Piton de la Fournaise (Île de la Réunion) : poursuite de l’éruption // The eruption continues

L’éruption du Piton de la Fournaise se poursuit tranquillement, comme le montre la faible amplitude du trémor éruptif qui poursuit régulièrement son déclin. Une seule bouche éruptive reste active sur le flanc sud-sud-est, avec un cône en formation d’environ 15 m de hauteur. L’OVPF précise que ce cône reste ouvert, permettant à la lave de s’écouler librement. Le front de coulée est toujours figé à environ 2,6 km de la RN2 qui n’est donc pas menacée. .

Une sismicité persistante est enregistrée sous le sommet, signe que le système reste sous pression et que le volcan n’a peut-être pas dit son dernier mot.

Dans la mesure où l’éruption n’est pas terminée, l’Enclos reste fermé au public.

 Schéma montrant les débits de lave en surface (m3/s) entre le 13 février et le 17 février 2026 (Source : données satellites de la plateforme HOTVOLC (OPGC-Université Clermont Auvergne).

————————————————–

The eruption of Piton de la Fournaise continues quietly, as evidenced by the low amplitude of the eruptive tremor, which is steadily declining. Only one eruptive vent remains active on the south-southeast flank, with a cone approximately 15 meters high. The OVPF specifies that this cone remains open, allowing lava to flow freely. The lava flow front is still stationary about 2.6 km from the RN2 highway, which is therefore not threatened.
Persistent seismic activity is recorded beneath the summit, indicating that the system remains under pressure and that the volcano may not have yet exhausted its potential. As the eruption is ongoing, the Enclos remains closed to the public.

Datation des éruptions de Yellowstone // Dating the Yellowstone eruptions

Les scientifiques de l’Observatoire Volcanologique de Yellowstone (YVO) ont recensé au moins 28 éruptions au sein de la caldeira de Yellowstone depuis sa formation il y a 631 000 ans. Il s’agit d’une estimation minimale basée sur les vestiges géologiques préservés. Les travaux en cours visent à affiner ce décompte en identifiant les éruptions plus anciennes dont les dépôts ont été enfouis ou masqués par des coulées de lave plus récentes. Ces résultats ont été présentés dans les Yellowstone Caldera Chronicles, une publication hebdomadaire rédigée par des scientifiques et des collaborateurs de l’Observatoire. À noter qu’en janvier 2025, un numéro des Yellowstone Caldera Chronicles avait déjà été consacré au passé du super volcan :

Yellowstone (1) : le passé du super volcan // Yellowstone (1) : the past of the super volcano

L’histoire volcanique de Yellowstone comprend trois éruptions qui ont formé la caldeira au cours des 2,1 derniers millions d’années. La plus récente, il y a 631 000 ans, a créé la caldeira que nous connaissons actuellement et a marqué un tournant vers des coulées de lave rhyolitique de plus petite taille et des dômes confinés principalement à l’intérieur de la caldeira, et non plus vers des éruptions d’envergure continentale.
La cartographie géologique et la datation ont permis d’identifier au moins 28 éruptions au sein de la caldeira depuis sa formation. Il s’agit d’un décompte minimal basé sur les éruptions identifiables avec certitude dans les archives géologiques. Les dépôts éruptifs plus anciens sont souvent masqués par des coulées de lave plus récentes, et dans de nombreuses zones, seuls de petits affleurements isolés subsistent, ce qui limite notre compréhension de leur étendue et de leur âge. La glaciation et l’érosion ont par ailleurs modifié le paysage, en déplaçant ou en redistribuant les matériaux volcaniques.
Pour reconstituer l’histoire éruptive de Yellowstone, les géologues ont établi une relation entre une cartographie de terrain détaillée avec la géochimie, la géochronologie et le paléomagnétisme. La composition chimique permet de distinguer les différents types de de magmas ; la datation radiométrique précise le calendrier des éruptions, tandis que les signatures paléomagnétiques conservées lors du refroidissement de la lave permettent de différencier les éruptions survenues à des périodes différentes.
Les rhyolites du Plateau Central (Central Member Plateau) constituent l’une des séquences éruptives post-caldeira les mieux étudiées et recouvrent une grande partie du fond de la caldeira. De nouvelles datations avec la méthode 40Ar/39Ar divisent ces coulées en cinq groupes éruptifs informels, avec des âges moyens rapportés à un niveau de confiance de 95 %, ce qui améliore la résolution entre les éruptions rapprochées.
La région de West Thumb, au bord du lac Yellowstone, enrichit ce tableau. On pense qu’il s’agit de la zone d’émission d’une éruption explosive à l’origine du Tuf de Bluff Point. Cela prouve que le volcanisme post-caldeira ne s’est pas limité aux seules coulées de lave.

Le canyon de la Yellowstone River présente de beaux exemples de tufs rhyolitiques (Photo: C. Grandpey)

Une coulée de lave affleurant dans la vallée de Hayden (célèbre pour ses meutes de loups) était auparavant associée à une éruption datée d’environ 102 000 ans, mais les nouvelles données montrent que la lave pourrait être plus proche de 160 000 ans, ce qui laisse supposer une éruption jusqu’alors inconnue. Des scientifiques de l’USGS ont prélevé des échantillons de cette coulée en 2025 pour une datation à l’argon ; on attend les résultats.
Des travaux effectués sur le terrain en 2025 ont également permis d’identifier un petit affleurement de lave le long de la Gibbon River, près du ruisseau Nez Perce Creek, qui semble se situer sous une coulée connue. L’analyse géochimique et la datation à l’argon permettront de déterminer si cet affleurement correspond à une éruption distincte ou s’il fait partie d’une unité déjà identifiée.
Par ailleurs, des chercheurs de l’Université du Montana ont identifié des dépôts volcaniques au nord-ouest de la caldeira, près de la Madison Junction. Ces dépôts pourraient provenir d’éruptions survenues peu avant la formation de la caldeira, il y a 631 000 ans. Si c’est le cas, cela permettrait de combler le fossé entre l’activité de pré-caldeira et de post-caldeira.
Source : USGS, The Watchers.

Carte de la caldeira de Yellowstone avec la localisation et l’âge des éruptions rhyolitiques les plus récentes à Yellowstone, et appartenant au Central Plateau Member. La région de West Thumb est indiquée car elle est considérée comme le lieu d’une éruption explosive et la source du Tuf de Bluff Point. Les rhyolites du Central Plateau Member sont divisées en cinq groupes informels d’après les nouvelles datations effectuées avec la méthode 40Ar/39Ar. Chaque groupe informel est représenté par la même couleur. Les numéros figurant sur la carte et dans la légende indiquent l’emplacement des différentes coulées de lave. L’âge moyen par groupe et son intervalle de confiance à 95 % sont indiqués à côté de la liste des unités. (Source : USGS)

Carte de meilleure résolution à cette adresse :

https://www.facebook.com/USGSVolcanoes/posts/how-many-eruptions-has-yellowstone-had-simple-questioncomplex-answer-todays-yell/1300881892086276/

————————————————-

Scientists at the Yellowstone Volcano Observatory (YVO) have identified at least 28 eruptions within the Yellowstone Caldera since it formed 631 000 years ago, a minimum estimate based on preserved geologic evidence. Ongoing work is focused on refining this count by identifying older eruptions whose deposits were buried or obscured by younger lava flows. The findings were presented in Yellowstone Caldera Chronicles, a weekly column written by scientists and collaborators of the Yellowstone Volcano Observatory. In January 2025, an issue of the Yellowstone Caldera Chronicles was already dedicated to the supervolcano’s past (see above).

Yellowstone’s volcanic history includes three caldera-forming eruptions over the past 2.1 million years. The most recent, 631 000 years ago, created the present-day caldera and marked a shift toward smaller rhyolite lava flows and domes confined largely within the caldera rather than continent-wide eruptions.

Geologic mapping and age dating identify at least 28 eruptions within the caldera since its formation. This is a minimum count based on eruptions that can be confidently recognized in the geologic record. Earlier eruptive deposits are often obscured by younger lava flows, and in many areas, only small, isolated outcrops remain, limiting insight into their extent or age. Glaciation and erosion have further modified the landscape, removing or redistributing volcanic material.

To reconstruct Yellowstone’s eruptive history, geologists combined detailed field mapping with geochemistry, geochronology, and paleomagnetics. Chemical compositions distinguish magma batches, radiometric ages constrain eruption timing, while paleomagnetic signatures preserved during lava cooling separate eruptions that formed at different times.

The Central Plateau Member rhyolites form one of the best-studied post-caldera eruptive sequences and cover much of the caldera floor. New 40Ar 39Ar dating divides these flows into five informal eruption groups, with mean ages reported at the 95 percent confidence level, improving resolution between closely spaced eruptions.

The West Thumb region of Yellowstone Lake adds another layer to this picture. It is thought to be the vent area for an explosive eruption that produced the Tuff of Bluff Point, showing that post-caldera volcanism was not limited to lava flows alone.

A lava flow exposed in Hayden Valley was previously linked to an eruption dated at about 102 000 years but the new data suggest the lava may be closer to 160 000 years old, suggesting a previously unrecognized eruption. USGS scientists collected samples from this flow in 2025 for argon dating, with results pending.

Field work in 2025 also identified a small lava exposure along the Gibbon River near Nez Perce Creek that appears to lie beneath a known flow. Geochemical analysis and argon dating will determine whether this exposure represents a distinct eruption or part of an already identified unit.

In addition, researchers from Montana State University have identified volcanic deposits northwest of the caldera near Madison Junction. The deposits may represent eruptions that occurred shortly before the caldera-forming event 631 000 years ago, helping overcome the gap between pre-caldera and post-caldera activity.

Source : USGS, The Watchers.

Piton de la Fournaise (Île de la Réunion) : L’éruption continue // The eruption continues

L’OVPF indique ce matin (16 février 2026) que l’éruption du Piton de la Fournaise continue. Une seule bouche éruptive reste active sur le flanc sud-sud-est, avec des fontaines de lave d’environ 15 m de hauteur. Le 15 février 2026, l’effondrement d’un ancien cône a proximité du site éruptif a généré de petites coulées pyroclastiques.

Le front de coulée n’avance plus, faut d’une alimentation siffisante. Il se trouve dans la partie basse des Grandes Pentes, à environ 2,6 km de la RN2 qui n’est donc pas menacée.

L’intensité du trémor éruptif a augmenté le 15 février dans l’après-midi, puis a légèrement diminué au cours de la nuit. Une sismicité persistante sous le sommet indique que le système reste sous pression.

Source : OVPF.

———————————————–

The OVPF reported this morning (16 February 2026) that the eruption of Piton de la Fournaise continues. Only one eruptive vent remains active on the south-southeast flank, with lava fountains approximately 15 meters high. On February 15, 2026, the collapse of an old cone near the eruptive site generated small pyroclastic flows.
The lava flow front is no longer advancing due to insufficient lava supply. It is located in the lower part of the Grandes Pentes, about 2.6 km from the RN2 highway, which is therefore not threatened.
The intensity of the eruptive tremor increased on the afternoon of February 15, then decreased slightly overnight. Persistent seismicity beneath the summit indicates that the system remains under pressure.
Source: OVPF.

Kilauea (Hawaï) : Épisode 42 !

Après l’habituelle activité préliminaire qui a débuté le 14 février 2026 avec des débordements de lave des bouches éruptives nord et sud , et la formation de fontaines en dôme, l’Épisode 42 avec ses fontaines de lave géantes a commencé le 15 février 2026 à 13h50 (heure locale) et se poursuit dans le cratère de l’Halema’uma’u.

Dans les heures précédant le début de cet épisode, des débordements de lave se sont produits au niveau des bouches nord et sud. Cependant, ces signes précurseurs ont été plus courts que pour l’Épisode 41.

Les fontaines atteignent actuellement une hauteur d’environ 300 à 350 mètres. Cet épisode génère des cendres et des téphras, dont la majeure partie semble se disperser vers le sud-ouest sous l’influence de vents relativement forts venant du nord-est. Le sommet du panache a atteint plus de 4 600 mètres d’altitude. Contrairement à l’Épisode 41, où les alizés étaient absents, aucune retombée de téphras n’a été signalée pour le moment sur les postes d’observations prévus pour le public.
Source : HVO.

°°°°°°°°°°

L’Épisode 42 de l’éruption du Kilauea a pris fin à 23h38 (heure locale), après 9 heures et 48 minutes de fontaines de lave.

Dans une nouvelle mise à jour, le HVO précise que le débit effusif maximal a atteint 780 mètres cubes par seconde vers 15 h (heure locale) le 15 février 2026. L’épisode s’est terminé avec un débit effusif moyen de 330 mètres cubes par seconde. On estime à 11,4 millions de mètres cubes le volume de lave émis. La lave a recouvert environ 50 % du plancher du cratère de l’Halemaʻumaʻu. La hauteur des fontaines de lave a culminé à environ 400 mètres au niveau de la bouche sud. La fontaine de la bouche nord a atteint environ 300 mètres. De légères retombées de téphra, composées principalement de cendres fines et de cheveux de Pélé, ont été observées au sud-ouest du site éruptif.
Plus globalement, l’Épisode 42 a assez ressemblé à l’Épisode 41, mais a été légèrement moins puissant en termes de taille, de style éruptif, de hauteur des fontaines et de volume de lave émis. La principale différence concerne l’impact des retombées de téphra. Cela s’explique par la présence de forts alizés du nord-est durant l’Épisode 42, alors que le vent était absent ou soufflait légèrement de l’ouest pendant l’Épisode 41..
Le tiltmètre au sommet du Kilauea a enregistré une déflation d’environ 33,7 microradians durant cet épisode. Le HVO ne dit pas si une nouvelle inflation est apparue à la fin de l’Épisode 42.

Images webcam de l’éruption

————————————————

After the usual precursory activity that began on February 14 2026 with overflows from both the north and soutn vents, and dome-shaped fountains, Episode 42 of lava fountaining in Halemaʻumaʻu began at 1:50 p.m. (local time) on February 15, 2026, and is still continuing.

In the hours leading up to the episode onset, significantly larger overflows issued from both north and south vent. However, the precursory activity was shorter than for Episode 41. Fountain are about 300-350 meters high. The episode is producing ash and tephra, most of which appears to be dispersing to the southwest under the influence of relatively strong winds from the northeast. The plume top has reached over 4,600 meters) above sea level. Unlike for Episode 41 when trade winds were absent, no tephra fall has been reported in public areas at this time.

°°°°°°°°°°

Episode 42 of the Kilauea eruption ended at 11:38 p.m. (local time) on February 15 2026 after 9 hours and 48 minutes hours of lava fountaining.

In a new update, the HVO specifies that the peak effusive flow rate reached 780 cubic meters per second around 3 p.m. (local time) on February 15, 2026. The event ended with an average effusive flow rate of 330 cubic meters per second. The volume of lava emitted is estimated at 11.4 million cubic meters. The lava covered approximately 50% of the floor of Halemaʻumaʻu crater. The height of the lava fountains peaked at approximately 400 meters at the southern vent. The fountain at the northern vent reached approximately 300 meters. Minor tephra fallout, composed mainly of fine ash and Pele’s hair, was observed southwest of the eruption site.

Overall, Episode 42 was quite similar to Episode 41, but slightly less powerful in terms of size, eruptive style, fountain height, and lava volume. The main difference lies in the impact of tephra fallout. This is explained by the presence of strong northeasterly trade winds during Episode 42, whereas the wind was absent or blew lightly from the west during Episode 41.

The tiltmeter at the summit of Kilauea recorded a deflation of approximately 33.7 microradians during this episode. The HVO does not report whether renewed inflation occurred at the end of Episode 42.