Collaboration entre observatoires aux Etats-Unis // Collaboration between observatories in the United States

Les observatoires volcanologiques à travers les États-Unis fonctionnent en étroite relation les uns avec les autres pour assurer une surveillance efficace des volcans actifs de ce pays. Cette collaboration est particulièrement évidente lors d’une crise, comme ce fut le cas au moment de l’éruption du Kilauea en 2018. Cette année-là, des scientifiques, des ingénieurs et des administratifs du Volcano Science Center de l’USGS se sont rendus sur la Grande Ile d’Hawaï pour épauler le HVO, l’observatoire des volcans d’Hawaï, et aider les volcanologues locaux à surveiller les coulées de lave et les effondrements qui se produisaient au sommet du Kilauea. Leur aide fut essentielle au bon fonctionnement du HVO 24 heures sur 24, 7 jours sur 7.
La collaboration entre les observatoires volcanologiques existe également quand il n’y a pas de crise éruptive majeure. Certains observatoires tels que l’Alaska Volcano Observatory (AVO) doivent effectuer toutes les missions sur le terrain en été car les conditions météorologiques sont difficiles et les conditions de travail dangereuses le reste de l’année. Comme la saison estivale est courte en Alaska, il est important de faire appel à l’aide temporaire d’autres États.
L’AVO a beaucoup de travail à effectuer au cours de la saison estivale. Le soleil est presque en permanence dans le ciel et les heures de clarté sont pleinement utilisées lorsque le temps le permet. L’aide d’autres observatoires permet aux équipes de terrain d’être renouvelées tous les mois afin d’éviter l’épuisement professionnel.

Comme il y a peu à faire en ce moment à Hawaii depuis la fin de l’éruption du Kilauea, plusieurs géologues du HVO se sont rendus en Alaska cet été pour aider à la mise en place de nouveaux sites de surveillance sismique et la mise à niveau d’instruments plus anciens sur les volcans des Aléoutiennes. Cela fait partie d’une campagne entreprise par l’AVO pour convertir l’ensemble de son réseau sismique analogique en un réseau entièrement numérique. Un tel travail est important car les instruments numériques peuvent détecter une gamme plus large de signaux sismiques. Le HVO est passé à un réseau numérique de 2014 à 2017.
Dans les Aléoutiennes, la mission a débuté à Adak, une île située à environ 1 700 kilomètres au sud-ouest d’Anchorage. L’île, qui abritait une base militaire de 1942 à 1997, est très paisible maintenant que la plupart des installations ont été abandonnées. Adak a servi de base aux opérations scientifiques. En effet, c’est un point central où les stations les plus éloignées sont raccordées au réseau de surveillance des volcans de l’Alaska.
A partir d’Adak, les scientifiques ont voyagé à bord d’un navire de recherche qui les a conduits à travers la Mer de Béring afin de visiter différents volcans. Une fois un volcan atteint, le capitaine jetait l’ancre dans un port bien protégé des tempêtes parfois très violentes qui surviennent dans les Aléoutiennes. À partir de là, les scientifiques ont pris l’hélicoptère embarqué sur le navire pour visiter les différents sites.
Les conditions météorologiques sont souvent difficiles dans les Aléoutiennes, ce qui rend la surveillance des volcans d’autant plus délicate. Un scientifique explique qu’il y avait un épais brouillard presque tous les matins. À chaque fois que le pilote de l’hélicoptère estimait qu’une fenêtre était utilisable, les hommes chargeaient le matériel et décollaient.
Une fois sur un volcan, les scientifiques se mettaient au travail. Il fallait d’abord installer un local de protection du matériel et creuser un trou de 2 mètres de profondeur pour y loger le sismomètre. Des panneaux solaires étaient ensuite installés sur le local avec à l’intérieur 15 batteries de 12 volts pour alimenter l’électronique qui numérise les signaux du sismomètre et envoie les données à Adak par radio. Le travail a toujours été une course contre le soleil, tout en luttant contre les conditions météorologiques en constante évolution.
Les hommes expliquent que le travail fut difficile mais enrichissant. La cohabitation permanente, l’élaboration de stratégies pour faire face aux éléments et le travail en équipe sur un volcan loin de tout ont permis de créer des liens solides entre le HVO et l’AVO. Cet état d’esprit se prolongera bien au-delà du travail sur le terrain dans les îles Aléoutiennes.
Source: USGS / HVO.

—————————————————

Volcano observatories across the United States work together to ensure efficient and thorough monitoring of the nation’s active volcanoes. This collaboration is particularly evident during a crisis, like the 2018 eruption of Kilauea Volcano. In 2018, scientists, field engineers, and administrative professionals from across the US Geological Survey Volcano Science Center came to the Island of Hawaii to assist the Hawaiian Volcano Observatory (HVO) in monitoring Kilauea’s Lower East Rift Zone (LERZ) lava flows and summit collapses. Their assistance was critical to maintaining HVO’s 24/7 response capability.

Collaboration between volcano observatories also occurs in non-crisis times. Some volcano observatories, such as the Alaska Volcano Observatory (AVO) must accomplish all field work in the summer because other times of the year can bring harsh weather and dangerous working conditions. Since the summer field season in Alaska is short, it is important to use temporary help from other states.

The field season for AVO staff is intense. The sun is almost always up, and the daylight hours are fully used when weather permits. Help from other volcano observatories allows field teams to be rotated every month to avoid burn-out.

As there is little to do in Hawaii with the end of the Kilauea eruption, several HVO staff travelled to Alaska this summer to help build new, and upgrade old, seismic monitoring sites on western Aleutian volcanoes. This is part of a big step that AVO is taking to convert their entire seismic network from an analog to an all-digital network. This is important because digital instruments can detect a wider range of earthquake signals. HVO made the transition to a digital network in 2014 to 2017.

The mission began on Adak, an island about 1,700 kilometres SW from Anchorage. The island, home to a military base from 1942 to 1997, is very peaceful now that most of the facilities have been abandoned. Adak was the base of operations, a central place where more-remote field stations tie into the Alaska volcano monitoring network.

From Adak, the scientists boarded a research vessel which took them across the Bering Sea in order to visit different volcanoes. Once the targeted volcano was reached, the captain dropped anchor in a harbour that would be mostly protected from potentially fierce Aleutian storms. From there, the scientists flew in the onboard helicopter to go back and forth from the ship to the different field sites.

Weather conditions are often difficult in the Aleutians, which makes the monitoring of the volcanoes all the more difficult. The scientific team explains that they were shrouded in fog nearly every morning. Whenever the helicopter pilot deemed that a safe window of opportunity had arrived, they loaded up and took off.

Once the geologists landed on a volcano, the real work began. They dug a foundation for the equipment hut and a 2-metre-deep hole where the seismometer would reside. Solar panels were mounted on the hut, which housed 15 12-volt batteries to power the electronics that digitizes signals from the seismometer and sends data back to Adak via radio. The work was always a race against the sun, while battling the ever-changing weather conditions.

The men explain that the work was difficult but rewarding. Living in close quarters, continuously strategizing to overcome the elements, and working as a team on a remote volcano, led to a bond between HVO and AVO that will last beyond the Aleutian field work.

Source : USGS / HVO.

Le Cleveland, le Semisopochnoi  ou le Veniaminof comptent parmi les volcans les plus actifs des Aléoutiennes, sans oublier l’Augustine… (Photos : AVO et C. Grandpey)

Comment lire un sismogramme du HVO (Hawaii) // How to read a HVO seismogram (Hawaii)

L’Observatoire des Volcans d’Hawaii, le HVO, exploite un réseau de stations de surveillance sismique sur la Grande Ile d’Hawaï et dans tout l’État. Le personnel du HVO recueille les données en temps réel à partir de nombreuses stations grâce à un logiciel de traitement informatique permettant de détecter, localiser et publier des informations sur les séismes survenus à Hawaii. Contrairement à ce qui se passe sur les volcans français, toutes les données sismiques sont librement accessibles au public.
La page consacrée aux séismes sur le site web du HVO (https://volcanoes.usgs.gov/observatories/hvo/) indique les emplacements des derniers séismes et on peut voir les stations de surveillance sur une carte (voir ci-dessous) où elles sont symbolisées par des triangles rouges.
Si vous cliquez sur le symbole d’une station particulière sur la carte, une fenêtre va apparaître avec l’affichage de quatre panneaux de webicorders (enregistreurs sismiques) pour des durées de 6 heures, 12 heures, 24 heures et 48 heures. Vous pouvez cliquer sur chaque période pour agrandir le webicorder.
Les tracés séismiques visibles sur les webicorders sont les versions numériques des vieux enregistreurs à tambour en papier utilisés au cours des dernières décennies. Chaque ligne correspond à un enregistrement sismique de 15 minutes, en partant du coin supérieur gauche, la dernière heure étant affichée en bas à droite. Ainsi, on lit un webicorder comme un livre, de gauche à droite et de haut en bas. L’heure de début de chaque ligne est affichée en heure locale (Heure de l’Etat d’Hawaii, ou HST) à gauche, et l’heure de fin de chaque ligne en temps universel (UTC) à droite.
Les données sismiques sont indiquées en bleu sur les webicorders, avec une alternance de tons bleu foncé et bleu clair pour chaque plage de 15 minutes. Les lignes bleues imitent le mouvement du sol sous le capteur sismique: la ligne monte si le sol se déplace vers le haut, la ligne descend si le sol se déplace vers le bas, et la ligne serait droite au niveau «zéro» si aucun mouvement du sol n’est détecté. Plus l’amplitude du mouvement du sol est élevée, plus la ligne bleue est haute. Ce qui est immédiatement évident, c’est que le sol monte et descend toujours très légèrement.
Les instruments sismiques sont très sensibles et enregistrent tout ce qui secoue le sol. Ils peuvent même enregistrer le vent, le tonnerre, la foudre, les vagues de l’océan qui viennent se briser contre l’île, ainsi que des séismes bien localisés dus aux chutes de pierres, aux tirs de mines dans des carrières ou à d’autres explosions.
Les séismes apparaissent sous forme de taches bleues. Chacune a certaines caractéristiques bien reconnaissables, notamment les ondes P (primaires) et S (secondaires ou de cisaillement), qui peuvent avoir un début net avant de décroître pour retrouver leur niveau de base. Une plus grande séparation entre les ondes P et S indique une distance croissante entre la station sismique et le séisme. D’autres types de séismes, par exemple ceux dus au mouvement de magma ou de gaz, ont une apparence différente, généralement avec une période d’énergie plus longue pouvant persister sur de plus longues périodes.
Source: USGS / HVO.

——————————————–

The Hawaiian Volcano Observatory (HVO) operates a network of seismic monitoring stations on the Island of Hawaii and throughout the state. The HVO staff collects real-time data from numerous stations using computer processing software to detect, locate, and publish information about earthquakes that are recorded in Hawaii. Contrary to what happens on French volcanoes, all seismic data are freely available to the public.
The earthquake page on the HVO website (https://volcanoes.usgs.gov/observatories/hvo/) shows recent earthquake locations and the monitoring stations can be seen on a map (see below) where they are symbolised by red triangles.
Clicking on a particular station symbol on the map will reveal a pop-up window that shows four panels of webicorders, for timespans of 6 hours, 12 hours, 24 hours, and 48 hours. You can click on each timespan to enlarge the webicorder.
The seismic webicorder plots are digital versions of the paper seismic drum recorders used in past decades. Each line shows the seismic record for 15 minutes, starting from the upper left, with the latest time in the bottom right. Thus, you read a webicorder like a book, from left to right and top to bottom. The start time of each line is shown in local time (Hawai‘i Standard Time, or HST) on the left, and the end time of each line is shown in Coordinated Universal Time (UTC) on the right.
Seismic data are shown in blue on webicorder plots, with each 15-minute span alternating between dark- and light-blue tones. The blue lines mimic ground motion under the seismic sensor: the line moves up if the ground shifts upwards, the line moves down if the ground moves downwards, and the line would be flat at “zero” if no ground motion is detected. The higher the amplitude of the ground motion, the taller the blue line will be. What is immediately apparent is that the ground is always moving up and down ever so slightly.
Seismic instruments are very sensitive and record anything that shakes the ground. So, wiggles on webicorder plots could be a record of wind, thunder, lightning, ocean waves crashing against the island, as well as of localized shaking from rockfalls, quarry blasts, or other explosions.
Earthquakes appear as blue smudges. Each has certain recognizable characteristics, including P- (primary) and S- (secondary or shear) waves, which may have a sharp onset and then decay to background level. Greater separation between P and S waves indicate increasing distance from the seismic station to the earthquake. Other types of earthquakes, for example those due to the movement of magma or gas, look different, generally with longer period energy that can persist over longer time frames.
Source: USGS / HVO.

Source: USGS / HVO

Capture d’écran d’un webicorder du HVO montrant 24 heures d’enregistrement par une station sismique sur le flanc sud du Mauna Loa. On distingue plusieurs séismes , ainsi que le bruit généré par le vent. (Source: USGS / HVO)

Les anciens sismos à tambour font maintenant figure de pièces de musée (Photo: C. Grandpey)

Le HVO sur l’île d’Oahu (Hawaii)? // HVO on Oahu Island (Hawaii)?

Des rumeurs circulent depuis quelque temps sur un possible transfert de l’Observatoire Volcanologique des Volcans d’Hawaii (le célèbre HVO) de Big Island vers l’île d’Oahu. Pour ceux qui, comme moi, connaissent et ont visité le HVO, une telle décision semble une erreur. L’Observatoire domine la caldeira du Kilauea depuis plus d’un siècle et offre une vue imprenable sur le cratère de l’Halema’uma’u. Grâce à cette position privilégiée, les scientifiques ont pu, au cours des dernières années, observer le comportement du lac de lave dans l’Overlook Crater.
Le HVO a confirmé la semaine dernière qu’Oahu était l’une des options envisagées pour implanter une nouvelle structure Cette relocalisation aurait lieu en raison des lourds dégâts subis par l’Observatoire lors de la dernière éruption du Kilauea. L’intense activité sismique a rendu le bâtiment inhabitable.
Une autre option que l’île d’Oahu consisterait à installer l’Observatoire à l’intérieur du Parc National des Volcans d’Hawaii, ou bien sur le campus de l’Université d’Hawaï à Hilo. Il est bien évident que la première solution serait la plus adaptée.
Le responsable de la Protection Civile du comté d’Hawaï pense, lui aussi, que l’Observatoire doit rester sur la Grande Ile pour « contrôler toute activité liée à la lave ». Janet Babb, porte-parole du HVO, a déclaré qu’elle ne pouvait commenter l’éventualité d’un déménagement, car des discussions sont en cours à Washington, DC. Le HVO est géré par l’USGS, qui dépend du Département de l’Intérieur aux États-Unis.
Le transfert du HVO à Oahu serait justifié par le fait qu’il existe déjà des installations fédérales sur cette île. OK, mais ce serait vraiment très loin de toute activité volcanique sur la Grande Ile. Affaire à suivre. Je tiendrai au courant de l’évolution de la situation.
Source: Journaux américains.

————————————————-

There have been rumours for some time about a possible relocation of the Hawaiian Volcano Observatory (HVO) from Hawaii Big Island to Oahu. For those who, like me, have visited HVO, such a decision would be a mistake. The Observatory has been located at the Kilauea caldera rim for more than a century and offers a great view on Halema’uma’u Crater. For several years, scientists could observe the behaviour of the lava lake in the Overlook Crater. .

The Observatory confirmed last week that Oahu is one option under consideration for a new home. The reason for the relocation is the heavy damage undergone by HVO during Kilauea’s last eruption. The intense seismic activity has made the structure uninhabitable.

Other options than Oahu include a new site within the National Park or on the University of Hawaii at Hilo campus.

The head of Hawaii County Civil Defence thinks that the Observatory needs to stay on the island “to help with the response to any lava activity”. I do think he is perfectly right. Observatory spokeswoman Janet Babb said she can’t comment on the likelihood of a move because discussions are ongoing in Washington, D.C. The observatory falls under the U.S. Geological Survey, which is part of the U.S. Department of Interior.

A potential move to Oahu as a preferred option would be justified by the fact there are existing federal facilities. OK, but it would be very far from any volcanic activity on the Big Island. I will keep informed about the evolution of the situation.

Source: U.S. newspapers.

Le bâtiment du HVO offrait une vue imprenable sur la caldeira d Kilauea (Photos: C. Grandpey)

Steven Brantley (USGS) prend sa retraite // USGS Steven Brantley retires

Steven Brantley, l’un des piliers de l’USGS, prend sa retraite ce mois-ci, après 37 années de bons et loyaux services, dont 16 à l’Observatoire Volcanologique des Cascades (CVO) et 21 ans à l’Observatoire des Volcans d’Hawaii (HVO). Dans un article qu’il a écrit pour ce dernier observatoire, Steve dit que ce fut pour lui un privilège de consacrer sa longue carrière à observer des volcans, travailler avec ses collègues et à aider les gens à comprendre les impacts potentiels des éruptions.
Sa carrière a débuté sur le Mont St. Helens en 1981 et se termine sur le Kilauea en 2018, éruptions marquées par deux événements majeurs d’effondrement volcanique. Suite à l’éruption du Mont Saint Helens, j’avais demandé des informations à Steve Brantley et il m’avait aimablement envoyé de la documentation pour mieux comprendre l’événement. L’éruption du Mont Saint Helens a conduit à la création de l’Observatoire Volcanologique des Cascades, inspiré de l’Observatoire des Volcans d’Hawaii, qui permet aux scientifiques de se concentrer sur des observations à long terme et de surveiller de près les volcans de la Chaîne des Cascades.
Steve Brantley explique dans son article que de nombreuses éruptions aux États-Unis et à l’étranger ont jalonné sa carrière. Après seulement quatre ans de travail au CVO, l’éruption du Nevado del Ruiz en 1985 a tué plus de 25 000 personnes lorsque des lahars ont submergé plusieurs vallées. Pendant des décennies, des milliers de personnes ont implanté, sans le savoir, leurs communautés sur des dépôts de lahars issus de précédentes éruptions du volcan. Cela a finalement créé le dilemme auquel les autorités colombiennes ont été confrontées lorsque le volcan s’est réveillé un an avant l’éruption meurtrière: Pendant combien de temps pourrait-on retarder l’évacuation de milliers de personnes afin de minimiser les bouleversements économiques et les coûts politiques d’une évacuation trop précoce ou d’une fausse alerte? Steve affirme que ce dilemme est le même partout dans le monde pour les autorités qui gèrent les situations d’urgence ainsi que pour les élus, car de plus en plus de gens vivent et travaillent sur les pentes des volcans ou dans des zones connues pour leurs dangers potentiels.
Ce dilemme crée également de plus en plus de défis pour les scientifiques qui doivent s’efforcer d’améliorer leurs capacités de surveillance et d’interprétation du comportement volcanique afin de pouvoir émettre des bulletins d’alerte plus précis concernant les éruptions et leurs conséquences potentielles. Ces mêmes scientifiques doivent également communiquer efficacement les résultats de leurs travaux avant, pendant et après les éruptions pour sensibiliser les médias et le public qui s’intéressent de plus en plus aux risques induits par les volcans.
Steve nous rappelle que depuis la tragédie du Nevado del Ruiz, des crises volcaniques ont trouvé des solutions positives. Selon lui, deux éruptions émergent parce que les mesures prises par les autorités et les scientifiques ont sauvé des milliers de vies: le Mont Pinatubo, aux Philippines en 1990, et le Merapi, en Indonésie en 2010, même si je pense personnellement que pour le Merapi, le bilan aurait été moins lourd avec une meilleure gestion du périmètre de sécurité.
Source: HVO, Hawaii 24/7.

———————————————-

Steven Brantley, one of the pillars of the U.S. Geological  Survey (USGS) is going to retire this month after a 37-year career, with 16 years at the Cascades Volcano Observatory (CVO) and 21 at the Hawaiian Volcano Observatory (HVO). In an article he wrote for this observatory, Steve says he feels privileged to have spent a long career observing volcanoes, supporting his colleagues, and striving to help people understand the potential impacts of eruptions.

His career began at Mount St. Helens in 1981 and is ending at Kilauea Volcano in 2018, with two major collapse events on volcanoes. In the wake of Mt St Helens eruption, I had asked Steve Brantley for information and he had kindly sent me documents to better understand the event.  The eruption of Mt St Helens led to the creation of the Cascades Volcano Observatory, modelled after the Hawaiian Volcano Observatory for scientists to focus long-term investigations and keep a watchful eye on Cascade Range volcanoes.

In the article, Steve Brantley says that many eruptions in the U.S. and abroad punctuated his career. Only four years into his work at CVO, the 1985 eruption of Nevado del Ruiz killed more than 25,000 people when lahars swept down several river valleys. Thousands of people had, for many decades, unknowingly built their communities on lahar deposits from earlier eruptions of the volcano. This eventually created the dilemma faced by Colombian authorities when the volcano awakened a year before the deadly eruption: How long could evacuation of thousands of people be delayed to minimize economic upheaval and political costs of a too-early evacuation or false alarm? Steve says that this dilemma is universal for current emergency-management authorities and elected officials as increasing numbers of people live and work on the slopes of volcanoes or within areas known for potential volcanic hazards.

The dilemma also creates increasing challenges for scientists to improve their capabilities to monitor and interpret volcanic behaviour so they can issue more accurate and timely warnings of eruptions and potential consequences. They must also effectively communicate the results of their work before, during, and after eruptions to raise awareness of volcano hazards to an increasingly interested and demanding media and public.

Steve reminds us that there have been successful responses to sudden periods of volcanic unrest since the Nevado del Ruiz tragedy. In his opinion, two eruptions stand out because bold actions taken by officials and scientists saved thousands of lives: Mount Pinatubo, Philippines, in 1990, and Mount Merapi, Indonesia, in 2010, although I personally think that for Mount Merapi the death toll could have been lower with a better management of the danger zone.

Source : HVO, Hawaii 24/7.

Steve Brantley le 17 juillet 2018 durant une réunion d’information à Pahoa sur l’éruption du Kilauea.

Les effondrements du Mt St Helens (Photo : C. Grandpey) et de l’Halema’uma’u (Photo : HVO) ont encadré la carrière de Steven Brantley

Kilauea (Hawaii) : L’éruption est-elle terminée ? // Is the eruption over ?

Il va bien falloir que les scientifiques du HVO admettent un jour ou l’autre que l’éruption qui a débuté le 3 mai 2018 est maintenant terminée. Toutes les observations révèlent qu’il n’y a plus d’activité au sommet du Kilauea, sur le Pu’uO’o ou dans la Lower east Rift Zone. Le petit lac de lave au fond de la Fracture n° 8 a été aperçu pour la dernière fois le 25 août 2018 et le dernier ruisselet de lave entrant dans l’océan a été observé le 29 août 2018. L’incandescence est de moins en moins visible au fond du cône qui s’est édifié sur la Fracture n° 8. Comme je l’ai écrit auparavant, cette incandescence est probablement provoquée par de la lave résiduelle dans le réseau de tunnels et non par un nouveau magma.
De petits effondrements continuent de se produire dans le cratère du Pu’uO’O en générant des panaches de poussière. Les déformations dans l’ensemble de l’East Rift Zone sont beaucoup plus faibles que pendant la période d’activité éruptive majeure. Il n’y a pas de changement dans la sismicité.
La sismicité et la déformation du sol restent faibles au sommet du Kilauea. Il n’y a aucune indication d’effondrement. Des répliques du séisme de magnitude 6,9 ​​survenu au début du mois de mai sont encore enregistrées au niveau des failles sur le flanc sud du Kilauea.
Les émissions de SO2 dans la zone sommitale, sur le Pu’uO’o et sur la Lower East Rift Zone sont très faibles et souvent inférieures au seuil de détection des appareils de mesure.
Le HVO indique qu’il continue de surveiller étroitement la sismicité, la déformation et les émissions de gaz du Kilauea et guette tout signe de réactivation de l’éruption. Les scientifiques font remarquer que, dans le passé, d’autres éruptions ont repris du service après quelques jours ou quelques semaines de pause, mais tous les paramètres susmentionnés ne favorisent pas une telle hypothèse. Comme disent les Anglo-saxons, il faut attendre pour voir, mais il y a de fortes chances pour que l’éruption du Kilauea soit terminée.
Source: HVO.
Je comprends l’espoir des scientifiques du HVO de voir l’éruption reprendre du poil de la bête. Ils avaient prédit une éruption qui pourrait durer des mois et même un an. Le problème est que Madame Pele en a décidé autrement et l’a fait cesser rapidement. Malgré le grand nombre d’instruments répartis sur tout le Kilauea, les volcanologues se sont trompés et ils ont du mal à l’admettre!

——————————————-

HVO scientists will have to admit some day or other that the eruption that started on May 3rd, 2018 has come to an end. All observations reveal there is no more activity either at the summit or on Pu’uO’o or on the Lower East Rift Zone. The small lava pond at the bottom of Fissure 8  was last seen on August 25th, 2018 and lava was oozing for the last time into the ocean on August 29th, 2018. Incandescence is less and less visible at the bottom of the cone built on Fissure 8. As I put it before, this glow is probably caused by some residual lava in the tube network, and not by new magma.

Small collapses continue to occur within the Pu’uO’o crater, generating dust plumes. Rates of tilting throughout the East Rift Zone are much lower than those observed during the period of major eruptive activity. There is no change in seismicity.
Seismicity and ground deformation remain low at the summit of Kilauea. There is no indication of actual collapse. Aftershocks from the M 6.9 earthquake in early May are still being generated on faults located on Kilauea’s South Flank.
SO2 emission rates at the summit, Pu’uO’o, and Lower East Rift Zone are drastically reduced and are often below the detection threshold of the measurement technique.
HVO indicates it continues to closely monitor Kilauea’s seismicity, deformation, and gas emissions for any sign of reactivation of the eruption. They said that in the past other eruptions reactivated after a few days or a few weeks, but all the above-mentioned parameters do not favour such a hypothesis. Wait and see, but the odds are that Kilauea’s eruption is over.

Source: HVO.

I can understand HVO scientists would be glad to see the eruption start over again. They had predicted an eruption that could last months and even a year. The problem is that Madame Pele decided otherwise and made it stop rapidly. Despite the great number of instruments disseminated all over Kilauea, they made a wrong prediction and find it difficult to admit it!

Crédit photo: USGS / HVO

Kilauea (Hawaii) : Délocalisation du Jaggar Museum et du HVO // Relocation of the Jaggar Museum and HVO

Dans une note diffusée le 7 septembre, j’écrivais que le Jaggar Museum ne pourrait pas rouvrir ses portes le 21 septembre comme le Parc National des Volcans d’Hawaii, à cause des dégâts subis lors de la dernière éruption du Kilauea. Le bâtiment a été endommagé par des dizaines de milliers de séismes et les autorités du parc ont annoncé qu’elles prévoyaient de transférer le Jaggar Museum vers un bureau de tourisme situé dans le centre de Paoha.  Il faudra probablement des années et des fonds supplémentaires pour rouvrir le musée sur un nouveau site.
D’autre part, le bâtiment du Hawaiian Volcano Observatory (HVO) sur la lèvre du cratère de l’Halema’uma’u est actuellement vide de ses occupants. Les secousses sismiques ont – comme pour le Jaggar museum – trop endommagé le bâtiment et la sécurité des scientifiques qui y travaillent serait menacée. Dans un premier temps, le personnel (une trentaine de personnes) a été transféré dans les bâtiments de l’Université d’Hawaii à Hilo. Le problème, c’est que l’année universitaire a repris et les locaux (en particulier les laboratoires) ne sont plus disponibles. En conséquence, le personnel du HVO va devoir passer les six prochains mois dans les locaux des douanes (Customs and Border Protection) à proximité du port de Hilo. Il n’est pas du tout certain que l’Observatoire au sommet du Kilauea soit réutilisé car les réparations sont coûteuses et l’argent manque. Les scientifiques continuent à surveiller le volcan, mais depuis Hilo. Ils ont certes les instruments mais pas la vue sur le volcan!

Source : Presse hawaiienne.

———————————————-

In a post released on September 7th, 2018, I wrote that the Jaggar Museum would not reopen with the rest of the Hawaiian Volcanoes National park because of the damage it sustained during Kilauea’s last eruption, especially the tens of thousands earthquake that shook the volcano’s summit area. Park authorities have announced that they plan to relocate the Jaggar Museum to a proposed visitor center in downtown Pahoa. It will probably take years, plus additional funding, to reopen at a new site.

On the other hand, the Hawaiian Volcano Observatory (HVO) building on the rim of Halema’uma’u Crater is currently empty of its occupants. Earthquakes have – like the Jaggar Museum – damaged the building and the safety of the scientists was threatened. At first, the staff (about thirty people) was transferred to the buildings of the University of Hawaii in Hilo. The problem is that the academic year has resumed and the premises (especially laboratories) are no longer available. As a result, HVO staff will have to spend the next six months in the premises of the Customs and Border Protection near the port of Hilo. It is not at all certain that the Observatory at the summit of Kilauea will be operational again because repairs are expensive and money is missing. Scientists continue to monitor the volcano, but from Hilo. They have the instruments but not the view of the volcano!
Source: Hawaiian Press.

(Photo: C. Grandpey)

Nouvelle vue du sommet du Kilauea (Hawaii) // New view of the Kilauea summit (Hawaii)

Cette vue aérienne du sommet du Kilauea (la photo a été prise le 28 juillet au petit matin et est orientée vers le sud) montre la nouvelle morphologie du cratère de l’Halema’uma’u après les effondrements du plancher de la caldeira sommitale. Plusieurs éléments du paysage sont parfaitement visibles: La Crater Rim Drive (en bas à droite) conduit à l’Hawaiian Volcano Observatory et au Jaggar Museum (à droite, au milieu) ; ils sont perchés sur la lèvre de la caldeira et surplombent l’Halema’uma’u qui ne cesse de s’agrandir. Des fractures dans le sol, parallèles au bord du cratère, sont visibles dans la partie nord de l’Halema’uma’u (côté gauche de l’image). Le South Sulphur Bank se distingue par sa couleur plus claire sur la paroi opposée du cratère.

Vous obtiendrez une photo plus grande en cliquant sur ce lien :
http://bigislandnow.com/wp-content/uploads/2018/07/usgs-july-29f.jpg

————————————————

This aerial view of Kilauea’s summit (taken on July 28th in the early morning, looking south) shows the new morphology of Halema’uma’u Crater after the collapses of the summit caldera floor. Several features are clearly visible: Crater Rim Drive (lower right) leads to the USGS Hawaiian Volcano Observatory and NPS Jaggar Museum (right, middle), perched on the caldera rim and overlooking the growing Halema‘uma‘u. Ground cracks, parallel to the crater rim, are visible on the north side of Halema‘uma‘u (left side of image). South Sulphur Bank stands out as the light-coloured area on the opposite crater wall.

You will get a larger image by clicking on this link:

http://bigislandnow.com/wp-content/uploads/2018/07/usgs-july-29f.jpg

Crédit photo: USGS