sur le glacier Barry, à 90 km à l’est d’Anchorage, l’un des nombreux glaciers d’Alaska qui viennent vêler dans la mer. J’expliquais que les scientifiques ont découvert que le glacier Barry – qui se jette dans le Prince William Sound – pourrait provoquer un glissement de terrain et un tsunami catastrophiques dans les prochaines décennies. Le port de Whittier, qui se trouve à proximité, pourrait être menacé. Je vous invite à lire à nouveau ma note qui donne plein de détails sur la situation:
https://claudegrandpeyvolcansetglaciers.com/2020/05/25/risque-de-tsunami-en-alaska-tsunami-hazard-in-alaska/

Un article qui vient de paraître sur le site Web The Watchers confirme qu’un important glissement de terrain dans la région de Barry Arm pourrait générer un  puissant tsunami. Les dernières observations confirment elles aussi qu’un tel événement générerait 11 fois plus d’énergie et entraînerait 16 fois plus de matériaux que le glissement de terrain de Lituya Bay en 1958, qui a déplacé 40 millions de mètres cubes de terre et déclenché une vague de 510 m de hauteur, considérée comme la plus haute de l’histoire moderne.
Des fractures ont été observées sur une falaise surplombant le fjord de Barry Arm début 2019, mais on n’a relevé aucun indice annonçant un glissement de terrain imminent. Cependant, un peu plus tard dans l’année, l’analyse d’un ensemble de données haute résolution a révélé que tout le flanc de la montagne à proximité du glacier Barry se déplaçait lentement.

——————————————

In a post entitled “Tsunami hazard in Alaska”, released on May 25th, 2020, I drew attention to the Barry Glacier, 90 km east of Anchorage, one of the numerous Alaskan glaciers that end up calving in the sea. I explained that scientists have discovered that the Barry Glacier – which calves into Prince William Sound – is increasing the risk of a catastrophic landslide and tsunami within a few decades. Whittier, which lies a short distance away, might be under threat. I invite you to read again my post which gives plenty of details about the situation:

https://claudegrandpeyvolcansetglaciers.com/2020/05/25/risque-de-tsunami-en-alaska-tsunami-hazard-in-alaska/

An article on the website The Watchers confirms that a massive landslide in Barry Arm area might generate a mega-tsunami. Recent research findings show that the collapse would generate 11 times more energy and release 16 times more debris than the 1958 Lituya Bay landslide which dropped 40 million cubic metres of land, and triggered a 510 m wave believed to be the tallest in modern history.

Some fractures were observed on a cliff overlooking the Barry Arm fjord in 2019, but there was no strong evidence of an impending landslide. However, analysis of a high-resolution dataset later that year revealed that the entire mountainside near Barry Glacier was slowly moving.

Vue satellite du fjord de Barry Arm en 2020 (Source : NASA)

Vue des glaciers de la région (Photo : C. Grandpey)

Les inondations glaciaires de Lituya Bay (Alaska) // Glacial floods in Lituya Bay (Alaska)

Lituya Bay est un fjord situé sur la côte sud-est de l’Alaska. Il mesure 14,5 km de long et 3,2 km à son point le plus large. La baie a été mentionnée en 1786 par Lapérouse, qui l’a baptisée Port des Français. Vingt et un de ses hommes ont péri quand un tsunami s’est déclenché dans la baie alors qu’ils tentaient d’en cartographier l’entrée. Lituya Bay a toujours eu la réputation d’un endroit dangereux. Les marées hautes peuvent faire s’élever de 3 mètres le niveau de l’eau et les courants à l’entrée de la baie peuvent atteindre une vitesse de près de 10 km/h. Lituya Bay a également subi plusieurs tsunamis, en 1854, 1899 et1936. Les habitants du sud-est de l’Alaska ne sont pas près d’oublier le séisme de 1958 qui a tué cinq personnes. Il a déclenché un glissement de terrain qui a généré l’un des plus puissants tsunamis au monde, avec une vague d’une hauteur d’au moins 510 mètres.
En août 2020, à l’occasion de la première journée de la saison de pêche au chinook (le plus grand de tous les saumons du Pacifique), un pêcheur de Sitka était dans son bateau avec ses deux petits-fils. Il s’apprêtait  à profiter de la marée dans la baie pour y jeter l’ancre pour la nuit. Il fut surpris de constater que le courant s’était inversé. L’eau était boueuse, pleine d’arbres et d’autres débris. En plus, il y avait des icebergs partout dans la baie.
En regardant les images satellites (voir ci-dessous), un géologue du National Park Service a constaté des changements importants dans le delta de la rivière qui passe entre le Lituya Glacier et Lituya Bay. Les chenaux dans lesquels circule normalement l’eau de fonte du glacier vers l’océan ne présentaient plus leur morphologie habituelle. Les anciens chenaux avaient disparu et de nouveaux s’étaient formés à des endroits différents. En fait, ce que l’on voyait sur les images satellites n’était autre que la conséquence de la rupture d’un barrage glaciaire avec libération d’un énorme volume d’eau. Ce phénomène de crue glaciaire a été baptisé jökulhlaup par les Islandais.
Ce qui s’est passé dans Lituya Bay est assez facile à expliquer. Juste au-dessus du Lituya Glacier se trouve la Vallée de la Désolation qui héberge un lac de 10 kilomètres carrés qui recueille les eaux de fonte de Desolation Glacier et Fairweather Glacier à proximité. Le Lituya Glacier joue normalement le rôle de barrage et retient l’eau du lac. Suite à la rupture de ce barrage, une énorme quantité d’eau, de débris et de glace s’est précipitée vers l’aval. Le débit horaire moyen peut être semblable à celui de l’Amazone. La quantité d’eau représente environ 20 fois le volume libéré par le glacier Mendenhall dans le Suicide Basin près de Juneau quand se produit un tel événement chaque été. C’est la raison pour laquelle Lituya Bay peut devenir un endroit mortel.
Les images satellites archivées et les observations précédentes montrent que ce n’est pas la première fois que le phénomène se produit. En raison du changement climatique et de la fonte plus rapide des glaciers, une répétition de ces crues glaciaires est très probable à l’avenir. L’étude de la bathymétrie au cours des dernières décennies permettra de voir s’il y a eu des changements notables du niveau d’eau. Ces données permettront de repérer les zones sujettes aux glissements de terrain subaquatiques, aux mini tsunamis ou à tout autre événement dans Lituya Bay.
Source: Anchorage Daily News.

————————————————

Lituya Bay is a fjord located on the coast of the south-east part of Alaska. It is 14.5 km long and 3.2 km wide at its widest point. The bay was noted in 1786 by Jean-François de Lapérouse, who named it Port des Français. Twenty-one of his men perished in the tidal current in the bay while trying to chart the entrance to the bay.. Lituya Bay has always be known as a dangerous place. It is known for its high tides, which have a range of approximately 3 metres. Tidal currents in the entrance may reach a speed of nearly 10 km/h. Lituya Bay is also famous for several tsunamis, in 1854, 1899, 1936. Southeast Alaska residents remember the 1958 earthquake that killed five people. It triggered a rockfall in the bay that generated one of the world’s tallest tsunamis, at least 510 metres tall.

During the first day of the August 2020 chinook (the largest of all Pacific salmon) season, a Sitka commercial fisherman was out in his boat with his two grandsons preparing to ride the flood tide into the bay to anchor up for the night. Instead, the current was flowing out, the other way. The water was muddy, full of trees and other debris. And icebergs could be seen everywhere into the bay.

Looking at satellite images (see below),a geologist with the National Park Service, saw significant changes with the braided river delta between Lituya Glacier and Lituya Bay. The active channels that normally carry meltwater from the glacier down to the ocean had been completely revamped. Pre-existing channels were gone and new channels have formed in other places. What ha saw on the images was the aftermath of a glacial dam release, a phenomenon called jökulhlaup in Iceland.

What happened is quite easy to explain. Just above Lituya Glacier is Desolation Valley. In it, a 10-square-kilometre lake is collecting meltwater from other nearby Desolation and Fairweather glaciers. Lituya Glacier normally acts as a dam, holding the lake’s water in place. With the rupture of the dam, an enormous amount of water, debris and ice was released downstream. The average hourly discharge may be similar to that of the Amazon River. The amount of water is roughly 20 times the volume released by Mendenhall Glacier from Suicide Basin near Juneau in a similar event every summer. This is the reason why Lituya Bay can be a deadly place to be.

Archived satellite images and previously reported observations suggest this was not the first time rhe phenomenon had happened. Because of climate change and faster glacier melting, an acceleration is highly likely. The study of the bathymetry over the past decades will allow to see if there was any noticeable changes in the water level. Thisdata will help discover areas prone to underwater landslides, mini tsunamis, or any other events in Lituya Bay.

Source: Anchorage Daily News.

Carte de localisation de Lituya Bay (Source : ADN)

Image satellite montrant Lituya Bay, Lituya Glacier, et Desolation Lake avant et après l’événement d’août 2020 (Source : NASA)

Formation d’un barrage glaciaire dans Lituya Bay (Photo : C. Grandpey)

Zone d’accumulation du glacier Fairweather (Photo : C. Grandpey)

Risque de tsunami en Alaska // Tsunami hazard in Alaska

Le Glacier Barry n’est pas l’un des plus connus et les plus spectaculaires en Alaska. Situé à 90 km à l’est d’Anchorage, c’est l’un des nombreux glaciers de cet Etat qui viennent vêler dans la mer. J’ai écrit plusieurs articles sur le recul du glacier Columbia dans le Prince William Sound. Ce glacier ne présente pas une réelle menace pour Valdez, un port que se trouve à proximité. En revanche, des scientifiques ont découvert que le Glacier Barry – qui finit lui aussi sa course dans le Prince William Sound – pourrait provoquer un glissement de terrain et un tsunami catastrophiques dans les prochaines décennies. Le port de Whittier, qui se trouve à proximité, pourrait être menacé.
Le changement climatique et la hausse des températures ont provoqué le recul d’une langue du Glacier Barry qui maintenait en place une portion du flanc du fjord, le Barry Arm,  sur une longueur d’environ 1,6 km. Un tiers seulement de la pente est désormais maintenu par la glace. Le risque d’un glissement de terrain est bien réel. Il pourrait être provoqué par un séisme, de fortes pluies ou une vague de chaleur faisant fondre la neige en surface. Bien que la pente soit instable depuis des décennies, les chercheurs estiment que son effondrement soudain est possible d’ici un an et, plus probablement, deux décennies. Si un tel glissement de terrain se produisait, il pourrait générer une vague avec des effets meurtriers sur les pêcheurs et les touristes.
La modélisation informatique montre qu’un effondrement du flanc du fjord  – environ 500 millions de mètres cubes de roches et de terre – pourrait provoquer un tsunami de plusieurs dizaines de mètres de hauteur à son départ. 20 minutes plus tard, lorsqu’il atteindrait Whittier à 45 kilomètres de là, le mur d’eau aurait encore une vingtaine de mètres de hauteur et il provoquerait d’importants dégâts.
Le fjord, le Barry Arm, et d’autres dans le secteur, sont fréquentés par des bateaux de tourisme et de pêche, et la région est bien connue des chasseurs. Des centaines de personnes pourraient donc être présentes au moment de l’événement catastrophique. Whittier est un point d’embarquement et de débarquement pour des milliers de passagers. Personnellement, je suis parti de Whittier pour visiter les glaciers de la région.
Les glissements de terrain générateurs de tsunamis sont rares mais se sont déjà produits en Alaska. Tout le monde se souvient du glissement de terrain du 9 juillet 1958 dans la baie de Lituya, sur la côte sud-est de l’Alaska. Un séisme avait alors fait glisser une masse de 40 millions de mètres cubes de roche sur une longueur de 600 mètres dans la baie étroite. Le tsunami avait atteint une hauteur de 510 mètres. La vague avait encore une vingtaine de mètres de hauteur lorsqu’elle a atteint l’extrémité de la baie, submergeant plusieurs bateaux de pêche et tuant deux personnes. L’Alaska est parmi les régions du monde les plus exposées aux séismes. Whittier a été durement frappé par le tsunami provoqué par le séisme de 1964 en Alaska.
Plus récemment, un glissement de terrain en 2015 dans le Taan Fjord, à l’ouest de Yakutat, a déclenché un tsunami de plus de 180 mètres de hauteur.
Les chercheurs de 14 organisations et institutions scientifiques n’ont commencé à étudier la région du Barry Arm qu’il y a environ un mois, dans le cadre d’un projet financé par la NASA dont le but est d’analyser les mouvements de masse terrestre à travers l’Arctique nord-américain. Les chercheurs expliquent également que la fonte du permafrost dans la région pourrait contribuer au risque de glissement de terrain.

Source : presse américaine.

——————————————–

Barry Glacier is not one of the best known and most dramatic glaciers in Alaska. Located 90 km east of Anchorage, it is one of the numerous Alaskan glaciers that end up calving in the sea. I have written several posts about the retreat of the Columbia Glacier in the Prince William Sound. This glacier does not pose any real risk to Valdez, the nearest city. On the contrary, scientists have discovered that the Barry Glacier – which calves into Prince William Sound too – is increasing the risk of a catastrophic landslide and tsunami within a few decades. Whittier, which lies a short distance away, might be under threat.

Climate change and warming temperatures have caused the retreat of a tongue of the Barry Glacier that helps support a steep, 1.6-km-long slope along one flank of the Barry fjord. With only a third of the slope now supported by ice, a landslide could be triggered by an earthquake, prolonged heavy rain or even a heatwave that could cause extensive melting of surface snow. While the slope has been moving for decades, the researchers estimate that a sudden, huge collapse is possible within a year and likely within two decades. Should such a landslide occur, it could generate a wave with devastating effects on fishermen and tourists.

Computer modelling shows that a collapse of the entire slope – about 500 million cubic metres of rock and dirt – could cause a tsunami that would be several tens of metres high at the start. 20 minutes later, when it reached Whittier, a port at the head of another narrow fjord 45 kilometres away, the wall of water could still be about 20 metres high and cause extensive destruction.

The fjord, Barry Arm, and other nearby waters are frequently visited by tourist and fishing boats, and the surrounding land is a popular area with hunters. Hundreds of people could be in the area at the time of the disastrous event. Whittier is typically an embarkation and disembarkation point for thousands of cruise ship passengers. I personally started from Whittier to visit the glaciers of the region.

Tsunami-inducing landslides are rare but have occurred in Alaska. Everybody remembers that landslide that happened on July 9th, 1958, in Lituya Bay, on Alaska’s southeast coast, when a nearby earthquake caused 40 million cubic metres of rock to slide 600 metres into the narrow bay. The tsunami reached a maximum height of 510 metres. The wave was still about 20 metres high when it reached the end of the bay, swamping several fishing boats and killing two people. Alaska is among the most earthquake-prone areas of the planet. Whittier was heavily damaged by a tsunami during the 1964 Alaska earthquake.

More recently, a 2015 landslide at Taan Fjord, west of Yakutat, triggered a tsunami that was initially more than 180 metres high.

Researchers, from 14 organizations and institutions only began studying the Barry Arm area about a month ago, as part of a NASA-financed project to study land-mass movement across the North American Arctic.

The researchers also explain that the thawing of permafrost in the area could contribute to the landslide risk.

Source : American newspapers.

Whittier et glaciers de la région (Photos : C. Grandpey)

La fonte du permafrost menace l’accès au Parc National du Denali (Alaska) // Permafrost thawing threatens access to Denali National Park

 À l’approche de la saison touristique estivale en Alaska, la route qui traverse le Parc National du Denali inquiète les autorités. La Denali Park Road (147 kilomètres) est le seul moyen de pénétrer dans le parc. Les voitures particulières ne sont pas autorisées au-delà de la borne indiquant le Mile 15, et chaque année des centaines de milliers de visiteurs montent à bord d’autobus privés pour visiter le parc. Par exemple, en 2017, le Parc National du Denali a enregistré plus de 600 000 visites et les touristes ont dépensé 632 millions de dollars.
Le National Park Service a l’intention d’ouvrir la route début juin. Le problème, c’est que des évolutions spectaculaires du relief l’exposent de plus en plus souvent aux glissements de terrain. Les services du parc ont fermé plusieurs fois la route l’été dernier pendant de fortes pluies, avec des chutes de pierres et des coulées de boue. Au mois d’août, quelque 300 personnes et 17 bus sont restés bloqués pendant plusieurs heures au beau milieu du parcours. En décembre, les autorités ont averti qu’une fermeture partielle de la route pourrait être décidée en 2020. Une fermeture de la route du Denali sur une longue période pendant la saison touristique doit absolument être évitée car cela aurait un effet désastreux sur les activités commerciales en l’Alaska.

L’un des principaux problèmes à résoudre concerne l’instabilité du flanc de la montagne le long de la route vers la moitié du trajet. Les derniers relevés effectués par le National Park Service ont révélé que depuis le mois de septembre 2019, le glissement de terrain s’est considérablement accéléré. La cause du phénomène est le dégel du permafrost en raison des températures de plus en plus élevées en Alaska. En conséquence, la route s’est affaissée de près de 5 centimètres chaque jour depuis le mois d’août de l’année dernière. Le sol riche en argile au-dessus du pergélisol peut glisser plus facilement en période de pluie.
Plusieurs solutions sont proposées pour réparer la route, notamment la déviation d’une portion ou la construction d’un pont au-dessus des zones instables. Il a été jugé inconcevable de creuser des tunnels sous la zone du glissement de terrain ou d’édifier des structures pour contrer le glissement de terrain.
J’ai voyagé à deux reprises sur la Denali Park Road et j’ai eu beaucoup de chance car le temps était beau. La route offre des vues spectaculaires sur le Denali, la plus haute montagne d’Amérique du Nord. Pendant le voyage, on peut généralement voir des moutons de Dall, des ours et d’autres animaux comme des élans ou des rennes.
Source: Anchorage Daily News, Service des parcs nationaux.

L’ouverture du Parc National du Denali reste bien sûr conditionnée à l’évolution du coronavirus aux Etats Unis.

—————————————————–

As the summer tourism season approaches in Alaska, there is anxiety around the fate of the road that runs through Denali National Park. The Denali Park Road is the only way to drive into the park. Private vehicles are restricted along the 147- kilometre road past Mile 15, but hundreds of thousands of visitors each year rely on buses run by commercial operators to take them into the park. In 2017, Denali saw more than 600,000 visits, and visitors spent $632 million.

The National Park Service says it intends to open the entire road by early June. The problem is that dramatic changes are making the road increasingly vulnerable to landslides. The park service closed parts of the road multiple times last summer amid heavy rains, rockfall and mudslides, including an incident in August that left around 300 people and 17 buses stranded for a few hours about halfway down the road. In December, the park service issued a warning about the possibility of a partial closure in 2020. A long-term road closure during the summer tourism season the Denali road must absolutely be avoided because it would have a disastrous cascade effect on businesses throughout Alaska.

A slowly advancing slide near the road’s halfway point is one of many areas along the road that is unstable. Recent National Park Service surveys found that since September 2019, the speed of the landslide has increased dramatically: The cause of the phenomenon is the thawing of permafrost because of higher and higher temperatures in Alaska. As a consequence, the road was slumping nearly 5 centimetres every day after August last year. The clay-rich soil that sits at an incline on top of thawing permafrost can slide when it gets wet.

There are multiple solutions proposed for fixing the road, including rerouting a segment or building a bridge across the unstable areas. Tunneling below the landslide or building up supports against landslides was deemed unfeasible.

I travelled twice along the Denali Park Road and was very lucky because the weather was fine. The park offered dramatic views of Denali, North America’s tallest mountain. During the trip, you can usually see Dall sheep, bears and other animals like moose or reindeer.

Source : Anchorage Daily News, National Park Service.

The opening of Denali National Park will necessarily depend on the evolution of COVID-19 in the United States.

++++++++++

La route avance dans l’immensité du Parc, avec le Denali en toile de fond…

La toundra est omniprésente…

Au détour d’une courbe, le géant apparaît dans toute sa majesté…

La faune est abondante… Ici un renard…

Là des moutons de Daal…

…un élan…

…des rennes…

…ou un ours en train de se gaver de baies dans la toundra.

Photos: C. Grandpey

Nouvel effondrement glaciaire en Alaska // New glacial landslide in Alaska

Comme je l’ai écrit à propos des températures élevées au sommet du Mont-Blanc (France), la fonte de la glace et du permafrost de roche dans les Alpes est susceptible de provoquer des chutes de séracs, des éboulements ou des glissements de terrain. C’est ce qui s’est passé à l’Arête des Cosmiques en août 2018. La plus grande vigilance est demandée aux randonneurs qui s’aventurent en haute montagne.
De tels glissements de terrain, mais de plus grande ampleur, ont été observés en Alaska ces dernières années, notamment à Juneau, Glacier Icy Bay / Tyndall, Glacier Bay / Lamplugh et Sitka. Par exemple, un énorme glissement de terrain a été observé dans le parc national de Glacier Bay en Alaska le 28 juin 2016 (voir ma note à cette date), lorsqu’un pan de montagne de 1200 mètres de hauteur s’est effondré. L’événement a recouvert de débris le glacier Lamplugh sur plusieurs kilomètres.
Plus récemment, un très important glissement de terrain s’est produit sur les flancs du volcan Iliamna le 21 juin 2019. Les matériaux se sont répandus sur une longueur d’environ 6 km et plus de 3 km de largeur. Ils semblent provenir du sommet (voir image ci-dessous).
La dernière éruption connue de l’Iliamna a eu lieu en 1876, avec un VEI 3.
Les causes de ces spectaculaires glissements de terrain ne sont souvent pas claires, mais elles sont probablement liées au réchauffement de la planète ou à l’intensification des eaux de fonte. Les statistiques montrent que ces événements ont surtout lieu pendant les mois les plus chauds. En ce moment, l’Alaska traverse la plus intense vague de chaleur de son histoire.
Source: The Watchers.

Dans le même ordre d’idées, les glaciologues suisses sont inquiets pour le Cervin. En effet les très fortes chaleurs à répétition risquent de faire fondre le permafrost de roche qui assure la stabilité du sommet  Ce dernier est constitué d’un empilement de roches qui tient grâce à ce permafrost. Si le dégel intervient, le risque de chutes de blocs de pierres sera élevé.

———————————-

As I put it in my last post about the high temperatures on Mont Blanc (France), the melting of the ice and the rock permafrost in the Alps might trigger icefalls, rockfalls or landslides. This is what happenned at the Arête des Cosmiques in August 2018. Climbers should be very careful.
Similar large-scale landslids have been observed in Alaska in recent years, including Juneau, Icy Bay / Tyndall Glacier, Glacier Bay / Lamplugh, and Sitka, landslides. For instance, a massive landslide hit Alaska’s Glacier Bay National Park on June 28th 2016 (see my post at that date), when a 1,200-metre-high mountain collapsed. The event spread debris over kilometres across the Lamplugh glacier below. More recently, a very large landslide took place on the flanks of Iliamna volcano on June 21st, 2019.The slide is about 6 km long and appears to be originating near the summit. The debris field is more than 3 kilometres wide.
The last known eruption of this volcano took place in 1876, with a VEI 3.
What triggers giant landslides often isn’t clear but they are likely related to global warming. . Statistics show there tend to be more in warmer months, which may be related to warming temperatures or meltwater. Alaska is currently going through the most intense heatwave of its history.
Source: The Watchers.

In the same vein, Swiss glaciologists are worried about the Matterhorn. Indeed, the frequent heatwaves may melt the rock permafrost which ensures the stability of the summit. The latter consists of a stack of rocks that holds thanks to this permafrost. If the thaw occurs, the risk of falling stone blocks will be high.

Le glissement de terrain sur l’Iliamna (Crédit photo: USGS)

Vues de l’Iliamna (Photos: C. Grandpey)

Vue de l’effondrement sur le glacier Lamplugh le 28 juin 2016 (Crédit photo: Paul Swanstrom que je salue ici et dont je recommande l’agence basée à Haines)

Le Cervin risque-t-il de se déliter? Vue de la montagne en septembre 2018 (Photo: C. Grandpey)

Tsunami du Krakatau: Une prévision difficile, voire impossible // A difficult, even impossible prediction

Après le tsunami dévastateur (dernier bilan de 429 morts, 1485 blessés et 154 disparus) provoqué pat un effondrement partiel de l’Anak Krakatau, les commentaires se multiplient sur les réseaux sociaux pour expliquer ce qui s’est passé. Malheureusement, si nous sommes en mesure d’analyser l’événement, nous ne sommes toujours pas capables de le prévoir. Il faut bien reconnaître qu’il en va de même pour un grand nombre d’événements naturels.

On peut lire un certain nombre de prévisions gratuites. Certains indiquent qu’un nouvel effondrement latéral du Krakatau peut se produire à nouveau car l’édifice est déstabilisé. Bien sûr, mais il se peut qu’un tel événement ne se produise que dans plusieurs mois, voire plusieurs années, et les populations littorales seront toujours autant démunies pour y faire face.

Il faut bien admettre que l’on ne peut pas faire grand-chose pour anticiper un effondrement ou un glissement de terrain sur un volcan actif et, qui plus est, qui se dresse au milieu de la mer. Installer des capteurs sur les pentes ? A quoi bon ? Ils seront vite recouverts par les projections éruptives et donc inutilisables. A l’occasion du tsunami de ces derniers jours, j’ai rappelé qu’un événement semblable, mais de moindre ampleur, avait eu lieu sur le Stromboli le 30 décembre 2002 quand un morceau de la Sciara del Fuoco avait glissé au fond de la mer, déclenchant un tsunami. Connaissant la Sciara del Fuoco, je ne vois pas comment on pourrait y installer des capteurs étant donné qu’elle reçoit toutes les projections du volcan.

Il faut malheureusement se rendre à l’évidence : nous ne sommes pas capables de prévoir le tsunami déclenché par un effondrement brutal sur un volcan, de la même façon que nous ne savons pas prévoir la vague provoquée par un événement sismique en mer. Si un tel événement se produit très loin des côtes, des balises en mer permettent de suivre sa progression et d’alerter les populations. En revanche, si le décrochement de faille a lieu à quelques encablures du rivage, toute forme de prévention devient impossible.

De temps à autre, on  voit apparaître des articles à propos du basculement du flanc E de l’Etna (Sicile) vers la Mer Ionienne. Certains scientifiques redoutent, à juste titre, une catastrophe majeure si un tel événement se produisait. Le flanc E du volcan est parcouru de failles qui sont bien connues et surveillées. Malgré cela, serons-nous en mesure d’anticiper suffisamment à temps un tel effondrement ? La question reste posée !

—————————————————

After the devastating tsunami (latest toll: 429 dead, 1,485 injured and 154 missing) caused by a partial collapse of Anak Krakatau, comments are multiplying on social networks to explain what happened. Unfortunately, if we are able to analyze the event, we are still not able to predict it. We should admit that the same goes for a large number of natural events.
A number of forecasts can be read. Some say that a new lateral collapse of Krakatau can happen again because the volcanic edifice is destabilized. Of course, but such an event may happen in a few months or even years, and the seashore populations will still be destitute to deal with it.
We must admit that we can not do much to anticipate a collapse or a landslide on an active volcano and, what is more, that stands in the middle of the sea. Should we install sensors on the slopes? What’s the point ? They will be quickly covered by eruptive projections and therefore unusable. Concerning the tsunami of recent days, I recalled that a similar but smaller event took place at Stromboli on December 30th, 2002, when a chunk of the Sciara del Fuoco slid into the depths of the sea, triggering a tsunami. Knowing the Sciara del Fuoco, I do not see how we could install sensors because it receives all projections of the volcano.
Unfortunately, we are not able to predict the tsunami triggered by a sudden collapse on a volcano, in the same way that we do not know how to predict the wave caused by a seismic event at sea. If such an event occurs very far from the coasts, beacons at sea make it possible to follow its progress and to alert the populations. On the other hand, if the fault slip occurs a few miles from shore, any form of prevention becomes impossible.
From time to time, articles appear about the tilting of the eastern flank of Mt Etna (Sicily) towards the Ionian Sea. Some scientists fear, rightly, a major disaster if such an event occurred. The E flank of the volcano is slashed by faults that are well known and monitored. In spite of this, will we be able to anticipate enough in time such a collapse? The question remains!

Carte montrant les zones affectées par le tsunami du 22 décembre 2018 (Source: Jakarta Globe)

Glissements de terrain et éruptions // Landslides and eruptions

Une nouvelle étude publiée dans Nature Scientific Reports, montre qu’il existe un lien entre les éruptions volcaniques majeures et les glissements de terrain, mais laisse aussi entendre que les glissements de terrain peuvent déclencher des éruptions.
Le coeur de l’étude est le Pic du Teide (3718 meres), un volcan actif sur l’île de Tenerife aux Canaries. Sur une période de plusieurs centaines de milliers d’années, le Teide a connu un cycle d’éruptions, d’effondrements et de phases de reconstruction de l’édifice volcanique. Des recherches antérieures effectuées par des scientifiques du Centre National d’Océanographie (CNO) basé à Southampton (Angleterre) ont révélé que les éruptions du passé ont pu être liées à d’énormes glissements de terrain de plusieurs niveaux sous la surface de l’océan.
En approfondissant l’étude des dépôts laissés par ces glissements de terrain, les scientifiques du CNO ont remarqué que les matériaux provenant des éruptions volcaniques explosives ne se trouvaient que dans les couches supérieures de chaque dépôt de glissement de terrain. Cela prouve que les phases initiales de chaque glissement de terrain se sont produites sous l’eau et avant chaque éruption. Ces résultats laissent supposer que la phase initiale des glissements de terrain a pu être le déclencheur de chacune des éruptions.
Les scientifiques ont ensuite étudié les minces couches d’argile volcanique entre les dépôts de glissement et les dépôts éruptifs, et ils ont estimé à environ dix heures le délai minimum entre le glissement sous-marin initial et l’éruption qui a suivi. Ainsi, la nouvelle étude montre qu’après le glissement sous-marin initial, il pourrait s’écouler entre dix heures et plusieurs semaines jusqu’au déclenchement de l’éruption. Cette observation est très différente du déclenchement quasi-instantané du glissement de terrain qui a précédé l’éruption du Mt St Helens en 1980. Les conclusions de l’étude pourraient aider à définir des stratégies de gestion des risques pour des volcans semblables au Teide, comme le Mt St Helens ou Soufriere Hill sur l’île de Montserrat.
Ce délai jusqu’au déclenchement de l’éruption est peut-être dû au fait que la chambre magmatique peu profonde du Teide ne contient pas suffisamment d’éléments volatiles pour provoquer immédiatement des éruptions explosives. Cependant, l’évacuation de matériaux volcaniques par des glissements de terrain peut entraîner l’ascension du magma depuis la chambre magmatique plus profonde riche en éléments volatiles ; ce magma se mélange ensuite au magma peu profond et provoque des éruptions explosives susceptibles d’ouvrir une caldeira de plusieurs kilomètres de diamètre. Ces éruptions donnant naissance à une caldeira sont parmi les plus puissantes sur Terre et mettent en oeuvre d’énormes quantités d’énergie, tandis que les glissements de terrain qui les accompagnent comptent parmi les mouvements de masses les plus importants sur Terre et peuvent générer des tsunamis potentiellement dévastateurs.
Cette compréhension du lien entre les grandes îles volcaniques et les éruptions donnant naissance à des caldeiras permettra une meilleure évaluation des risques géologiques sur les îles volcaniques, et fait partie des recherches en cours du CNO sur les risques géologiques des fonds marins.
Source: Science Daily.

——————————————

A new study published in Nature Scientific Reports, not only implies a link between catastrophic volcanic eruptions and landslides, but also suggests that landslides may trigger eruptions.

The heart of the study is Teide (3718 meres), an active volcano on the Canary island of Tenerife. Over a period of several hundred thousand years, Teide has undergone a repeated cycle of very large eruptions, collapse, and regrowth. Previous research by scientists at the National Oceanography Centre (NOC) based at Southampton (England) revealed that past eruptions may have been linked to huge multi-stage submarine landslides.

By studying these landslide deposits further, NOC scientists noticed that material from explosive volcanic eruptions was only found in the uppermost layers of each landslide deposit. This demonstrates that the initial stages of each landslide occurred underwater and before each eruption. These results suggest that the initial stages of the landslides may have triggered each of the eruptions.

The scientists then investigated the thin volcanic clay layers between landslide and eruption deposits, and based upon the time required for clay to settle out of the ocean, estimated the minimum time delay between the initial submarine landslide and a subsequent eruption as approximately ten hours. Thus, the new research shows that after the initial submarine landslide there could be between ten hours to several weeks until the eruption is finally triggered. This is very different from the near-instantaneous landslide triggering of the 1980 Mt St Helens eruption. This information could help inform hazard mitigation strategies for volcanoes similar to Teide, such as Mt St Helens or Montserrat.

This delay could be because the shallow magma chamber in Teide does not contain enough volatiles to immediately create explosive eruptions. However, removal of volcanic material by landslides may cause magma to rise from the lower volatile-rich magma chamber, which mixes with the shallow magma, causing explosive volcanic eruptions after a delay and leaving a large caldera that may be several kilometres across. These ‘caldera-forming’ eruptions are among the largest volcanic eruptions on Earth and involve huge energies, while the associated landslides are among the largest mass movements on Earth and can generate potentially damaging tsunamis.

This new understanding of the linkage between large volcanic islands and caldera-forming eruptions will help advise future geohazard assessments of volcanic islands, and forms part of the NOC’s on-going research into marine geohazards.

Source: Science Daily.

Tenerife et le Teide vus depuis l’espace (Crédit photo: NASA)

Photos: C. Grandpey