Retour sur l’éruption sous-marine du volcan Havre (Iles Kermadec) en 2012 // Return on the 2012 submarine eruption of Havre Volcano (Kermadec Islands)

En 2012, une puissante éruption sous-marine a secoué le volcan Havre, dans les îles Kermadec, à environ 1000 km de l’île du Nord de la Nouvelle-Zélande. A l’époque, j’avais publié plusieurs articles à propos de cet événement.
Dans une étude de deux ans, publiée dans la revue Science Advances, des chercheurs ont reconstitué l’éruption qui fut plus importante que n’importe quelle autre sur Terre au cours du 20ème siècle. Les chercheurs de l’Université de Tasmanie (Australie) ont utilisé des robots pour explorer le volcan sous-marin et mieux comprendre ce qui se passe sous la surface de la Terre. En 2015, ils ont envoyé un véhicule sous-marin autonome (AUV) et une douzaine d’autres engins télécommandés pour cartographier et observer le volcan, et collecter des échantillons de roches.
L’événement de 2012 a été révélé lorsque les satellites ont détecté un banc de pierre ponce d’une superficie de quelque 400 kilomètres carrés à la surface de l’océan. Le volcan à l’origine de l’éruption avait été découvert une dizaine d’années plus tôt.

Source: NASA

 Les robots ont observé 14 bouches éruptives sur le volcan Havre ;  ils ont mesuré la quantité de lave et de roche émise sur le site. A lui seul, le nombre de bouches éruptives montre la puissance de l’éruption le long d’une impressionnante ligne de fractures dans la structure du volcan.
Selon un chercheur, « c’est le premier événement avec un magma à forte teneur en silice où nous sommes en mesure de vérifier si la pression hydrostatique a supprimé l’explosivité ». Les scientifiques ont pu démontrer que 80% du volume de pierre ponce avait alimenté le banc à la surface de l’Océan Pacifique avant son échouage sur les plages de l’île de Micronésie et sur le littoral oriental de l’Australie.
L’éruption a recouvert le volcan de cendre et de ponce et a anéanti la vie qui s’y trouvait. Les biologistes ont hâte de savoir comment les espèces recolonisent un territoire et quelle est leur provenance. Une étude plus approfondie pourrait donner aux scientifiques une meilleure idée de la façon dont ces environnements renaissent, non seulement après les éruptions de volcans sous-marins, mais aussi lorsqu’ils sont soumis à l’exploitation minière des fonds marins.

Sources: New Zealand Herald et Newsweek.

—————————————-

In 2012, a powerful undersea eruption occurred on the seafloor Havre volcano, which lies in the Kermadec Islands, about 1000 km off the North Island of New Zealand. I had published several posts on this blog about the event.

In a two-year study published in the journal Science Advances, researchers have pieced together the eruption that proved larger than any on land in the past century. The researchers from the University of Tasmania in Australia, used robot submarines to probe the underwater volcano, and could reshape our understanding of what is happening beneath the Earth’s surface. In 2015, they sent an autonomous underwater vehicle (AUV) and a team of a dozen remotely operated vehicles to map, observe and collect samples from the volcano.

The 2012 event was revealed when satellite imagery picked up a pumice raft spread across some 400 square kilometres of ocean. The volcano that produced the eruption had been discovered only a decade earlier.

The robots looked at 14 different vents on the Havre volcano to better measure the amount of lava and rock at the site. That number of vents alone pointed to the significance of the event, punching holes along a huge tear line in the volcano’s structure.

According to one researcher, “This was the first event of high silica magma composition where we are able to provide the constraints that test whether the hydrostatic pressure did suppress explosivity”. The scientists were able to demonstrate that 80 per cent of the volume of the pumice was delivered to the pumice raft and efficiently dispersed into the Pacific Ocean landing on Micronesian island beaches and the East Australian seaboard.

The eruption blanketed the volcano with ash and pumice and devastated the biological communities. Biologists are interested to learn more about how species recolonise, and where those new species are coming from. Further study may give scientists a better sense of how these environments rebound not only after submarine volcanoes, but also when subjected to seafloor mining.

Sources: New Zealand Herald and Newsweek.

Plancher océanique autour du volcan de Havre avec, en rouge, la lave de l’éruption de 2012. (Source : University of Tasmania)

Episode éruptif sur le Mt Agung (Bali / Indonésie) // Eruptive episode on Mt Agung (Bali / Indonesia)

Selon l’Agence Nationale de Gestion des Catastrophes (BNPB), le 11 janvier 2018 dans l’après-midi, le mont Agung a émis un nuage de cendre qui est monté jusqu’à 2 500 mètres au-dessus du cratère avec une hausse de la sismicité, mais pas de panique au sein de la population. L’événement a duré 130 secondes. Des retombées de cendre ont été observées à Tulamben, Rubaya et Dukuh Kubu sur les pentes du volcan.
Malgré cet épisode éruptif, la zone de danger présente toujours un rayon de six kilomètres. Les 53 207 personnes qui vivent dans cette zone restent dans des abris temporaires.
L’éruption n’a pas perturbé l’aéroport international de Bali.
Source: The Jakarta Globe.

Un tel événement n’est pas vraiment surprenant. Comme je l’ai écrit précédemment, il est probable que la lave qui s’est accumulée dans le cratère sera pulvérisée de temps en temps par la pression des gaz. .

————————————–

According to the National Disaster Mitigation Agency (BNPB), Mount Agung on January 11th in the afternoon spewed an ash cloud 2,500 metres above its crater and caused tremors but not panic. The event lasted 130 seconds. Ashfall was observed in Tulamben, Rubaya and Dukuh Kubu on the mountain’s slope.

Despite this eruptive episode, the danger zone has still a radius of six kilometres from the top of the mountain. The 53,207 people who live in this zone remain in shelters.

The eruption did not disturb Bali’s International Airport.

 Source : The Jakarta Globe.

Un tel événement n’est pas très surprenant. Comme je l’ai indiqué précédemment ; il est probable que le bouchon (ou la galette) de lave observé dans le cratère sera pulvérisé de temps en temps par les gaz sous pression.

Panache de cendre émis par le Mt Agung le 11 janvier 2018 (Crédit photo: BNPB)

Les ondes sonores des volcans sous-marins // Sound waves from submarine volcanoes

C’est bien connu: il y a beaucoup plus de volcans actifs au fond des océans que sur la terre ferme. Dissimulés dans les profondeurs des océans, leurs éruptions peuvent être extrêmement violentes et très difficiles à détecter. Cependant, de nouveaux enregistreurs permettront peut-être aux scientifiques de cartographier ces événements  beaucoup plus rapidement.
À l’aide d’hydrophones nouvelle génération, des scientifiques de l’Observatoire des Volcans d’Alaska (AVO) et de l’US Geological Survey (USGS) ont enregistré les éruptions de deux volcans. Lors de la présentation des résultats de leurs recherches à la 174ème réunion de l’Acoustical Society of America à la Nouvelle-Orléans, l’équipe de chercheurs a montré à quel point les éruptions de ces deux volcans sont radicalement différentes. En effet, certaines explosions durent des heures tandis que d’autres transpercent la mer comme des coups de canon. Au-dessus de la surface, les éruptions sous-marines peuvent passer inaperçues. Sous l’eau, cependant, elles peuvent envoyer des ondes de choc incroyablement puissantes sur des kilomètres.
Sur Terre, l’activité volcanique est habituellement contrôlée en utilisant des sismographes. Les scientifiques peuvent ainsi connaître et enregistrer l’intensité et la profondeur de l’activité volcanique en utilisant ces données. En revanche, les ondes sonores se déplacent différemment dans de vastes étendues d’eau comme les océans, si bien que la sismologie classique peut ne pas être en mesure d’enregistrer les éruptions sous-marines.
En utilisant des hydrophones de haute technologie, l’équipe scientifique a enregistré des sons très différents émis par l’éruption de l’Ayhi en 2014 dans les îles Mariannes du Nord et par les éruptions du Bogoslof en 2015 et 2016 dans les Aléoutiennes (Alaska).
Les éruptions de l’Ahyi et du Bogoslof étaient différentes. C’est peut-être dû à la composition de leur magma, à la quantité de gaz émis et la pressurisation du système. L’Ahyi est également complètement sous l’eau, avec son sommet à environ 75 mètres de profondeur, tandis que le sommet du Bogoslof émerge à la surface de l’océan.
L’Ahyi a connu des milliers de brèves explosions sur une période de deux semaines. Cela a donné lieu à des sons semblables à des coups de canon. En revanche, les éruptions du Bogoslof ont été plus soutenues et ont parfois duré des minutes ou des heures. Des séismes et des épisodes de tremor ont accompagné ces éruptions, avec des panaches de cendre qui perçaient la surface de l’océan.
Les puissantes ondes sonores peuvent se déplacer sur des milliers de kilomètres à travers les océans. Les scientifiques ont capté certains signaux de l’Ahyi sur des hydrophones au large des côtes du Chili, à plus de 15 000 kilomètres à travers le Pacifique. Cependant, de nombreux sons volcaniques n’atteignent pas ce niveau car ils sont trop faibles ou peuvent être bloqués par la topographie, des îles par exemple. Tout comme les bruits au-dessus de la mer, des objets comme les murs peuvent rendre plus difficile la perception d’un son.
Les scientifiques peuvent utiliser des instruments sismiques et audio pour dessiner une meilleure image des éruptions volcaniques sous-marines. Selon un communiqué de presse, les signaux émis par une éruption volcanique sous-marine peuvent même être détectés par des dispositifs de surveillance des chants des baleines.
Source: Adapté d’un article publié dans Newsweek.

——————————————

It is a well-known fact: There are far more active volcanoes at the bottom of the oceans than on land. Buried in the depths of the oceans, their violent eruptions can be extremely powerful and very difficult to detect. However, new recordings may help scientists map these incredible events much more quickly.

Using hydrophones, scientists from the Alaska Volcano Observatory (AVO) and the U.S. Geological Survey (USGS) recorded the sounds of two volcanoes erupting. Presenting their findings at the 174th Meeting of the Acoustical Society of America in New Orleans, the team showed how different eruptions sound drastically different. Indeed, some explosions last hours while others rip through the sea like gunshots. Above the surface, submarine eruptions may go unnoticed. Underwater, however, they can send incredibly powerful shockwaves many kilometres.

Volcanic activity is usually monitored using seismology. Scientists can recognize and record the size and depth of volcanic activity using this data. Sound waves travel differently in vast bodies of water like oceans, so normal seismology can fall short in recording underwater eruptions.

Using sophisticated hydrophones, the team recorded vastly different sounds from the 2014 eruption of Ayhi in the Northern Mariana Islands, and from the 2015 and 2016 eruptions of Bogoslof in the Aleutians (Alaska).

The eruption styles of Ahyi and Bogoslof were different. This could be due to differences in the two systems, such as magma composition, amount of gas, and pressurization of the system. Ahyi is also completely submerged at around 75 metres deep, while Bogoslof is very shallow with part of its top peeking out of the water.

Ahyi produced thousands of short explosions over a two-week period. This resulted in sounds akin to gunshots. The Bogoslof recordings, however, showed sustained eruptions lasting anything from minutes to hours. Earthquakes and tremors accompanied these eruptions, with plumes of ash breaking through the surface of the ocean.

The powerful soundwaves can be carried thousands of kilometres through the sea. The scientists have found some of the Ahyi signals on hydrophones off the coast of Chile, more than 15,000 kilometres across the Pacific. Many volcanic sounds won’t reach this far, however, because either they are too weak or they may be blocked by topography, such as islands. Just like noises above the sea, objects like walls can make it harder to listen to a sound.

Scientists can use both seismic and audio instruments to build a better picture of underwater volcano eruptions. According to a press release, the signs of an underwater volcanic eruption can even be picked up by whale song-monitoring devices.

Source : Adapted from an article published in Newsweek.

Nouveau profil de l’Ahyi après l’éruption de 2014 (Source: USGS)

Vue du Bogoslof le 15 août 2017 (Crédit photo: AVO)

 

Pas de risque de nuées ardentes sur le Mt Agung (Bali / Indonésie) // No risk of hot clouds on Mt Agung (Bali / Indonesia)

Selon le porte-parole de l’Agence nationale de gestion des catastrophes (BNPB), le Mont Agung, qui est toujours en alerte volcanique maximale, « ne produira pas de nuées ardentes, mais seulement de la fumée et des cendres volcaniques. » En effet, comme je l’ai écrit précédemment, la lave ne remplit qu’un tiers du cratère et les coulées pyroclastiques se forment lorsque la lave remplit tout le cratère.
Le porte-parole de BNPB a expliqué que l’Agung – contrairement au Sinabung – a un profil de cratère concave et que la lave devrait devrait remplir le cratère complètement avant de se transformer en nuées ardentes.

Selon le porte-parole, chaque volcan a ses propres caractéristiques. Bien que l’Agung et le Sinabung soient tous deux des volcans actifs, l’Agung a connu une puissante éruption en 1963, alors que le Sinabung a connu de multiples explosions qui continent encore aujourd’hui.
Source: Antara News.

—————————————–

According to the National Disaster Mitigation Agency (BNPB)’s spokesman, Mount Agung, which still at its highest alert level, “will not release hot clouds but only smoke and volcanic ashes”. Indeed, as I put it previously, lava has just filled one-third of the entire crater and the hot clouds are formed when lava fills the whole crater.
BNPB’s spokesman explained that Mount Agung – contrary to Mt Sinabung – has a concave profile of the crater, and as a result, the lava should be loaded completely before developing into hot clouds.

Each volcano has its own unique characteristics. Although Mount Agung and Mount Sinabung are both active volcanoes, the former once recorded a massive eruption in 1963, while the latter has had multiple explosions until now.
Source : Antara News.

Source: Wikipedia