Coulées de lave et zones de risques à Hawaii // Lava flows and threatened areas in Hawaii

Dans un article récent, les géologues de l’Observatoire des Volcans d’Hawaï (HVO) expliquent comment évaluer la menace posée par les coulées de lave. Selon eux, cette approche repose sur notre connaissance du passé. La probabilité à long terme qu’une zone soit envahie par la lave est évaluée de deux manières différentes en fonction de l’activité passée des coulées.
Une première approche utilise une carte géologique pour calculer quelle surface terrestre a été recouverte par la lave au cours de différentes périodes du passé.
Une autre approche calcule la fréquence à laquelle des coulées de lave se sont produites dans des zones spécifiques au fil du temps.
Ces deux approches sont utilisées par la plupart des observatoires volcanologiques dans le monde. Les cartes montrant les coulées de lave avec des couleurs différentes selon les années sont souvent très belles.
En ce qui concerne les volcans hawaïens, la carte de 1992 – Lava-Flow Hazard Zone (LFHZ) – utilise l’approche basée la couverture par la lave sur le long terme. On ne mesure pas la vitesse à laquelle une coulée de lave avance, mais la vitesse à laquelle une zone est recouverte par la lave de plusieurs éruptions au cours des siècles.
Les nouvelles éruptions n’affectent pas de manière significative cette couverture car leurs coulées recouvrent certaines coulées de lave récentes ainsi que d’autres plus anciennes. Par exemple, la lave de 2018 a coulé entre et sur des portions des coulées de lave de 1790, 1955 et 1960. Par conséquent, la surface de lave émise depuis 1790 n’a pas été forcément augmentée par l’ensemble des coulées de 2018, mais uniquement par la partie qui est allée au-delà des coulées antérieures.
La carte LFHZ de 1992 montre que les plus forts risques de couverture par la lave se trouvent dans les zones de rift et au sommet du Kilauea et du Mauna Loa. Près de la moitié de la LFHZ 1 (la zone la plus exposée) sur les deux volcans a été recouverte par la lave depuis l’année 1790.
L’autre approche pour estimer les risques des coulées de lave sur le long terme consiste à calculer la fréquence à laquelle une zone particulière est affectée. La Lower East Rift Zone (LERZ) du Kilauea a été envahie par la lave à cinq reprises depuis 1790 – en 1790, 1840, 1955, 1960 et 2018. Ces éruptions se sont produites sur une période de plus de 200 ans avec des intervalles d’une soixantaines d’années entre elles.
La méthode de l’intervalle de récurrence des coulées est la plus largement utilisée pour calculer les risques. Elle fait reposer en général les cartes à risques sur un intervalle de récurrence moyen de 100 ans entre les coulées les plus destructrices. En utilisant la formule de probabilité la plus simple, cet intervalle de récurrence se traduit par une probabilité de 1% de coulées destructrices sur une année et de 39 % sur une période de 50 ans. La probabilité qu’une coulée majeure se produise au cours d’un siècle n’est pas de 100% mais seulement de 63%, car l’intervalle de récurrence est une moyenne d’intervalles réels qui peuvent être très différents.
Dans l’application de cette méthode par le HVO aux coulées de lave du Kilauea, un intervalle de récurrence moyen d’environ 60 ans dans la LERZ signifie qu’il y a 63 % de chances que le prochain intervalle de récurrence sans lave soit de 60 ans ; c’est aussi la probabilité qu’une autre coulée de lave affecte une partie de la LERZ d’ici 60 ans. La probabilité d’une coulée de lave dans cette zone au cours d’une période de 30 ans serait de 40% et la probabilité d’envahissement de la zone par la lave serait de 26%. Heureusement, les zones les plus exposées dans la LERZ se limitent aux régions côtières.
Les calculs et les cartes des risques de coulée de lave produits par l’U.S. Geological Survey (USGS) sont destinés à informer les propriétaires fonciers, les services de sécurité et les planificateurs gouvernementaux des risques à long terme posés par les coulées de lave.
Source : USGS/HVO.

——————————————

In a recent article, geologists at the Hawaiian Volcano Observatory (HVO) explain how one can evaluate the threat posed by future lava flows. They say that this approach relies on our knowledge of the past. The long-term likelihood of an area being invaded by lava in the future, is estimated in two different ways based on the history of lava flow activity.

One approach uses a geologic map to calculate how much land surface was covered by lava during different periods going back into the past.

Another approach calculates how frequently lava flows have occurred within specific areas over time.

Both approaches are used by most volcanological observatoriess in the world. The maps showing the lava flows with diffrenet colours according to the years are often very beautiful.

As far as Hawaiian volcanoes are concerned, The 1992 Lava-Flow Hazard Zone (LFHZ) Map represents use of the approach based on long-term coverage rates. This is not a measure of how fast an individual lava flow advances but how fast an area is covered by lava from multiple eruptions over centuries.

New eruptions don’t affect coverage rates significantly because new flows cover some of the most recent lava as well as older flows. For example, 2018 lava flowed between and over parts of the 1790, 1955, and 1960 lava flows. Therefore the “coverage” or resurfacing since 1790 did not increase by the full area of the 2018 flow, just by the portion that was beyond those earlier flows.

The 1992 LFHZ map shows that the highest coverage rates (and therefore hazards) are within the rift zones and summits of Kīlauea and Mauna Loa volcanoes. Almost half of LFHZ 1 (the most hazardous zone) on both volcanoes was covered since the year 1790.

The other approach to estimating long-term lava flow hazards is to calculate how often a particular area is impacted by lava. The lower East Rift Zone (LERZ) of Kīlauea has been overrun by lava five times since 1790—in 1790, 1840, 1955, 1960, and 2018. Those eruptions occur over a span of more than 200 years with an average of about 60 years between them.

The recurrence interval method is most widely used for calculating flood hazards, traditionally basing hazard maps on an average recurrence interval of 100 years between damaging floods. By using the simplest formula for probability, that recurrence interval translates to a 1 percent chance of damaging floods happening in any one year and a 39 percent chance in any 50-year period. The probability of such a flood happening in any century is, surprisingly, not 100 percent but 63 percent because the recurrence interval is an average of actual intervals that may be quite different.

In the HVO application to lava flows, an average recurrence interval of about 60 years in the LERZ means that there is a 63 percent chance that the next lava-free recurrence interval will be 60 years; it is also the odds that another lava flow will affect some part of the LERZ within 60 years. The probability of a lava flow in this region during the period of 30 years would be 40 percent and the probability of flooding would be a 26 percent chance. Fortunately, the region of combined significant lava and flood hazards in the LERZ is limited to coastal flooding zones.

Lava flow hazard calculations and maps produced by the U.S. Geological Survey (USGS) are intended to inform property owners, emergency managers, and government planners of the long-term hazards posed by lava flows.

Source: USGS / HVO.

Carte de 1992 des zones de risques à Hawaii. Vous trouverez la carte avec une meilleure résolution en cliquant sur ce lien: https://pubs.usgs.gov/mf/1992/2193/mf2193.pdf

Kilauea (Hawaii) : A quoi joue le HVO? // Kilauea (Hawaii) : What does HVO play?

Il y a quelques semaines, le HVO expliquait qu’ une fenêtre de trois mois était nécessaire pour déterminer si une éruption était terminée sur le Kilauea. La dernière ayant pris fin le 24 mai 2021, il fallait attendre le 24 août pour la déclarer officiellement terminée.Toute nouvelle activité éruptive deviendrait « la prochaine éruption ».

Or – quelle coïncidence! –  le 24 août 2021 est la date choisie par le HVO pour clamer haut et fort qu’un essaim sismique significatif a été enregistré dans la partie sud de la caldeira du Kilauea, avec une certaine déformation du sol. Cela sous-entendait, bien sûr, qu’une nouvelle éruption allait se produire dans le très court terme. Au moment où l’information a largement été diffusée par les médias américains, j’ai fait remarquer que ce genre d’événement n’avait rien d’exceptionnel car des secousses se produisent fréquemment sur le flanc sud du Kilauea suite à un effet de basculement de l’édifice volcanique dans l’Océan Pacifique.

Dans son bulletin du 26 août 2021, le HVO écrit que « le Kilauea n’est pas en éruption. Au cours des dernières 24 heures, l’activité sismique et la déformation du sol ont diminué dans la partie sud de la caldeira sommitale du Kilauea. […] Ces observations indiquent que le risque immédiat d’une éruption a diminué. » Le niveau d’alerte volcanique été abaissé en conséquence..

Mais aucune affirmation que la dernière éruption est terminée…..!!!!! On frise la mauvaise foi! Si l’OVPF se livrait au même jeu sur l’île de la Réunion, le Piton de la Fournaise serait en éruption permanente!

————————————–

A few weeks ago, HVO explained that a three-month period was needed to determine if an eruption was over on Kilauea volcano.As the last one ended on May 24th, 2021, it was necessary to wait until August 24th to declare it officially over. Any new eruptive activity would become « the next eruption ».
However, August 24th, 2021 – what a coincidence! – was the date chosen by HVO to proclaim loudly that a significant seismic swarm has been recorded in the southern part of the Kilauea caldera, with some ground deformation. This suggested, of course, that a new eruption was going to occur in the very short term. While the information was widely disseminated by the American media, I pointed out that this kind of event was not exceptional because tremors frequently occur on the southern flank of Kilauea following a tilting effect. of the volcanic edifice in the Pacific Ocean.
In its bulletin of August 26th, 2021, HVO wrote that « Kilauea is not erupting. Over the past 24 hours, seismic activity and ground deformation have decreased in the southern part of the Kilauea summit caldera. . […] These observations indicate that the immediate risk of an eruption has diminished.  » The volcanic alert level has been lowered accordingly.
But not ad to say that the last eruption was over ….. !!!!! We are bordering on dishonesty! If the OVPF played the same game on Reunion Island, Piton de la Fournaise would be in permanent eruption!

Crédit photo: HVO

Kilauea (Hawaii): Radar et éruptions volcaniques // Radar and volcanic eruptions

Aucune activité de surface n’est observée sur le Kilauea depuis le 23 mai 2021. Si le HVO tient ses promesses, l’éruption ne sera plus en « pause » le 23 août ; elle sera bel et bien terminée ! Dans un nouvel article, les scientifiques de HVO expliquent comment ils utilisent le radar météorologique pour analyser les panaches émis par le Kilauea.

RADAR est l’acronyme de Radio Detection And Ranging, un outil largement utilisé depuis le début des années 1900. Aujourd’hui, le radar a de nombreuses applications : dans l’atmosphère pour suivre les systèmes météorologiques et l’activité aéronautique, dans l’espace pour imager la Terre et les corps extraterrestres à partir de satellites, et même dans le sol pour détecter des objets enfouis.
Pour fonctionner, le radar utilise une antenne qui concentre les impulsions d’énergie tout en balayant des directions et des angles spécifiques. Les impulsions se déplacent à la vitesse de la lumière et croisent des objets sur leur chemin, tels que des montagnes, des bâtiments, des avions, des oiseaux, des gouttes de pluie ou des cendres volcaniques. Lorsqu’une impulsion frappe un objet, une fraction de son énergie est réfléchie vers l’antenne. L’énergie réfléchie est ensuite mesurée et traitée pour fournir des valeurs de réflectivité. La réflectivité est plus sensible à la taille et à la forme d’un objet spécifique ; toutefois, dans la mesure où une impulsion peut interagir avec de nombreux objets simultanément, la concentration des objets est également importante.
Les antennes radar peuvent balayer à 360 degrés autour d’une station sur différents angles d’élévation et produire une couverture atmosphérique presque complète sur 150 kilomètres ou plus en quelques minutes seulement. C’est ainsi que les météorologues présentent une couverture presque continue des systèmes météorologiques dans le monde.
Le radar météorologique est également un outil extrêmement important pour étudier les éruptions volcaniques. Les systèmes radar utilisés pour mesurer la vitesse du vent peuvent également mesurer les structures de turbulence dans les panaches, ce qui permet aux scientifiques d’analyser comment ils absorbent l’air, grossissent et s’élèvent dans l’atmosphère. En utilisant des dizaines de scans par heure, ils peuvent mesurer l’évolution du panache et des éruptions dans le temps.
Le HVO explique comment les scientifiques ont utilisé les systèmes radar le 20 décembre 2020 lorsque le panache de vapeur émis par le lac d’eau dans le cratère Halema’uma’u s’est transformé en un panache volcanique. L’île d’Hawaï possède deux stations radar WSR-88D, à South Point (PHWA) et Kohala (PHKM). Le panache de l’éruption du 20 décembre 2020 était visible depuis les deux stations, de sorte que leurs données permettent de comprendre cette éruption.
Le lac d’eau au fond de l’ Halema’uma’u avait environ 50 mètres de profondeur et continuait de grandir lorsque le Kilauea est entré en éruption le 20 décembre. Une nouvelle fissure s’est ouverte au-dessus du lac sur la paroi du cratère à 21h30. (heure locale). Un grand volume de lave s’est déversé dans le lac. La lave a vaporisé l’eau et généré un volumineux panache.
Contrairement aux panaches de cendres émis par une bouche éruptive lors d’une éruption explosive, le panache du 20 décembre 2020 contenait peu de cendres. Il a commencé à s’élever immédiatement mais lentement pour atteindre jusqu’à 13 000 mètres d’altitude. À 23 heures, l’eau avait disparu, remplacée par un lac de lave.
Les mesures radar du panache ont été accessibles quelques minutes après son apparition et elles montrent clairement son développement, son élévation et son volume suite à l’ouverture de la nouvelle fissure. Le panache a ensuite décliné quand le lac s’est asséché. La visualisation 3D du panache montre comment sa hauteur et sa structure changent au fil du temps.
Les modèles radar peuvent être utilisés pour l’échantillonnage des dépôts du panache au sol et pour comparer les zones à haute réflectivité avec des phénomènes tels que la foudre afin de corréler les observations visuelles à la dynamique interne du panache. Les scientifiques peuvent aussi calculer la concentration dans le panache, son trajet, ainsi que le volume total de cendres transportées et déposées pendant l’éruption.
Un autre avantage du radar météorologique est son accessibilité. De nombreuses stations fournissent gratuitement des données en temps quasi réel. Elles sont accessibles via le logiciel Weather and Climate Toolkit de la NOAA. Toute personne intéressée par ces phénomènes peut analyser les données à partir de son ordinateur personnel. Le radar est de plus en plus utilisé en volcanologie et il sera de plus en plus utile au HVO dans les futurs scénarios d’éruption.
Source : USGS/HVO.

——————————————-

No surface activity has been observed at Kīlauea since May 23rd, 2021. If the Hawaiian Volcano Observatory (HVO) keeps its promise, the eruption will no longer living a pause on August 23rd, it will be over !

In a new article, HVO scientists explain how they use weather radar to investigate the plumes emitted by Kilauea volcano. RADAR is an acronym for Radio Detection And Ranging, a tool that has been broadly used since the early 1900s. Today, radar has many uses: in the atmosphere to track weather systems and aviation activity, in space to image the Earth and extraterrestrial bodies from satellites, and even in the ground to detect buried objects.

Radar operation uses an antenna that focuses pulses of energy as it scans specific directions and angles. The pulses travel at the speed of light and intersect objects in their path, such as mountains, buildings, airplanes, birds, raindrops, or volcanic ash. As a pulse hits an object, a fraction of its energy is reflected toward the antenna. The reflected energy is then measured and processed to give values of “reflectivity.” Reflectivity is most sensitive to an object’s size and shape, though since a pulse can interact with many objects simultaneously, the concentration of objects is also important.

Radar antennas can scan 360 degrees around a station at various elevation angles and produce nearly complete atmospheric coverage within 150 or more kilometres in just a few minutes. This is how meteorologists present nearly continuous coverage of weather systems worldwide.

Weather radar is also an extremely important tool for studying explosive eruptions. Radar systems used to measure wind speed can also measure turbulence structures in plumes, which allows scientists to track how they capture air, grow in size, and rise through the atmosphere. Using tens of scans per hour, they can measure plume and eruption evolution in time.

HVO explains how they used radar systems on December 20th, 2020 when the steam plume emitted by the water lake within Halema’uma’u crater turned into a volcanic plume.

The Island of Hawaii hosts two WSR-88D radar stations, at South Point (PHWA) and Kohala (PHKM). The December 20th, 2020, eruption plume was visible to both stations, so their data help understand this interesting eruption.

The water lake in Halema‘uma‘u was about 50 metres deep and growing when Kīlauea summit erupted on December 20t. A new fissure opened above the lake on the crater wall at 9:30 p.m. (local time). A large volume of lava spilled down into the lake, boiling the water, and producing a volcanic steam plume.

Unlike explosive ash plumes that erupt at high velocities directly from a vent, this plume originated from the boiling water, carried little ash, and began rising immediately but slowly, reaching 13,000 metres above sea level at its peak. By 11 p.m., the water had vanished, replaced by a growing lava lake.

Radar measurements of the plume were accessible minutes after the plume appeared and clearly show its development, increasing height and intensity with the opening of the new fissure, and detachment and decline after the water lake dried. The 3D visualization of the plume displays how plume height and structure through time.

The radar models can be used to locate areas of interest for sampling deposits from the plume on the ground, and to compare high reflectivity zones with phenomena like lightning to correlate visual observations to internal plume dynamics. Lastly, scientists can calculate concentration throughout the plume, the path of the plume, and the total ash volume transported and deposited during the eruption.

Another advantage of weather radar is accessibility. Many stations provide free publicly available near-real-time data, accessible through NOAA’s Weather and Climate Toolkit software. Anyone interested in radar and volcanoes can analyze data from their own computer. Radar is a vital and growing asset in volcanology that will be increasingly useful to HVO in future eruption scenarios.

Source : USGS / HVO.

 

Image du haut: Image radar 2D de la station PHWA (NOAA Weather and Climate Toolkit). Image du bas: Visualisation radar 3D (Google Earth). [Source: USGS]

Geldingadalur (Islande) : un cimetière pour drones // Geldingadalur (Iceland) : a cemetery for drones

  Un nombre incalculable de drones ont fini leur course dans la lave islandaise depuis le début de l’éruption dans la Geldingadalur, comme dans cette vidéo :

https://youtu.be/j18ECUhkeY0

Beaucoup pensent que le coupable est le champ magnétique irrégulier, à cause des métaux à haute température émis par le cratère, mais la chaleur est forcément, elle aussi, l’une des principales causes de la mort des drones.

Selon un fabricant, «le champ magnétique affecte fortement le drone. La boussole de l’appareil est perturbée, de sorte que le drone perd sa connexion GPS. Il passe en mode ATTI (abréviation de ATTitude), maintient une certaine altitude mais pas sa position. Le contrôleur de vol devient inactif et le drone commence à s’éloigner.» Il continue de voler jusqu’à ce que sa batterie se vide. Il tente alors d’atterrir en descendant lentement vers le sol. C’est ce qui est arrivé aux drones que l’on rencontre ici et là sur le site de l’éruption dans la Geldingadalur ou ailleurs. Afin d’éviter de perdre son drone, il est conseillé de le faire voler contre le vent, au cas où la connexion serait coupée. Ensuite, le drone reviendra vers son ou sa propriétaire, au lieu de s’en éloigner.

À côté de la perturbation du champ magnétique, la chaleur de l’éruption risque fort de faire fondre la carcasse en plastique sur laquelle est fixé le moteur du drone, ce qui entraîne rapidement son arrêt et la chute dans la lave.

Un autre danger pour les drones, ce sont les turbulences qui apparaissent lors des éruptions du cratère dans la Geldingadalur. Une éruption, au même titre qu’un incendie de forêt, génère son propre climat. Un drone qui se trouve pris dans de telles turbulences ne peut pas s’en sortir.

Les drones amateurs, qu’ils s’appellent Phantom ou Mavic, n’ont pas été conçus pour faire face à des conditions de vol extrêmes. De plus, ils sont souvent beaucoup trop légers. Personnellement, je n’enverrai jamais mon drone dans ou au-dessus d’un cratère volcanique. En premier lieu, l’enceinte n’est pas suffisamment étanche et robuste pour faire face aux gaz agressifs qui attaquent rapidement l’électronique. Il suffit de regarder ce qui arrive à un appareil photo. Si on ne l’enveloppe pas dans une poche étanche, il faut s’attendre à des dysfonctionnements.

À Hawaï, le personnel du HVO a utilisé des UAS – Unmanned Aircraft Systemps – autrement dit des drones spécialement conçus pour faire face à l’éruption de 2018. Les appareils étaient beaucoup plus robustes que les drones que l’on trouve habituellement dans le commerce. L’application la plus élémentaire de ces drones a été la réalisation de vidéos et leur diffusion en continu. Les images ont permis d’identifier les endroits où de nouvelles coulées de lave apparaissaient ou étaient susceptibles d’apparaître. Certains drones étaient dotés de caméras thermiques. Les appareils étaient également équipés de capteurs multi-gaz pour identifier toute nouvelle source de dégazage. L’approche à pied des fractures éruptives était trop dangereuse. Des applications plus techniques des images fournies par les drones ont consisté à créer des modèles numériques d’élévation (MNE) et de mesure des vitesses d’écoulement de la lave dans les chenaux

Plusieurs scientifiques du HVO sont devenus des pilotes de drones qualifiés, ce qui a permis au HVO d’avoir une compétence supplémentaire en matière de surveillance volcanique.

——————————————-

Countless drones have been engulfed in lava since the start of the eruption in Geldingadalur,

like in this vidéo :

https://youtu.be/j18ECUhkeY0

Engineers think the irregular magnetic field might be to blame, because of the hot metals that emit from the craters, but the heat is probably the main cause of the drones’deaths.

According to a drone manufacturer, “what is happening is that the magnetic field is truly affecting the drone. The drone’s compass gets confused, causing the drone to lose its GPS connection. This makes the drone switch to the ATTI (short for ATTitude) Mode where the drone maintains a certain altitude but not position. This means that the flight controller stops assisting the pilot and the drone starts drifting away.” When this happens, the drone keeps flying until its battery dies, and at that point, the drone attempts to land by gliding down to earth. This is what happened to drones that are found scattered here and there, be it at the eruption site in Geldingadalur or elsewhere. In order to avoid losing one’s drone, it is recommended to fly it against the wind, in case the connection is cut. Then the drone will drift back to its owner, instead of away from him or her.

Beside the magnetic field, heat from the eruption causes the plastic enclosure, to which the drone’s motor is attached, to melt. As a consequence, drones end up in the lava stream.

Another hazard to the drones is the turbulence that appears during an eruption of the crater in Geldingadalur. An eruption, in the same way as a wildfire, generates its own climate. A drone caught in such turbulences cannot survive.

Amateur drones, whether they are Phantom or Mavic, have not been designed to face extreme flight conditions. Personally, I will never fly my drone in or over a volcanic crater. First of all the enclosure is not tight and robust enough to face the aggressive gases that rapidly attack the electronics. Just see what happens to a camera. If you do not set up a protection around it, you are sure to be confronted with dysfunctions.

In Hawaii, the HVO staff used Unmanned Aircraft Systems (UAS) specially designed to face the 2018 eruption. The machines were far sturdier than the conventional commercial ones.  The most basic capability of the UAS was simple video imaging and streaming. The images helped identify where new lava breakouts were happening or were likely to occur. Some of the UAS were outfitted with thermal cameras. The drones were also equipped with a multi-gas sensor to identify any new degassing sources. The fissures would have been too dangerous for geologists to approach on foot. More technical applications of UAS-based imaging included the creation of digital elevation models (DEMs) and measurements of lava flow speeds within channels. Several HVO staff members have become licensed UAS operators, allowing HVO to add UAS capabilities to its monitoring repertoire.

Crédit photo : HVO