Calibrage des gravimètres sur le Mauna Kea (Hawaii) // Calibrating gravimeters on Mauna Kea (Hawaii)

Un nouvel article publié par l’Observatoire des Volcans d’Hawaii, le HVO, nous explique comment la mesure de la gravité sur le Mauna Kea permet de surveiller le Mauna Loa. Au début de l’article, un scientifique conduit son 4X4 entre Hilo et le sommet du Mauna Kea avec deux gravimètres identiques à l’intérieur de son véhicule. Il s’arrête une demi-douzaine de fois au niveau de points de repère (benchmarks) installés depuis les années 1960. C’est ici qu’il va utiliser les deux gravimètres pour mesurer les variations d’intensité du champ de pesanteur.

Les gravimètres sont des instruments extrêmement précis capables de mesurer les variations de force gravitationnelle avec une précision de l’ordre du milligal [Le milligal, mgal, correspond à un millième de gal qui est l’unité CGS d’accélération (1 gal = 1 cm/s2)]. Cette force varie en fonction de la distance et de la quantité de masse entre l’instrument et le centre de la Terre. Tout comme la pression atmosphérique, elle varie en fonction de l’altitude. Plus on monte en altitude, plus on s’éloigne du centre de la Terre et plus la force gravitationnelle est faible. Cet effet d’élévation est la principale contribution aux changements de gravité mesurés sur le Mauna Kea. Les variations du champ de pesanteur ne sont pas aussi perceptibles que le changement d’atmosphère (il est difficile de respirer au sommet), mais une personne de taille moyenne pèse environ 150 grammes de moins – le poids d’une orange – au sommet du Mauna Kea que dans la ville de Hilo!

Depuis les années 1970,  les scientifiques mesurent les  petits changements de gravité (microgravité), variables avec le temps, sur le Mauna Loa et le Kilauea pour savoir si du magma s’accumule dans leurs réservoirs magmatiques. Cette intrusion magmatique ouvre et remplit souvent des fractures et / ou des espaces vides à l’intérieur de l’édifice volcanique, ce qui provoque une augmentation de la masse du volcan qui peut être mesurée avec un gravimètre.

La mesure de la gravité est un moyen de savoir ou de confirmer si l’inflation en cours, comme celle observée sur le Mauna Loa depuis 2014, est provoquée par l’arrivée d’un nouveau magma à l’intérieur du volcan. Comme indiqué précédemment, les gravimètres sont des appareils extrêmement précis et sensibles et ils nécessitent un étalonnage régulier. Comme l’effet principal mesuré provient des changements d’altitude, il est nécessaire de calibrer les gravimètres sur le Mauna Kea pour mesurer les changements provoqués par l’activité volcanique du Mauna Loa (4170 m). Le Mauna Kea (4207 m) convient parfaitement car il n’est pas influencé par l’activité volcanique étant donné que la dernière éruption du volcan remonte à plus de 4 500 ans.

Sans le Mauna Kea, les scientifiques du HVO devraient envoyer pour calibrage les gravimètres en Californie, avec le risque qu’ils soient endommagés pendant le voyage. La possibilité de calibrer les gravimètres du HVO sur Mauna Kea permet de concevoir un programme de surveillance gravimétrique pour mieux comprendre l’activité volcanique du Mauna Loa. Parallèlement à la déformation du sol et à la sismicité, les levés gravimétriques permettent de détecter la quantité de magma qui arrive lentement dans la chambre magmatique superficielle du Mauna Loa.

Source: USGS / HVO.

—————————————–

A new article released by the Hawaiian Volcano Observatory (HVO) explains us how measuring gravity on Mauna Kea helps monitor Mauna Loa. The Observatory starts the article with a scientist driving between Hilo and the summit of Mauna Kea with two identical gravimeters in his car. He stops approximately half a dozen times at a series of benchmarks established beginning in the 1960s. At these benchmarks, the scientist uses the two gravimeters to measure the variation of the force in gravity.

Gravimeters, essentially extremely precise pendulums, can measure a change in the force of gravity to one-in-one billionth of the force one can feel every day. This force varies based on the distance and the amount of mass between the instrument and the center of the Earth.

Just like atmospheric pressure, the force of gravity changes depending on altitude. The higher in elevation one goes, the farther away one gets away from the centre of the Earth, and the weaker the force of gravity. This elevation effect is the primary contribution to changes in gravity measured on Mauna Kea. The changes in gravity are not as noticeable as the change in the atmosphere (it’s hard to breathe at the summit), but the average person also weighs about one-third of a pound less – the weight of an orange – at the summit of Mauna Kea than in Hilo!

Since the 1970s, small changes in time-varying gravity (microgravity) have been measured on Mauna Loa and Kilauea, both active volcanoes, to determine whether magma is accumulating in their magma reservoirs. This intruding magma often opens and fills cracks and/or empty spaces, causing a net increase in the volcano’s mass that can be measured with a gravimeter.

Measuring the gravity is an independent way to confirm whether ongoing uplift, like that occurring at Mauna Loa since 2014, is from new magma intruding into the volcano.

The precision and sensitivity of the gravimeters make them extremely delicate, and they require regular calibration. As the dominant effect that is measured is from changes in elevation, the ability to measure volcanic changes on the high elevations of Mauna Loa (4,170 m) requires to calibrate the instruments over similar elevations on Mauna Kea where there is currently no influence from volcanic activity. The volcano’s last eruption was more than 4,500 years ago.

Without Mauna Kea, HVO scientists would have to send the gravimeters back to California to be calibrated, making them susceptible to damage on their long journey. The opportunity to calibrate HVO gravimeters on Mauna Kea provides the ability to design a gravity monitoring program to help understand volcanic unrest at Mauna Loa. Along with ground deformation and seismicity, future gravity surveys could help detect how much magma is slowly being supplied to Mauna Loa’s shallow magma storage system.

Source: USGS / HVO.

Vue du Mauna Loa et du Mauna Kea (Photo : C. Grandpey)

Spectrogrammes et bruit sismique // Spectrograms and seismic noise

L’un des derniers articles hebdomadaires rédigés par des scientifiques de l’Hawaiian Volcano Observatory (HVO) – géré par l’USGS – traitait du bruit sismique qui apparaît souvent sur les spectrogrammes. Le HVO utilise un grand nombre de sismomètres pour localiser les séismes et identifier les signaux liés aux mouvements de failles et à ceux du magma à l’intérieur des volcans. Cependant, les sismomètres enregistrent également les vibrations générées par de nombreuses autres sources. Certains signaux sont facilement identifiables tandis que d’autres restent un mystère. Les spectrogrammes viennent en complément des formes d’onde généralement associées aux séismes car ils permettent d’identifier facilement des signaux complexes voire multiples. L’heure est affichée sur l’axe horizontal, la fréquence du signal est affichée sur l’axe vertical et l’intensité du signal apparaît en couleur. Plus la couleur est chaude, plus le signal est fort à une heure et à une fréquence spécifiques. Voici un exemple de spectrogramme enregistré dans une station située près de Pu’uO’o:

Une source fréquente de bruit sur les spectrogrammes est causée par le mauvais temps. Le bruit généré par le vent et la pluie se caractérise par un contenu diffus en moyenne ou haute fréquence. Dans le spectrogramme ci-dessus, la station commence à enregistrer une forte averse qui approche. Si un analyste a le moindre doute sur l’origine des signaux, il lui suffit de jeter un œil à l’une des webcams pour s’en assurer.

Ce spectrogramme montre deux signaux couramment observés. Le plus visible est un ensemble de lignes en forme de ruban dans la partie supérieure du spectrogramme. Ce btuit est provoqué par un hélicoptère qui vole à proximité de la station sismique. S’agissant de la récente éruption du Kilauea, le signal à basse fréquence constant que l’on voit au bas du spectrogramme sous forme d’une bande jaune-orange est le tremor éruptif qui a commencé juste après que la lave ait percé la surfacedans l’Halema’uma’u dans la nuit du 20 décembre 2020. Depuis cette époque, presque toutes les stations à proximité du nouveau lac de lave au sommet de Kilauea enregistrent ce signal continu.

L’image ci-dessus montre des téléséismes. Ce sont des séismes observés à au moins 1000 km de distance. Au moment où les télésismes atteignent des stations très éloignées, toutes les fréquences ont été perdues, sauf les plus basses. Le signal basse fréquence qui commence vers 23h19 sur ce spectrogramme du 19 mars est le téléséisme d’un événement de M 7.0 qui s’est produit près d’Ishinomaki (Japon). À titre de comparaison, les pics large fréquence qui apparaissent sous forme de lignes verticales de couleur plus claire tout au long du spectrogramme sont de petits séismes locaux.

Le spectrogramme ci-dessus montre des chutes de pierres ou des éboulements. Ces signaux ont un contenu fréquentiel large et une apparition progressive. De tels événements peuvent durer plusieurs minutes. Afin de les identifier parfaitement, les sismologues recherchent la légère diminution du contenu basse fréquence au fur et à mesure de la progression de l’événement. Cette caractéristique apparaît sous forme d’une hausse superficielle sur le spectrogramme du 25 mars à partir de 2 h 59. La majorité des récents effondrements observés par les sismologues du HVO ont eu lieu sur le Pu’uO’o. Certains ont été précédés par des hélicoptères en train de voler près du cône.

Des sismographes sont utilisés partout dans le monde s pour analyser des événements tels que des ouragans à l’approche, des chants de baleines, des fans qui font la fête lors de grands matchs de football et même des essais nucléaires.

À Hawaï, la météo, le trafic aérien local, les séismes liés aux éruptions et les éboulements font partie des signaux sismiques intéressants que les sismologues du HVO peuvent observer lorsqu’ils surveillent l’activité sismique.

——————————————-

A weekly article written by USGS Hawaiian Volcano Observatory (HVO) scientists dealt with the seismic noise that appears on the spectrograms. HVO uses dozens of seismometers to locate individual earthquakes and identify signals that are related to faulting and magma movement within our volcanoes. However, seismometers also record vibrations caused by a variety of other sources. Some signals are easily identifiable while others remain a mystery.

Spectrograms can be a useful addition to the waveforms typically associated with earthquakes because they allow to easily identify complex or even multiple signals. Time is displayed on the horizontal axis, signal frequency is displayed on the vertical axis, and signal intensity is shown in colour. The warmer the colour, the stronger the signal is at that specific time and frequency. The first spectrogram above was recorded at a station located near Pu’uO’o.

°°°°°°°°°°

A common source of noise seen on spectrograms is cause by the bad weather. Noise from wind and rain is characterized by its diffuse mid- to high-frequency content. In the spectrogram above, the station starts to record an approaching rainstorm. If an analyst has any doubt over whether the signals are actually weather, they just need to have a look at one of the webcams to make sure.

°°°°°°°°°°

 The second spectrogram above shows two commonly observed signals. The most noticeable is the set of ribbon-like lines across the top of the spectrogram. This is caused by a helicopter flying near the seismic station.

Speaking of the recent eruption, the steady low-frequency signal seen on the bottom of this spectrogram as a yellow-orange band is the eruptive tremor that started shortly after lava broke the surface in Halema’uma’u on the night of December 20th, 2020. Since then, nearly all stations in the vicinity of the newly formed lava lake at Kilauea’s summit have been recording this continuous signal.

°°°°°°°°°°

The third image above shows teleseisms. These are earthquakes observed from at least 1000 km away. By the time teleseisms reach very distant stations, all but the lowest frequencies have been lost. The low-frequency signal starting around 11:19 p.m. in this March 19th spectrogram is a teleseism from an M 7.0 earthquake that struck near Ishinomaki (Japan). For comparison, the broad-frequency spikes appearing as lighter-colored vertical lines seen throughout this spectrogram are small local earthquakes.

°°°°°°°°°°

 The fourth spectrogram above shows rockfalls. These signals have a broad frequency content and gradual onset. These types of events can last for minutes at a time. In order to perfectly identify them, seismologists look for the slight decrease in low frequency content as the event progresses. This feature appears as a shallow ramp on the March 25th spectrogram starting at 2:59 a.m. The majority of recent rockfalls observed by HVO seismologists have been on Pu’uO’o, some of which have been preceded by helicopters flying near the cone.

Around the world, seismographs have been used to document events such as impending hurricanes, whale songs, fans celebrating during big football games, and even nuclear testing. In Hawaii, weather, local air traffic, eruptive tremor, and rockfalls are a few of the interesting seismic signals that HVO seismologists can see while monitoring earthquake activity.

Un nouveau laboratoire pour le HVO (Hawaii) // New lab for HVO (Hawaii)

L’Observatoire des Volcans d’Hawaii (HVO), géré par l’USGS, vient d’acquérir un nouveau laboratoire qui permettra aux scientifiques de mieux comprendre les propriétés physiques des téphras. Le mot « tephra » ou « téphra » fait référence à tous les types et toutes les tailles de fragments de roche projetés par un volcan en empruntant une trajectoire aérienne lors d’une éruption. Les téphras incluent les cendres, les bombes, les scories ou même les cheveux et les larmes de Pelé.

Ce nouveau laboratoire d’analyse de téphras permettra au HVO de déterminer la densité, la taille et la forme des particules, ainsi que les différents types de téphras émis par un volcan. En utilisant ces informations, les géologues du HVO seront en mesure d’analyser toute une gamme de phénomènes, depuis l’ascension du magma et le processus éruptif jusqu’aux dépôts de cendres laissés par les  éruptions du passé. Il est important d’obtenir ces mesures aussi précisément et rapidement que possible lors d’une éruption.

Le nouveau laboratoire du HVO est unique par sa capacité à analyser une vaste gamme d’échantillons, de un mètre à un micron (10-6 m). Le traitement des échantillons est non destructif et l’analyse est rapide. Chaque type de mesure ne prend que quelques minutes, et on estime que l’ensemble des mesures prend 1 à 2 heures. La méthode non destructive d’utilisation de ces nouveaux instruments est révolutionnaire ; elle permet aux chercheurs d’effectuer une suite complète d’analyses sur le même échantillon – au lieu d’utiliser différents échantillons du même matériau – pour une compréhension plus complète des éruptions. Cela permet également de préserver dans leur intégrité tous les  échantillons.

La première étape consiste à étudier les composants de l’échantillon afin de comprendre à quel type d’éruption les scientifiques sont confrontés.

Pour les échantillons de téphras prélevés directement sur le terrain, le HVO dispose de deux nouveaux stéréoscopes à lumière réfléchie. Lors de leur utilisation, les géologues peuvent séparer manuellement les différents composants de l’échantillon, tels que la lave juste prélevée, les cristaux, ou les petits morceaux de la paroi du cratère.

Au cours de l’étape suivante, les chercheurs mesurent la densité des échantillons. Pour les échantillons de lave, la mesure de la densité permet de comprendre quelle était la consistance du magma lors de son émission ; cela renseigne sur la dynamique de l’éruption. La densité de l’échantillon est déterminée en mesurant sa masse et son volume. Pour les morceaux de téphra de plus de cinq centimètres, le volume est calculé à l’aide d’un scanner 3D, puis l’échantillon est pesé. Les grains plus petits, depuis les lapilli jusqu’à la poudre de cendre, sont placés dans un pycnomètre à gaz, une machine qui calcule la densité directement en utilisant le principe d’Archimède de déplacement du volume en injectant de l’azote gazeux. Les pycnomètres fonctionnent aussi bien avec des scories et de la pierre ponce qu’avec des cendres ; ils permettent de comprendre la dynamique des éruptions.

La troisième étape est la mesure de la taille des échantillons, ce qui donne des informations sur la façon dont le magma s’est fragmenté pour produire des téphras pendant les épisodes de fontaines de lave et les explosions. Les fragments de plus de 3 centimètres sont tamisés à la main, de manière traditionnelle, tandis que les grains plus petits sont soumis à un Camsizer, un appareil de dernière génération qui photographie chaque fragment et convertit l’image en mesure de la taille. Le flux de particules passe devant une source de lumière stroboscopique LED ultra lumineuse et plane. Les Camsizers peuvent mesurer des dizaines de milliers de fragments en seulement 5 minutes. De plus, ils utilisent les images pour mesurer la forme 2D des fragments en utilisant des paramètres mathématiques établis. Les informations concernant la taille des fragments sont essentielles pour les modèles de fontaines de lave et de cendres.

L’étape finale peut prendre des semaines, voire des mois. Elle consiste à découper les échantillons en fines lamelles et à les étudier au microscope pétrographique. Le HVO possède deux nouveaux microscopes pétrographiques avec différents ensembles de lentilles: l’un peut évaluer la taille des bulles, la texture des bulles ainsi que la texture de mélanges de magmas, tandis que l’autre peut se concentrer sur les cristaux et les inclusions.

Les nouveaux instruments d’analyse de téphras que vient d’acquérir le HVO sont actuellement en cours d’étalonnage. Les échantillons prélevés pendant l’éruption en cours seront les premiers analysés. Ce nouveau laboratoire permet une analyse quasiment en temps réel des produits émis et donc une meilleure surveillance des éruptions.

Source: USGS / HVO.

——————————————

The USGS Hawaiian Volcano Observatory (HVO) has been granted a new laboratory that will allow scientists to better understand the physical properties of tephra.

Tephra is any type and size of rock fragment that is ejected from a volcano and travels an airborne path during an eruption. Examples include ash, bombs, scoria, or Pele’s hair and Pele’s tears.

The tephra lab will help HVO determine the density, size, and shape of individual tephra particles along with types of tephra. Using this information, HVO geologists can analyse a range of topics, from magma ascent and eruption processes to ashfall deposits from past explosive eruptions. It is important to get these measurements as accurately and quickly as possible during an eruption.

HVO’s new lab is unique in its ability to analyze a wide size range of samples, from one metre to one micron (10-6 m). The sample processing is non-destructive and analysis is fast with each type of measurement taking only minutes, and all measurements are estimated to take 1–2 hours total. The non-destructive nature of these new instruments and methods is revolutionary and allows researchers to perform a full suite of analyses on the same sample, instead of different samples of the same material for a more integrated understanding of eruptions. This also allows samples to be fully preserved.

The first step consists in studying the sample components. Componentry helps understand what type of eruption scientists are dealing with.

For tephra samples straight from the field, HVO has two new stereoscopes that use reflected light. Looking through them, geologists can manually separate the different components that might make up the sample, such as fresh glassy lava, crystals, and small pieces of the crater wall.

Next, the researchers measure density. For pieces of lava, measuring density helps understand how frothy the magma was when it erupted, which tells us about eruption dynamics.

Sample density is determined by measuring its mass and volume. For pieces of tephra larger than five centimetres, the volume is calculated using a 3D scanner, and then the sample is weighed. Smaller grains from gravel to powdery ash sizes will be placed in a pycnometer, a machine that calculates density directly using Archimedes principle of volume displacement with nitrogen gas. The pycnometers work with foams (scoria and pumice) as well as ash and helps understand eruption dynamics.

Then, the samples will be measured for size, which give information about how magma gets ripped apart to produce tephra from lava fountains and explosions. Fragments larger than 3 centimetres are sieved in the traditional manual way, while smaller grains will run through one of the new Camsizers ; this is a machine that photographs each fragment and converts the image to a size measurement. The Camsizers can measure tens of thousands of fragments in as little as 5 minutes. Additionally, they use the images to measure the 2D shape of fragments using established mathematical parameters. Size information is essential for models of lava fountaining and ashfall.

A final step that may take weeks to months. It consists in turning pieces into a thin section for final analysis on a petrographic microscope. HVO has two new petrographic microscopes with different sets of lenses: one can assess bubble sizes, bubble textures, and magma-mixing textures, while the other can focus on crystals and melt inclusions within them.

HVO’s new tephra lab instruments currently being calibrated. Samples from the current eruption will be the first analyzed. The HVO tephra lab brings physical volcanology monitoring of eruptions to near-real time analysis.

Source : USGS / HVO.

Photo : C. Grandpey

Hawaii: un mois de sensibilisation aux risques volcaniques // A volcano awareness month

Bien qu’il n’y ait eu aucune éruption à Hawaï en 2020, l’année n’a pas été aussi calme qu’il y parait. Des essaims sismiques ont été détectés sur le Mauna Loa et le niveau de la pièce d’eau  a continué de s’élever au sommet du Kilauea. De tels événements doivent rappeler aux habitants de la Grande Ile qu’ils vivent à proximité de volcans actifs. C’est la raison pour laquelle l’Observatoire des volcans hawaïens (HVO) organisera en janvier 2021 le 12ème «Mois de sensibilisation aux risques volcaniques.» Ce sera l’occasion pour la population d’être mieux informée sur le comportement des volcans hawaïens.

Ce mois de sensibilisation a été créé en 2010 pour « une meilleure connaissance et  sensibilisation aux risques volcaniques et une information sur les mesures de sécurité à adopter avant, pendant et après une éruption volcanique».

Bien que la Grande Ile d’Hawaï se trouve actuellement dans une période de calme après l’éruption du Kilauea en 2018 et celle du Mauna Loa en 1984, l’activité récente sur les deux volcans doit rappeler à la population que d’autres éruptions ne manqueront pas de se produire.

La sismicité récente confirme que les volcans hawaïens sont toujours actifs. La population a déclaré avoir ressenti plus de 100 secousses en 2020. Les instruments indiquent que l’alimentation magmatique se poursuit sur le Kilauea et le Mauna Loa.

Très récemment, entre le 30 novembre et le 2 décembre 2020, plusieurs centaines de séismes se sont produits entre 1 et 4 km de profondeur sous le sommet du Kilauea et le long de la Upper East Rift Zone. Le 2 décembre, un épisode ponctuel de déformation a entraîné un soulèvement d’environ 8 cm du plancher de la caldeira. Les données de surveillance de la zone sommitale du Kilauea ont indiqué qu’une petite intrusion magmatique s’était produite sous la surface du volcan. Bien que le magma n’ait pas atteint la surface, cet événement a confirmé que le réservoir magmatique à l’intérieur du volcan continue à se remplir.

Un séisme de M 4,1 sous le flanc nord-ouest du Mauna Loa le 4 décembre 2020, ainsi que de petits essaims sismiques à proximité, nous rappellent que le volcan est toujours actif. Une hausse de l’activité sismique a entraîné le passage du niveau d’alerte du Mauna Loa à « Advisory » (surveillance conseillée) en juillet 2019.

Le dernier séisme présentant une magnitude et d’une profondeur semblables à celui du mois de décembre 2020 avait été enregistré en novembre 2011 dans cette zone du Mauna Loa, à environ 5 km au nord-ouest de la caldeira de Moku’aweoweo. En 2011, les autres paramètres de surveillance volcanique étaient restés stables et aucune éruption ne s’était produite. L’ensemble des paramètres de surveillance du Mauna Loa reste également stable à l’heure actuelle et n’indique pas d’éruption imminente.

Les événements de 2020 rappellent que le Kilauea et le Mauna Loa sont susceptibles d’entrer à nouveau en éruption. La population doit donc se tenir informée et se préparer aux dangers potentiels associés à un volcan en éruption. Tel sera l’objectif du 12ème «Mois de sensibilisation aux risques volcaniques».

Source: USGS / HVO.

———————————————

Though there has not been any eruption in Hawaii in 2020, the year has hardly been quiet. Seismic swarms have been detected on Mauna Loa, and a growing water lake has been observed on Kilauea. These are reminders that island residents should be aware of Hawaiian active volcanoes. It is the reason why the Hawaiian Volcano Observatory (HVO) will spearhead in January 2021 the 12th annual “Volcano Awareness Month,” during which residents will have an opportunity to learn more about Hawaiian volcanoes.

The Volcano Awareness Month was established in 2010 to encourage “knowledge and awareness of Hawaiian volcanoes and the proper safety measures to follow before, during, and after a volcanic eruption.”

Although Hawaii is currently in the period after Kilauea’s 2018 eruption and Mauna Loa’s 1984 eruption, recent activity at both volcanoes should remind people that more eruptions are likely in the future.

Seismicity confirms that Hawaiian volcanoes are still quite active. Residents have reported over 100 felt earthquakes in 2020. Monitoring data indicate that magma is slowly being supplied to Kilauea and Mauna Loa.

More recently, between November 30th and December 2nd, several hundred earthquakes occurred 1–4 km beneath Kilauea’s summit and upper East Rift Zone. On December 2nd, a transient increase in ground deformation resulted in about 8 cm of uplift of the caldera floor.   Monitoring data from Kilauea’s summit region indicated that a small injection of magma intruded below the surface of the volcano. Although magma didn’t make it to the surface, this event demonstrated that magma continues to refill the storage system within the volcano.

An M 4.1 earthquake beneath the northwest flank of Mauna Loa on December 4th, along with nearby clusters of small earthquakes, reminds us that the volcano continues to show signs of unrest. Elevated seismic activity is one reason why Mauna Loa’s volcano alert-level has been ADVISORY—“volcano is exhibiting signs of elevated unrest above known background activity”—since July 2019.

The last time an earthquake of similar magnitude and depth occurred in this area of Mauna Loa, approximately 5 km northwest of the Moku‘aweoweo caldera, was November 2011, when increased rates of minor seismicity were already occurring. In 2011, other monitoring dataset remained stable and an eruption did not occur. Current dataset on Mauna Loa also remains stable and do not indicate that an eruption is imminent.

These 2020 events are reminders that Kilauea and Mauna Loa will erupt again and that people should be informed and prepared for potential hazards associated with an erupting volcano. This will be the aim of the 12th annual “Volcano Awareness Month.”

Source : USGS / HVO.

Photo : C. Grandpey

Failles et sismicité sur le Kilauea (Hawaii) // Faults and seismicity on Kilauea Volcano (Hawaii)

Outre l’activité volcanique, la sismicité est présente sur la Grande Ile d’Hawaï. En particulier, le flanc sud du Kilauea est l’une des régions les plus sismiquement actives des États-Unis. Chaque année, le HVO enregistre des milliers de secousses dans cette partie de l’île.

Le réseau de failles de Koa’e relie les zones de Rift Est et de Rift Sud-ouest du Kilauea au sud de la caldeira. Cette zone de faille recoupe le Rift Est près du cratère Pauahi et s’étire sur près de 12 km dans une direction est-nord-est vers l’ouest, jusque près du Mauna Iki et la zone de Rift Sud-Ouest (voir carte ci-dessous).
Les failles apparaissent sous forme de petites falaises ou d’escarpements le long de Hilina Pali Road dans le Parc des volcans d’Hawaï. Ces falaises le long des failles glissent lors de séismes majeurs, comme celui du 4 mai 2018, avant le début de l’éruption du Kilauea.
Les mouvements des failles de Koa’e ont fait se déplacer de 1,50 mètre d’anciennes coulées de lave sur une période de plusieurs siècles. Cette zone fournit de bonnes indications sur les mouvements de failles sur le long terme car les coulées de lave ne l’ont pas recouverte, ce qui permet une bonne lisibilité du mouvement du flanc sud du Kilauea. Plus récemment, des failles ont décalé des routes ainsi que sentiers utilisés par les premiers Hawaïens. Il était donc intéressant de savoir si les failles avaient bougé pendant et après l’éruption de 2018.
La géodésie est encore utilisée pour étudier la morphologie des volcans hawaïens, même si les géologues ont souvent recours à des technologies plus modernes, telles que l’interférométrie par satellite et le GPS.
Une approche plus ancienne, le «nivellement», reste une méthode géodésique précieuse quelque 170 ans après son invention. Les scientifiques du HVO l’utilisent depuis des décennies pour étudier les volcans, avec des résultats intéressants.
Depuis l’éruption de 2018, le département de géologie de l’Université d’Hawaï à Hilo a collaboré avec des scientifiques du HVO pour effectuer des opérations de nivellement là où cette technique est la plus adaptée. Le nivellement utilise des théodolites pour mesurer avec précision les différences d’élévation entre des stations marquées par des repères ancrés dans le substrat rocheux. Si les altitudes et les distances entre les stations de mesure ont changé pendant le temps écoulé depuis les mesures précédentes, une répétition du nivellement détecte le changement jusqu’à l’échelle millimétrique. Le nivellement nécessite des équipes de personnes travaillant le long d’une grille établie sur le terrain, ce qui demande beaucoup de temps. Les stations de mesure sont généralement espacées d’environ 90 mètres.
Les scientifiques de l’USGS ont commencé le nivellement le long des failles de Koa’e dans les années 1960, ce qui a permis d’obtenir des mesures sur le long terme. Dans les années 1960, la bande de terre d’environ trois kilomètres au coeur du système de failles de Koa’e s’est élargie d’environ 1,5 cm chaque année. Les failles individuelles ne jouent en général que de quelques millimètres chacune. En revanche, lors des séismes de 2018, on a enregistré le plus important mouvement vertical le long d’une seule faille, avec un déplacement de plus de 40 cm.
Lorsque les failles de Koa’e bougent, elles glissent verticalement ou s’ouvrent en créant de profondes fissures. Un exemple spectaculaire de ce phénomène a été observé au niveau d’Hilina Pali Road en 2018 quand la faille a coupé la route en deux. Peu de temps après la fin de l’éruption de 2018, le nivellement a révélé que les mouvements le long des failles de Koa’e avaient retrouvé leur rythme normal, beaucoup plus lent.
La campagne de nivellement actuelle sur le réseau de failles de Koa’e a révélé que la majeure partie du relief le long de ces falaises est modelée par des événements majeurs. Très peu de nouvelles fissures se sont formées à la suite des grands événements géologiques de 2018. Au lieu de cela, le mouvement a tendance à se poursuivre de manière répétitive le long des fissures existantes ; elles s’ouvrent plus largement et augmentent leurs escarpements avec le temps. Le comportement du réseau de failles de Koa’e est également étroitement lié à ce qui se passe ailleurs sur le volcan, comme les séismes de 2018 sous le flanc sud du Kilauea et l’effondrement à répétition de la caldeira sommitale.
Source: USGS / HVO.

———————————————-

Beside volcanic activity, seismicity is present on Hawaii Big Island. In particular, Kilauea’s south flank is one of the most seismically active regions in the United States. Each year, HVO records thousands of earthquakes occurring beneath the flank.

The Koa‘e fault system connects Kilauea’s East and Southwest Rift Zones south of the caldera. The fault zone intersects the East Rift near the Pauahi Crater and extends nearly 12 km in an east-northeast direction towards the westernmost boundary near Mauna Iki and the Southwest Rift Zone (see map below).

Faults here appear as low cliffs, or “scarps” along Hilina Pali Road in Hawai‘i Volcanoes National Park. These fault-cliffs slip during major earthquakes, such as those of May 4th, 2018, before the beginning of Kilauea’s 2018 eruption.

Koa‘e fault movements have offset ancient lava flows by as much as 1.50 metres over a period of centuries. This area provides an important long-term record of motion due to the lack of recent lava flows covering the faults, which makes it an ideal location to study the motion of Kilauea’s south flank. More recently, faults have offset roads and footpaths used by early Hawaiians. So, it is interesting to know how much fresh offset took place during and after the 2018 eruption.

Geodesy is still used to measure the shape of Hawaiian volcanoes. New technologies, such as satellite interferometry and the Global Positioning System (GPS), depend on satellites to make geodetic measurements.

One older approach, “levelling,” remains a valuable geodetic method some 170 years after it was invented. HVO scientists have used it for decades to study volcanoes, with significant results.

Since the 2018 eruption, the Geology Department at the University of Hawaii at Hilo has collaborated with HVO scientists to perform levelling where it is the best approach available. Levelling uses theodolites to precisely measure elevation differences between stations marked by stainless steel bolts cemented into bedrock. If elevations and distances have changed during the time since the previous measurements, repeat levelling will detect it even down to the millimetre scale. Levelling requires teams of people working along an established grid in the field, and this work demands quite a lot of time. Field stations are commonly set around 90 metres apart.

USGS scientists first began levelling along the Koa‘e faults in the 1960s, providing a long-standing record of data and field stations already in place. In the 1960s, the roughly three-kilometre land strip encompassed by the Koa‘e fault system widened by about 1.5 cm each year. Individual faults move only a few millimetres each.. In contrast, the largest vertical movement recorded during the 2018 earthquakes along a single fault was over 40 cm.

When the Koa‘e faults move, they either slide vertically or open to create a deep crack. A dramatic example of opening occurred at the Hilina Pali Road 2018 faulting which split the road. Shortly after the end of the 2018 eruption, levelling revealed that the rates of change along the Koa‘e faults quickly returned to the much slower normal pace.

The current Koa‘e levelling campaign has revealed that most of the relief along these cliffs is created by large events. Very few new cracks formed as a result of the large geologic events of 2018. Instead, motion tends to continue repeatedly along existing cracks, opening them wider and making their scarps taller over time. The motions along the Koa‘e faults are also sensitively tied to what happens elsewhere on the volcano, such as the 2018 earthquakes underneath Kilauea’s south flank and the repeated collapse of the summit caldera.

Source : USGS / HVO.

Carte géologique de la zone sommitale du Kilauea, avec le système de failles de Koa’e (Source : USGS)

Le mystère de l’eau sur le Kilauea (Hawaii) // The mystery of water on Kilauea Volcano (Hawaii)

Le 4 juillet 2018, un scientifique du HVO qui se trouvait à la Volcano House du Kilauea a pris une photo sur laquelle on peut voir une ligne sombre qui descend le long de la paroi de la caldeira sommitale, au-dessus du plancher de l’Halema’uma’u. (voir la photo ci-dessous). Dans le doute, elle a été baptisée «la traînée noire».
Les géologues du HVO ont déclaré qu’il y avait deux possibilités: cette trace noire pouvait être la cicatrice laissée par un effondrement le long de la pente recouverte de poussière. Ou bien, elle avait pu être creusée par l’eau.
Au cours des jours suivants, la « traînée noire » est allée et venue. Au final, les  observations ont montré que la traînée restait noire même quand une grande quantité de poussière s’élevait de Halema’uma’u. C’était la preuve qu’elle était façonnée par l’eau et non par des effondrements.
L’eau sortait d’un point situé entre 10 et 20 mètres sous la lèvre de la caldeira, au-dessus de la nappe phréatique qui alimente aujourd’hui le lac au fond du cratère (voir mes notes précédentes). La question était de savoir comment l’eau pouvait se trouver aussi haut dans cette zone.
Lorsque de fortes pluies se produisent sur le Kilauea, une rivière coule pendant environ une heure à la surface du sol entre l’extrémité sud d’Uekahuna Bluff et le Rift Sud-Ouest sur une distance de 600 à 800 mètres. Cette rivière a plusieurs mètres de largeur et quelques dizaines de centimètres de profondeur. Elle disparaît toujours avant d’atteindre le Rift SO en s’enfonçant dans le sable alluvial.

Les autres questions étaient de savoir 1) où allait cette eau, et 2) si c’était bien cette eau qui formait la traînée noire mentionnée ci-dessus. Les géologues du HVO pensent que c’était le cas. Après avoir disparu, l’eau de la rivière coule probablement sous terre mais est bloquée par des dykes sous la zone de Rift SO où elle s’accumule pour former un aquifère peu profond. La fracturation de la paroi de la caldeira lors de l’effondrement du sommet en 2018 a probablement ouvert une voie permettant à cette eau de sortir de l’aquifère et de se déverser dans la caldeira.
La « traînée noire », autrement dit la cascade d’eau, est réapparue périodiquement au cours des deux dernières années et le HVO demande au public s’il pourrait fournir d’autres photos du phénomène depuis 2018. Des images récentes montrent une cavité à la source de la cascade qui pourrait être l’ouverture d’un tunnel de lave.
La poche d’eau qui donne naissance à la cascade est l’une des deux qui existaient avant 2018. L’autre a formé une mare d’eau chaude à la surface de la caldeira, à 500 mètres au nord de l’Halema’uma’u avant l’effondrement du cratère en 2018. Une végétation abondante entourait cette mare et des micro-organismes vivaient dans l’eau. La mare s’est vidée lors de l’effondrement de l’Halema’uma’u en 2018, bien que son emplacement reste visible aujourd’hui grâce à la présence de végétation. Tandis que le cratère s’agrandissait en juin et juillet 2018, un panache de vapeur blanche s’élevait généralement au-dessus de sa partie nord-ouest, ce qui contrastait avec les panaches de poussière sombre qui envahissaient la majeure partie de l’Halema’uma’u. Il se peut que le panache de vapeur blanche ait été généré par l’ébullition de l’eau dans l’aquifère peu profond qui alimentait la mare.

Les scientifiques du HVO se demandent aujourd’hui s’il existe d’autres poches d’eau peu profondes sous le plancher de la caldeira. Il y a davantage de précipitations sur la partie nord de la caldeira que sur la partie sud. On sait que plusieurs cavités existent sous le plancher nord de la caldeira; elles émettent de la vapeur à haute température. Cette chaleur provient probablement des coulées de lave et de lacs de lave solidifiés qui existaient dans cette zone au 19ème siècle et au début du 20ème et dont la chaleur vaporise l’eau des précipitations. Cette vapeur persiste même par temps sec.

Les scientifiques du HVO aimeraient savoir s’il existe une poche d’eau plus profonde dans la zone sommitale du Kilauea. En effet, si c’est le cas, elle pourrait provoquer des explosions phréatiques au sommet du volcan.
Source: USGS / HVO.

————————————————–

On July 4th, 2018, a HVO scientist at the Volcano House Hotel took a photo showing a dark line descending the wall of Kilauea caldera above Halema’uma’u. (see the photo below). Not knowing what it was, he dubbed it the ‘black streak.’

HVO geologists said there were two possibilities: the streak could be a recent rockfall scar cutting across the dusty slope. Or the streak was made by water.

Over the next few days, the black streak came and went. Finally, observations showed that the streak stayed black during a time when a lot of dust was billowing from Halema’uma’u. This was proof positive that it was made by water, not a rockfall.

The water flowed from a point 10–20 metres below the rim of the caldera, high above the groundwater body that today feeds the deepening lake seen at the bottom of the crater (see my previous posts). The question was to know how water could be so high in this area.

During exceptionally heavy downpours, a river flows for an hour or so across the ground surface between the south end of Uekahuna Bluff and SW Rift, over a distance of 600–800 metres. This river is several metres wide and a few tens of centimetres deep. This flowing river always ends before reaching SW Rift, sinking into alluvial sand.

The other questions were to know 1) where this water went, and 2) if it was the water that formed the above mentioned black streak. HVO geologists thought the answer was yes. Beyond where it disappears, the river water probably flows underground but is dammed by dikes beneath the SW Rift area, forming a shallow perched aquifer. Faulting of the caldera wall during the 2018 summit collapse opened a pathway for this stored water to exit the aquifer and pour into the caldera.

The black streak, or water cascade, has reappeared sporadically in the past two years and HVO asks the public if they could get more photos of the phenomenon since 2018. Recent images show a cavity at the head of one cascade. It could be the opening of a lava tube.

The perched water body responsible for the water cascade is one of two such bodies existing before 2018. The other formed a tiny warm pond on the caldera floor 500 metres north of Halema’uma’u before it enlarged in 2018. Lush vegetation surrounded the pond, and microorganisms lived in the water. The tiny pond drained as Halema’uma’u widened in 2018, though its site, marked by vegetation, remains. As the crater expanded in June and July, a white steam plume generally rose above the northwestern part of the crater, contrasting with the dusty brown clouds that engulfed most of the crater. The plume might have been generated by boiling of water in the same shallow aquifer that supported the pond.

HVO scientists wonder whether other shallow water bodies exist unseen beneath the caldera floor. More rain falls on the northern part of the caldera than on the southern. Several caves are known to exist below the northern caldera floor; they emit steam and are very hot. Most likely the heat comes from solidified lava flows and lakes active in this area in the 19th and early 20th centuries, and it heats rainfall to steam. The steam persists even in dry weather. HVO scientists would like to know if there is a deeper water body in the summit area of Kilauea. Indeed, if such shallow water existed, it could trigger phreatic explosions at the summit of the volcano.

Source: USGS / HVO.

Vue de la “traînee noire” sur la paroi de la caldeira. Elle mesure une cinquantaine de mètres et un panache de vapeur (en bas à droite) s’élève de la partie NO de l’Halema’uma’u. La photo a été prise depuis la Volcano House le 4 juillet 2018. La configuration des lieux a beaucoup changé depuis cette date. (Source : USGS).

Mesure et analyse des gaz sur le Kilauea (Hawaii) // Measurement and analysis of gases on Kilauea Volcano (Hawaii)

Après les géodésistes, l’Observatoire des Volcans d’Hawaii(HVO) explique le rôle joué par les géochimistes dans l’analyse du comportement du Kilauea.
Les gaz donnent des indications précieuses sur les processus volcaniques, même quand le volcan n’est pas en éruption. Les ratios de gaz émis, comme le dioxyde de carbone (CO2) et le dioxyde de soufre (SO2), peuvent renseigner les scientifiques sur la profondeur à laquelle se trouve le magma. La quantité de SO2 émise par le volcan reflète également la quantité de magma ou de lave en cours de dégazage.
Les géochimistes du HVO utilisent diverses méthodes pour contrôler les émissions de gaz du Mauna Loa et du Kilauea, avec des mesures directes et des techniques à distance. L’une des mesures les plus fréquentes concerne les émissions de SO2, afin de savoir combien de tonnes sont émises par jour. Pour cela, les géochimistes se rendent sous le panache de gaz avec un spectromètre ultraviolet. Le SO2 absorbe la lumière ultraviolette, donc lorsqu’il y a une plus grande quantité de SO2 dans le panache éruptif, une plus faible quantité de lumière ultraviolette atteint le spectromètre. Ces mesures sont actuellement effectuées toutes les 2 à 4 semaines. Par contre, pendant l’éruption de 2018, elles étaient effectuées au minimum tous les deux jours. Lorsque le lac de lave s’agitait au sommet de Kilauea, le HVO avait un réseau de spectromètres qui calculait les émissions de SO2 toutes les quelques secondes.
Les géochimistes s’appuient également sur le rapport entre le CO2 et le SO2. Les rapports de quantités de ces gaz donnent des informations sur la profondeur à laquelle se trouve le magma. Le CO2 n’absorbe pas la lumière ultraviolette comme le SO2 ; les scientifiques mesurent donc directement le CO2. Pour ce faire, ils utilisent des capteurs placés directement dans le panache de gaz volcanique. Par exemple, le capteur «MultiGas» pompe le gaz et détermine les concentrations de CO2, SO2, H2S et de vapeur d’eau. Le travail consiste ensuite à calculer leurs ratios et à contrôler les fluctuations qui pourraient indiquer une augmentation du magma dans le volcan.
Il existe trois types de capteurs MultiGas au HVO: 1) des stations permanentes sur le Kilauea et le Mauna Loa qui envoient des données au HVO en temps réel: 2) un MultiGas portable, de la taille d’une grande mallette qui permet de contrôler la chimie des gaz dans de nombreux endroits; 3) un MultiGas miniaturisé monté sur un drone pour mesurer le gaz dans des sites dangereux ou inaccessibles.
Il y a d’autres gaz présents en faibles quantités dans les panaches volcaniques. Eux aussi peuvent fournir des informations préciueses sur le comportement d’un volcan. Pour mesurer ces gaz mineurs tels que le chlore, le fluor et l’hélium, les géochimistes utilisent des méthodes à distance et sur le terrain.
De nombreux gaz volcaniques absorbent le rayonnement infrarouge ; en conséquence, pendant les éruptions, le HVO peut utiliser la télédétection de l’énergie infrarouge émise par la lave. Un spectromètre infrarouge à transformée de Fourier (IRTF) détecte différentes longueurs d’onde infrarouge et mesure leur absorption par de nombreux gaz simultanément. Cela fournit de nombreux ratios de gaz qui aident à comprendre les processus de dégazage lors des éruptions.
Une autre façon de mesurer plusieurs gaz volcaniques à la fois est de les collecter dans une bouteille de l’envoyer au laboratoire pour analyse. Pour cela, les scientifiques utilisent une bouteille spéciale [NDLR : avec le vide à l’intérieur] équipée s »un tube que l’on introduit dans une fumerolle. Ce type d’échantillonnage est actuellement effectué une fois tous les trois mois au niveau des Sulphur Banks dans le Parc National des Volcans d’Hawaï pour contrôler sur le long terme l’évolution de la chimie du gaz.
Ce travail suppose l’utilisation d’un grand nombre d’instruments. C’est pour ce la que l’équipe de géochimistes travaille en étroite collaboration avec les techniciens du HVO et les informaticiens pour s’assurer que tout  cetéquipement fonctionne correctement.
Source: USGS / HVO.

———————————————

After the geodesists, the Hawaiian Volcano Observatory (HVO) esplians the part played by geochemists in analysing the behaviour of Kilauea Volcano.

Volcanic gases give clues about volcanic processes, even when no lava is erupting. Ratios of escaped gases like carbon dioxide (CO2) and sulphur dioxide (SO2) can tell scientists about magma depth. The total amount of SO2 released also reflects the amount of magma or lava that is degassing.

HVO geochemists use a variety of methods to track gas emissions from Mauna Loa and Kilauea, including direct measurements and remote techniques. One of the most frequent measurements is the SO2 emission rate, in order to know how many tonnes are emitted per day. For this, geochemists drive or walk under the gas plume with an ultraviolet spectrometer. SO2 absorbs ultraviolet light, so when more SO2 is present overhead, less ultraviolet light reaches the spectrometer. These measurements are currently made once every 2-4 weeks, whereas during the 2018 eruption, they were made at least every other day. When Kīlauea’s summit lava lake was present, HVO had a network of spectrometers that calculated the SO2 emission rate every few seconds.

Another measurement geochemists rely on is the ratio of CO2 to SO2. The relative amounts of those gases give information about the depth of magma. CO2 does not absorb ultraviolet light like SO2, so scientists measure CO2 directly. To do this, they use sensors placed right in the volcanic gas. For instance, an instrument called “MultiGas” pumps in gas and determines concentrations of CO2, SO2, H2S and water vapour. The job is then to calculate their ratios and track changes that might indicate magma rising within the volcano.

There are three types of MultiGas at HVO: 1) permanent stations on Kilauea and Mauna Loa that send data to HVO in real-time: 2) a portable MultiGas, which is the size of a large briefcase and allows to check gas chemistry in many places; 3) a miniaturized MultiGas mounted on a drone to measure gas in hazardous or inaccessible sites.

There are additional gases in volcanic plumes that are not present in large amounts but still provide information about volcanic behaviour. To measure those minor gases, including chlorine, fluorine, and helium, geochemists use remote and direct methods.

Many volcanic gases absorb infrared radiation, so during eruptions HVO can use remote sensing of infrared energy emitted by lava. A Fourier Transform Infrared (FTIR) spectrometer detects different wavelengths of infrared and measures absorption by numerous gases simultaneously. This provides many gas ratios that help to understand degassing processes during eruptions.

Another way to measure multiple volcanic gases at once is to collect a bottle of gas and send it to the lab for chemical analysis. For this, scientists use a special glass bottle with tubing inserted into a fumarole. This kind of sampling is currently done once every three months at Sulphur Banks in Hawaii Volcanoes National Park to track long-term changes in gas chemistry.

That’s a lot of instrumentation, so the gas geochemistry team works closely with HVO technicians and IT specialists to make sure that all the equipment functions properly.

Source: USGS / HVO.

Panache de gaz au-dessus du lac de lave du Kilauea

Sulphur Banks, dans le Parc des Volcans d’Hawaii

(Photos: C. GRandpey)