Cartes à risques du Mauna Loa (Hawaii) // Risk maps of Mauna Loa Volcano (Hawaii)

Les  scientifiques du HVO ont publié des cartes du Mauna Loa qui aideront les responsables de la Protection Civile et d’autres gestionnaires de services d’urgence à identifier les personnes, les biens et les installations à risque lors de futures éruptions de ce volcan.
La plupart des fractures et bouches éruptives du Mauna Loa se trouvent au sommet du volcan et le long de deux zones de rift qui s’étendent au nord-est et au sud-ouest de Mokuaweoweo, la caldeira sommitale. Cependant, des émissions de lave se produisent parfois le long des fractures radiales qui s’étendent principalement au nord et à l’ouest du sommet.
Les parois du Mokuaweoweo forment des barrières naturelles qui devraient protéger les zones situées au sud-est et à l’ouest de la caldeira contre les coulées de lave provenant de l’intérieur de la caldeira. Toutefois, la paroi du côté ouest est rendue inefficace par les bouches susceptibles de s’ouvrir sur les flancs du volcan.
Grâce à une cartographie géologique détaillée et une modélisation du comportement de la lave en fonction de la topographie, l’USGS-HVO a mis au point neuf cartes représentant 18 zones susceptibles d’être recouvertes par la lave du Mauna Loa. Chaque zone identifie un segment du volcan où la lave pourrait sortir et donner naissance à des coulées vers l’aval.
Les zones en couleur sont celles qui pourraient potentiellement être recouvertes par les coulées produites par les futures éruptions du Mauna Loa. Ces éruptions pourraient provenir du sommet du volcan, des zones de rift, ou des bouches radiales. Il est probable, cependant, que seule une partie d’une zone soit affectée par chaque éruption.
Lorsqu’une éruption commencera sur le Mauna Loa, les cartes aideront les décideurs à identifier rapidement les localités, les infrastructures et les routes situées entre les bouches éruptives éventuelles et la côte, ce qui facilitera les interventions des secours. Le public pourra également utiliser les cartes pour déterminer la direction des coulées de lave une fois que l’éruption aura commencé.
L’ensemble de cartes “Lava inundation zone maps for Mauna Loa, Island of Hawaii,” publié par l’USGS sous l’appellation Scientific Investigations Map 3387, comprend 10 feuilles (cartes) et une brochure explicative. La carte 1 (voir ci-dessous) est une carte de l’ensemble de l’île d’Hawaï avec des contours montrant les zones englobées par les neuf autres cartes. Ces neuf cartes représentent les 18 zones sous la menace de la lave du Mauna Loa. Des instructions sur la façon d’interpréter les cartes sont fournies dans la brochure d’accompagnement.
Les zones menacées sur les cartes sont: Kaumana, Waiakea et Volcano-Mountain View (feuille 2); Kapapala (feuille 3); Pahala, Punaluu et Wood Valley (feuille 4); Naalehu (feuille 5); Kalae (feuille 6); Hawaiian Ocean View Estates, Kapua et Milolii (feuille 7); Hookena, Kaohe et Kaapuna (feuille 8); Honaunau et Kealakekua (feuille 9); et Puako (feuille 10). Les échelles cartographiques varient de 1: 45 000 à 1: 85 000.
Toutes ces cartes ainsi que les fichiers connexes sont disponibles en ligne :

https://doi.org/10.3133/sim3387

Le HVO prévoit également de distribuer des copies papier des cartes aux bibliothèques de l’île d’Hawaii au cours du mois prochain.
Source: USGS / HVO.

——————————————-

Researchers at HVO have produced maps that will help Hawaii County Civil Defence and other emergency managers identify people, property, and facilities at risk during future eruptions.

Most of Mauna Loa’s eruptive fissures and vents are located at the summit of the volcano and along two rift zones that extend northeast and southwest from Mokuaweoweo, the volcano’s summit caldera. A few vents, however, occur along radial fissures that extend primarily north and west from the summit.

The bounding walls of Mokuaweoweo create topographic barriers that should protect areas southeast and west of the caldera from lava flows erupted from within the caldera. But the barrier on the west side is rendered ineffective by the radial vents on the flanks of the volcano.

Using detailed geologic mapping and modeling of how lava responds to surface topography, USGS-HVO have constructed nine maps depicting 18 inundation zones on Mauna Loa. Each zone identifies a segment of the volcano where lava could erupt and send flows downslope.

Coloured regions on these maps show areas on the volcano’s flank that could potentially be covered by flows from future Mauna Loa eruptions. These eruptions could originate from the volcano’s summit, rift zones, or radial vents. It’s likely, however, that only part of a zone would be covered in a single eruption.

When a Mauna Loa eruption starts, the maps can help decision makers quickly identify communities, infrastructure, and roads between possible vent locations and the coast, facilitating more efficient and effective allocation of response resources. The public can also use the maps to consider where lava flows might go once an eruption starts.

Lava inundation zone maps for Mauna Loa, Island of Hawaii,” published by the U.S. Geological Survey as Scientific Investigations Map 3387, comprises 10 sheets and an explanatory pamphlet. Sheet 1 is a map of the entire Island of Hawaii with outlines showing the areas encompassed by the nine other maps. These nine sheets depict the 18 inundation zones for Mauna Loa. Guidelines on how to interpret the maps are provided in the accompanying pamphlet.

The inundation zones identified on the maps are: Kaumana, Waiakea and Volcano-Mountain View (Sheet 2); Kapapala (Sheet 3); Pahala, Punaluu and Wood Valley (Sheet 4); Naalehu (Sheet 5); Kalae (Sheet 6); Hawaiian Ocean View Estates, Kapua and Milolii (Sheet 7); Hookena, Kaohe and Kaapuna (Sheet 8); Honaunau and Kealakekua (Sheet 9); and Puako (Sheet 10). Map scales vary from 1:45,000 to 1:85,000.

The Mauna Loa lava flow inundation maps and related GIS files are also available online:

https://doi.org/10.3133/sim3387

HVO also plans to distribute paper copies of the maps to public libraries around the island in the next month or so.

Source: USGS / HVO.

Vue de la carte n°1 montrant l’ensemble des zones susceptibles d’être menacées par la lave du Mauna Loa (Source: USGS)

Mt Agung (Bali / Indonésie) : Baisse du niveau d’alerte (suite) // Reduction of the alert level (continued)

Un bulletin émis le 29 octobre 2017 par le VSI indique les raisons pour lesquelles le niveau d’alerte de l’Agung a été abaissé de 4 (AWAS) à 3 (SIAGA) ce même jour.

– Les observations à l’aide de drones ont montré que les panaches de gaz à l’intérieur du cratère sont moins intenses.

– Comme je l’ai indiqué précédemment, on observe une baisse significative de la sismicité depuis le 20 octobre. L’énergie sismique décline elle aussi.

– Les observations satellitaires ont révélé une réduction des anomalies thermiques sur le volcan.

Il faut noter que la décision d’abaisser le niveau d’alerte du volcan est intervenue rapidement alors que les scientifiques du VSI avaient indiqué il y a quelques jours qu’il faudrait être patient avant de le modifier si la situation volcanique le justifiait. En effet, l’histoire éruptive de certains volcans indonésiens montre qu’une éruption peut survenir après une période de calme faisant suite à un épisode d’activité intense.

On peut raisonnablement penser (c’est un point de vue que je partage) que le VSI a cédé aux pressions des autorités locales qui insistaient depuis quelques jours pour que le niveau d’alerte soit modifié, pour des raisons économiques (baisse du tourisme) et religieuses (début de la fête du Galungan le 1er novembre).

Croisons les doigts pour que l’Agung ne se réveille pas dans les prochains jours !

Ci-dessous, un graphique montre l’évolution de l’activité volcanique au cours des dernières semaines.

———————————–

A bulletin issued by VSI on October 29th 2017 indicates the reasons why the alert level for Mt Agung was lowered from 4 (AWAS) to 3 (SIAGA) that same day.
– Observations using drones have shown that the gas plumes inside the crater are less intense.
– As I indicated earlier, there has been a significant decrease in seismicity since 20 October. Seismic energy is also declining.
– Satellite observations revealed a reduction in thermal anomalies on the volcano.
It should be noted that the decision to lower the alert level was taken very quickly when scientists at VSI had indicated a few days before that it would be necessary to be patient before re-evaluating it if the volcanic situation justified it. Indeed, the eruptive history of some Indonesian volcanoes shows that an eruption can occur after a period of calm following an episode of intense activity.
It is reasonable to assume (I personally share this opinion) that VSI has succumbed to pressure from local authorities who have insisted for a few days to change the alert level, for economic reasons (impact of the eruption on tourism) and religious ones (beginning of the Galungan festival on November 1st ).
Let’s keep your fingers crossed and hope that Mt Agung does not wake up in the next few days!

Below, a graph shows the evolution of volcanic activity in recent weeks.

Source: VSI

Sismicité dans la Maurienne

Plusieurs blogonautes m’ont contacté pour me demander mon avis sur la sismicité qui affecte  en ce moment la vallée de la Maurienne, en Savoie. Cette sismicité n’étant pas d’origine volcanique, je ne suis pas qualifié pour répondre. Je le suis d’autant moins que je ne connais pas le profil sismique de la région. De toute façon, notre capacité actuelle à prévoir les séismes avoisine le zéro. Nous connaissons les régions qui sont susceptibles d’être affectées, mais la prévision s’arrête là.

Pour avoir des explications sur l’essaim sismique de la vallée de la Maurienne, je conseille de consulter le site SISMalp à l’adresse suivante :

https://sismalp.osug.fr/

De plus en plus de gaz carbonique dans l’atmosphère // More and more CO2 in the atmosphere

La radio française France Info vient de publier un article intitulé « Réchauffement climatique: il n’y a jamais eu autant de CO2 dans l’atmosphère, selon l’ONU. » C’est ce qui s’appelle enfoncer une porte ouverte. Le phénomène n’est pas nouveau. D’ailleurs, l’Organisation Météorologique Mondiale (OMM) citée dans l’article précise que ces concentrations étaient déjà de 400 parties par million (ppm) en 2015. Elles atteignent 403,3 ppm en 2016 et – toujours selon l’OMM – représentent désormais 145% de ce qu’elles étaient à l’époque pré-industrielle (avant 1750).  Pour être parfaitement à jour, il suffit de consulter la courbe de Keeling (https://scripps.ucsd.edu/programs/keelingcurve/) qui révèle les concentrations de CO2 sur le Mauna Loa à Hawaii. Le 28 octobre 2017, elles atteignaient exactement 403,98 ppm.

L’OMM rappelle que la dernière fois que la Terre a connu une teneur en CO2 comparable, c’était il y a 3 à 5 millions d’années. La température était alors de 2 à 3°C plus élevée et le niveau de la mer était supérieur de 10 à 20 mètres par rapport au niveau actuel.

Selon l’OMM, la hausse rapide actuelle des concentrations en CO2 est due à « la conjonction des activités humaines et d’un puissant épisode El Niño »,  phénomène qui se traduit par une hausse de la température de l’océan Pacifique. [NDLR : Il faut tout de même noter qu’El Niño est actuellement terminé et remplacé par La Niña ; malgré ce changement, la hausse des concentrations de CO2 se poursuit !].

Les chercheurs se basent sur les carottes de glace pour déterminer les variations de la teneur en CO2 dans l’atmosphère au cours du temps. Selon eux, « si l’on ne réduit pas rapidement les émissions de gaz à effet de serre, et notamment de CO2, nous allons au-devant d’une hausse dangereuse de la température d’ici la fin du siècle, bien au-delà de la cible fixée dans l’Accord de Paris sur le climat. »

Depuis l’ère industrielle, soit depuis 1750, la croissance démographique, la pratique d’une agriculture de plus en plus intensive, une plus grande utilisation des terres, la déforestation, l’industrialisation et l’exploitation des combustibles fossiles à des fins énergétiques provoquent une augmentation de la teneur atmosphérique en gaz à effet de serre, dont le principal est le CO2. Celui-ci persiste dans l’atmosphère pendant des siècles et dans l’océan, encore plus longtemps. Selon les lois de la physique, la température sera nettement plus élevée et les phénomènes climatiques seront plus extrêmes à l’avenir. Comme l’a fait remarquer fort justement le secrétaire général de l’OMM, « les générations à venir hériteront d’une planète nettement moins hospitalière. »

————————————

French radio France Info has just published an article entitled “Global warming: there has never been so much CO2 in the atmosphere, according to UNO”. This is called pressing an open door. The phenomenon is not new and the World Meteorological Organization (WMO) mentioned in the article states that these concentrations were already 400 parts per million (ppm) in 2015. They now reach 403.3 ppm in 2016 and – according to WMO –  they now account for 145% of what they were in the pre-industrial era (before 1750). To be perfectly up to date, we just need to look at the Keeling Curve (https://scripps.ucsd.edu/programs/keelingcurve/) which reveals CO2 concentrations on Mauna Loa in Hawaii. On October 28th, 2017, they reached exactly 403.98 ppm.
WMO recalls that the last time the Earth had a comparable CO2 content was 3 to 5 million years ago. The temperature was 2 to 3°C higher and the sea level was 10 to 20 metres higher than the current level.
According to WMO, the current rapid rise in CO2 concentrations is due to « the conjunction of human activities and a powerful El Niño event », which means an increase in the temperature of the Pacific Ocean. [Note: It should nevertheless be noted that El Niño is now over and replaced by La Niña; despite this change, the increase in CO2 concentrations continues!].
Researchers rely on ice cores to determine changes in CO2 content in the atmosphere over time. According to them, « if we do not quickly reduce greenhouse gas emissions, especially CO2 emissions, we will be facing a dangerous rise in temperature by the end of the century, well beyond beyond the target set in the Paris Climate Agreement.  »
Since the industrial era, namely since 1750, population growth, the practice of an increasingly intensive agriculture, a greater use of land, deforestation, industrialization and the exploitation of fossil fuels for energy purposes have caused an increase in the atmospheric content of greenhouse gases, the main one being CO2. It persists in the atmosphere for centuries and in the ocean, even longer. According to the laws of physics, the temperature will be significantly higher and there will be more extreme climatic phenomena in the future. As the WMO Secretary General rightly pointed out, « future generations will inherit a much less hospitable planet. »

La courbe de Keeling