La technologie InSAR au service des volcans // InSAR technology to monitor volcanoes

En mars et décembre 2015, j’ai rédigéé plusieurs notes à propos de l’utilisation de la technologie InSAR en volcanologie, en particulier pour contrôler les déformations des Champs Phlégréens (Italie) et du Kilauea (Hawaii). Aujourd’hui, un article publié par l’Observatoire des Volcans d’Hawaii (le HVO) aborde à nouveau ce sujet.

Les satellites sont devenus essentiels pour surveiller les volcans actifs. En particulier, ils permettent de garder un oeil sur des volcans difficiles d’accès, et ils offrent des perspectives impossibles à obtenir depuis le sol. Les satellites en orbite autour de la Terre peuvent fournir des images classiques d’un lieu, mais également des images thermiques. Ils peuvent aussi mesurer des quantités et des types de gaz, des changements de gravité et de topographie.
Une avancée majeure a été l’arrivée de l’InSAR (Radar interférométrique à synthèse d’ouverture) pour mesurer de petites variations de surface du sol sur un édifice volcanique. Les satellites radar à synthèse d’ouverture (RSO) envoient à intervalles réguliers des ondes radar qui rebondissent sur la Terre et reviennent vers le satellite. Il faut deux ensembles d’ondes concernant la même zone pour mesurer les changements dans le temps. S’il n’y a pas eu de changement de forme du volcan pendant le laps de temps entre les images, les signaux parcourent la distance dans le même laps de temps. Cependant, si le volcan a changé au cours de processus d’inflation ou de déflation, il sera plus proche ou plus éloigné dans la deuxième image. Il faudra donc plus de temps à l’onde radar pour parcourir la distance entre le satellite et le sol, puis revenir au satellite.
En attribuant à deux ondes décalées une couleur basée sur la taille du décalage, on obtient un ensemble unique de couleurs en bandes qui représentent le nombre de longueurs d’onde séparant les deux images. C’est ainsi que se conçoivent les interférogrammes. Les anneaux concentriques de couleur montrent le niveau d’inflation ou de déflation de la surface d’un volcan.
Si l’InSAR est utile pour surveiller les mouvements à la surface d’un volcan, les scientifiques sont parfois confrontés à des difficultés. Les images InSAR recueillies à partir d’un satellite sont souvent perturbées par des signaux liés aux changements de l’atmosphère terrestre entre les passages du satellite. Ce « bruit atmosphérique » est particulièrement apparent avec les changements de topographie. Sur les volcans actifs très hauts, comme le Mauna Loa, les flancs pentus peuvent amplifier les signaux atmosphériques, laissant supposer à tort qu’un changement significatif s’est produit.

À première vue, l’image de gauche (A) pourrait sembler montrer une inflation simultanée du Mauna Kea et du Mauna Loa. Cependant, on sait, grâce aux instruments GPS du HVO, que le Mauna Kea ne montre pas de déformation significative. Les scientifiques peuvent donc conclure que les signaux InSAR sur le Mauna Loa ne sont probablement pas fiables dans ce cas précis. L’image B est un autre exemple d’interférogramme InSAR avec un bruit atmosphérique important. Une légère déformation du Mauna Loa et la zone de rift sud-est du Kilauea est visible sur ces images, mais reste difficile à discerner du bruit atmosphérique.

Une autre méthode consiste à comparer plusieurs images InSAR. Les satellites RSO capturent des images dans les directions ascendante (vers le nord) et descendante (vers le sud) lorsqu’ils orbitent autour de la Terre. En créant une deuxième image InSAR, avec le même laps de temps, mais à partir de différentes « directions de visée » RSO, il est possible de comparer deux interférogrammes du même événement. Si la déformation est réelle sur la zone étudiée, les deux images InSAR provenant de directions opposées montrent des niveaux de mouvement similaires.
Les scientifiques du HVO utilisent constamment les satellites et d’autres outils pour analyser le mouvement du magma dans les volcans d’Hawaii afin d’essayer d’identifier les signes d’éruptions imminentes.
Source : USGS/HVO.

——————————————

In March and December 2015, I wrote several posts about the use of InSAR technology in volcanology, in particular to monitor deformations of the Phlegraean Fields (Italy) and Kilauea (Hawaii). Today, an article published by the Hawaii Volcano Observatory (HVO) addresses this subject again.

Satellites have become one of the fundamental tools used to monitor active volcanoes. In particular, they allow to monitor volcanoes that are otherwise hard to access and provide perspectives that are not possible to get from the ground. Satellites orbiting the Earth can provide normal “pictures” of a place, but can also provide thermal images, measure amounts and types of gases, changes in gravity and topography.

One of the most revolutionary advances has been the use of InSAR (Interferometric Synthetic Aperture Radar) to measure small changes in shape over an entire volcano. Synthetic Aperture Radar (SAR) satellites send timed radar waves that bounce off the Earth back to the satellite. It takes two sets of waves of the same area to measure change over time. If there has been no change to the volcano for the time between images, the signals travel the distance in the same amount of time. However, if the volcano has changed by either inflating or deflating, the volcano will be closer or further away in the second image. It will take more time for the radar wave to travel the distance from satellite to the ground, then back to the satellite.

If the difference between two offset waves are assigned a color based on the size of the offset, they produce a unique set of banded colors that represent the number of wavelengths separating the two images. This process produces interferograms. Concentric rings of color relate to the amount of surface inflation or deflation of a volcano.

While InSAR is useful for monitoring volcanic motions, it is not without problems. The nature of how InSAR images are gathered from a radar satellite often unintentionally captures signals associated with the changes in the Earth’s atmosphere between satellite passes in addition to ground surface change. This additional “atmospheric noise” is especially apparent with changes in topography. At active volcanoes that are very tall, like Mauna Loa, the sloping flanks can magnify atmospheric signals, falsely suggesting that significant change has occurred.

At first glance, the left image (A) above could seem to show both Mauna Kea and Mauna Loa inflating at the same rate simultaneously. However, we know from the HVO GPS instruments that Mauna Kea shows no evidence for significant deformation, so scientists can conclude that the InSAR signals on Mauna Loa are mostly likely unreliable in this specific instance. Image B is another example of an InSAR interferogram with heavy atmospheric noise. Some slight deformation on Mauna Loa and the Southeast Rift Zone of Kilauea is visible in these images, yet still hard to discern from the atmospheric noise.

Another method is to compare multiple InSAR images. SAR satellites capture images in both ascending (traveling northward) and descending (traveling southward) directions as they orbit the planet. By creating a second InSAR image, with the same time span, but from different SAR “look directions,” it is possible to compare two interferograms of the same event. If the deformation is real over the survey area, then both InSAR images from opposing directions would show similar rates of motion.

HVO scientists are constantly using these and other tools to track the movement of magma within Hawaii’s volcanoes in order to identify the warning signs of impending eruptions.

Source: USGS / HVO.

Le Mauna Loa (Hawaii) affole les médias ! // Mauna Loa (Hawaii) panics the media !

Le niveau d’alerte du Mauna Loa n’a pas changé et reste au Jaune (surveillance conseillée). Cependant, certains titres dans la presse américaine ces derniers temps sont beaucoup plus alarmistes. Par exemple, on peut lire sur le One American News Network (OAN) : « Le Mauna est sur le point d’entrer en éruption à Hawaii. » On peut lire aussi « Le Mauna Loa envoie des signaux d’avertissement à Hawaii » et « On a mis en garde les habitants de la Grande Ile d’Hawaii contre un possible désastre de lave alors que gronde le plus grand volcan actif du monde. »
Confronté à tous ces titres alarmistes, l’Observatoire des Volcans d’Hawaii (HVO) a dû se fendre d’une mise au point et expliquer qu’il n’avait émis aucune alerte récente concernant le Mauna Loa :
« Le Mauna Loa n’est pas en éruption en ce moment et les dernières informations publiées par l’Observatoire des volcans d’Hawaii et l’USGS qui surveillent le Mauna Loa ne doivent pas inciter les voyageurs à modifier leurs projets de voyage vers l’île d’Hawaii ou l’une des îles hawaïennes en ce moment. »
Ce qui est vraiment regrettable et même honteux, c’est que beaucoup d’articles de presse présentent des photos qui ne sont pas celles du Mauna Loa ! Ils montrent des photos du Kilauea au cours de l’éruption de 2018 ou d’éruptions précédentes comme celle du Pu’u’O’o.

Bien sûr, de tels titres peuvent inquiéter la population, en particulier s’ils donnent l’impression qu’une éruption est imminente ou en cours. Ce n’est pas nouveau. Les médias ont toujours exagéré les événements qu’ils décrivent pour attirer l’attention du public, accroître les ventes des journaux, et donc gagner de l’argent.
Cela fait près de 40 ans que le Mauna Loa est entré en éruption pour la dernière fois et on observe une hausse d’activité depuis septembre 2021. Comme je l’ai déjà écrit, l’activité sismique sous le sommet et la caldeira a augmenté fin septembre, avec jusqu’à 100 événements par jour. Cette activité est probablement causée par un nouvel apport de magma dans le réservoir sommital du volcan. Les instruments GPS au sommet et sur les flancs continuent également d’enregistrer une inflation significative depuis la mi-septembre. Cependant, aucune déformation de surface n’a été observée au cours de la semaine écoulée.
En raison de cette hausse d’activité, le HVO a décidé de communiquer des informations de manière quotidienne et non plus hebdomadaire. Le niveau d’alerte volcanique n’a pas changé depuis 2019 et l’Observatoire ne voit aucun signe d’éruption imminente. Le niveau d’alerte ne changera pas tant que l’Observatoire ne saura pas avec certitude que le Mauna Loa va entrer en éruption.
Heureusement, la plupart des 33 dernières éruptions du Mauna Loa sont restées confinées à la région de la caldeira. Cependant, lorsque la lave sort en d’autres endroits, elle peut couler rapidement sur les pentes abruptes du volcan. Il peut s’écouler relativement peu de temps entre le moment où le HVO enregistre les signes indiquant qu’une éruption est imminente et le moment où cette éruption se déclenche. C’est pourquoi les personnes qui vivent sur les flancs du volcan doivent être préparées et pourquoi la Protection Civile organise des réunions publiques en partenariat avec le HVO. Cela s’appelle la prévention.
Les changements intervenus dans la diffusion des messages du HVO et les réunions publiques sont peut-être la raison de toute l’attention médiatique entourant le Mauna Loa ces derniers temps.
Source : USGS / HVO.

——————————————–

The alert level for Mauna Loa has not changed ad remains at Yellow, or Advisory. However, some recent headlines from media around the United States are sending a more ominous message. For instance, one can read on the One American News Network (OAN) : « Mauna volcano close to erupting in Hawaii. » Other headlines include « Mauna Loa volcano sets off warning signals in Hawaii » and « Residents of Hawaii Big Island warned of potential ‘lava disaster’ as world’s largest active volcano rumbles. »

Confronted with all these alarming headlines, the Hawaiian Volcano Observatory (HVO) had to explain that it issued no recent warnings regarding Mauna Loa :

Mauna Loa volcano is not erupting at this time and recent news of the U.S. Geological Survey Hawaiian Volcano Observatory monitoring Mauna Loa is no reason for travelers to alter their travel plans to Hawai‘i Island or any of the Hawaiian Islands at this time.”

What is really a pîty and even a shame is that a lot of articles are featuring photos not even of Mauna Loa volcano! They are showing photos of Kilauea, either from the 2018 eruption or previous eruptions such as the one at Pu‘u ‘O‘o. Of course, this can cause alarm, especially depending on the headline, making it seem like an eruption is impending or ongoing. This not a new situation. The media have always exaggerated the events they describe to draw public attention and make money.

It’s been nearly 40 years since the volcano last erupted and it has been in a period of heightened unrest since September 2021. As I put it before, seismic activity below the volcano’s summit and caldera spiked in late September, with instruments recording as many as 100 quakes a day at certain points. The unrest is likely caused by renewed input of magma into Mauna Loa’s summit reservoir system. GPS instruments at the summit and on the volcano’s flanks also continue to measure inflation at rates elevated since mid-September. However, no significant surface deformation has been seen in the past week.

Because of that heightened unrest, HVO changed its messaging from weekly to daily updates. The volcano’s alert level hasn’t changed from Advisory since 2019 and the observatory sees no signs of an imminent eruption. The alert level won’t change until the observatory knows with certainty Mauna Loa will erupt.

Fortunately, most of Mauna Loa’s past 33 eruptions were confined to the caldera region. However, when lava does break out in other locations, it can flow rapidly down the volcano’s steep slopes. It could be a relatively short amount of time between when HVO sees signs that an eruption might occur and then when that eruption occurs, That is why people living on the volcano need to be prepared and why Civil Defense has been organising community meetings in partnership with HVO.

The change in messaging and community meetings may be the reason for all the media attention surrounding Mauna Loa lately.

Source : USGS / HVO.

Mauna Loa : caldeira sommitale et flanc sud-ouest (Photos: C. Grandpey)

En cas d’éruption du Mauna Loa (Hawaii)…. // Should Mauna Loa erupt….

Comme je l’ai écrit précédemment, le Mauna Loa montre des signes de réveil sur la Grande Ile d’Hawaii. Les scientifiques s’attendent à une éruption, mais ils sont incapables de dire quand elle se produira. Par précaution, une première rencontre vient d’être organisée avec les habitants d’Ocean View, une localité située à 600 mètres d’altitude sur le flanc SO du volcan. Le principal message reçu par les habitants d’Ocean View au cours de cette réunion à propos du Mauna Loa est : Tenez vous prêts!
Les personnes présentes à la réunion ont été informées de la situation sur le Mauna Loa et ont eu l’occasion de parler et de poser des questions à des responsables de la Protection Civile, du HVO et d’autres organisations locales.
Les géologues du HVO ont expliqué que le volcan est en niveau d’alerte Jaune – surveillance conseillée – depuis 2019. La hausse récente d’activité, avec un pic de sismicité et une augmentation de l’inflation sommitale, est due à un nouvel apport de magma à 3 – 8 km de profondeur sous le sommet du Mauna Loa. C’est une source d’inquiétude pour les personnes qui vivent sur les pentes du volcan. La dernière éruption du Mauna Loa remonte à 1984 et les scientifiques sont certains qu’il entrera à nouveau en éruption.
Au cours de la réunion publique, le HVO et la Protection Civile ont fait de leur mieux pour répondre aux questions des habitants à propos du Mauna Loa, volcan bouclier qui occupe 51% de la superficie de la Grande Île. Au final, il a été conseillé à la population de se préparer.
Bien que les scientifiques disposent aujourd’hui de plus d’instruments susceptibles de les informer du comportement du volcan, ils sont toujours incapables de prévoir avec précision quand le volcan entrera en éruption. Cela signifie qu’ils ne pourront pas dire si la lave est en train de dévaler l’une des zones de faille du Mauna Loa tant qu’elle n’aura pas percé la surface.
Heureusement, l’histoire du Mauna Loa montre que les éruptions commencent et restent limitées à la caldeira sommitale. La moitié des 33 éruptions passées sont restées confinées à la région de la caldeira. Un quart se sont produites dans la zone de rift nord-est du volcan, qui comprend des localités telles que Hilo, Volcano et Keaʻau. La majorité des autres éruptions se sont produites dans la zone de rift sud-ouest. C’est là que se trouvent Ocean View et d’autres localités telles que Pāhala.
Si une éruption devait se déplacer vers d’autres secteurs du volcan, ce serait une autre histoire. Lorsque la lave sort des fractures, les coulées peuvent se déplacer rapidement. Lorsque le Mauna Loa est entré en éruption en 1950 dans la zone du rift sud-ouest, la lave a atteint l’océan en seulement trois heures.
Le niveau d’alerte du volcan restera le même tant que le HVO ne saura pas avec certitude qu’une éruption va se produire. C’est pourquoi les gens doivent se tenir prêts à une possible évacuation car le temps de réaction dans cette situation peut être très court.
De nombreux organismes seront sur le terrain pour aider les habitants en cas d’éruption. Leur rôle sera de tenir les gens informés, leur indiquer toutes les voies de communication disponibles, ouvrir des abris d’urgence, aider les évacuations, ouvrir des voies d’évacuation supplémentaires, etc.
La diffusion d’informations durant une éruption est essentielle pour s’assurer que les gens savent ce qu’ils doivent faire. Les scientifiques et les autorités locales présents à la réunion ont fait de leur mieux pour répondre aux questions des habitants, les informer où ils doivent aller en cas d’évacuation et quelle est la meilleure police d’assurance à choisir pour protéger leurs biens.
La prochaine réunion d’information est prévue le 27 octobre 2022 au Kaʻū District Gym de Pāhala.
Source : Big Island Now.

——————————————

As I put it before, Mauna Loa is showing signs of unrest on Hawaii Big Island and scientists think an eruption might happen, although they are unable to say when. As a precaution, a first meeting has just been organised with Ocean View residents, a community that lies 600 meters above sea level on the SW flank of the volcano. The message Ocean View residents were told about Mauna Loa was : Be prepared.

Residents at the meeting got an update about Mauna Loa’s status and had a chance to speak with and ask questions of officials from Civil Defense, HVO and other local authorities.

HVO geologists explained that the volcano has been at the Yellow, or advisory, alert level since 2019. Recent increase in activity, including a spike in earthquake activity and inflation at the summit, is being driven by renewed input of magma 3 to 8 km below Mauna Loa’s summit. It has been a cause for concern for residents who live on the volcano’s slopes. The last time Mauna Loa erupted was in 1984 and scientists say it will erupt again.

HVO and Civil Defense did their best to answer the community’s questions about the shield volcano which takes up 51% of the Big Island’s surface area. In the end, the population was advised to be prepared.

Although scientists now have more instrumentation to tell them what the volcano is doing than during any prior period of unrest or eruption, there is still no way to accurately forecast when the volcano will erupt. That means scientists won’t be able to say if lava is coming down one of Mauna Loa’s rift zones until it is already advancing.

Fortunately, eruptions historically begin and stay confined to the volcano’s summit caldera. About half of Mauna Loa’s 33 past eruptions have remained confined to the caldera region. About a quarter have happened in the volcano’s Northeast Rift Zone, which includes communities such as Hilo, Volcano and Keaʻau, while the majority of the rest happened in the Southwest Rift Zone. This is the area where Ocean View and other communities such as Pāhala are located.

Whether an eruption moves to other locations on the volcano is a different story. But when lava breaks out of fissures, those flows can move rapidly. When Mauna Loa erupted in 1950 in the Southwest Rift Zone, lava made it to the ocean within three hours.

The volcano’s alert level won’t be changed until HVO knows with certainty an eruption is going to happen. This is why people need to be prepared as the amount of time to react in that situation can be very short.

A host of agencies will be on the ground to help residents when an eruption happens. That includes keeping people informed and updated via all available avenues of communication, opening emergency shelters, helping evacuation efforts, opening additional evacuation routes and more.

Messaging during an eruption will include as much information as possible to make sure people know what they need to do. Scientists and local authorities at the meeting did their best to answer the community’s questions, including where people should go if they have to evacuate to what is the best insurance to get to protect their property.

The next information meeting is scheduled on October 27th, 2022 at the Kaʻū District Gym in Pāhala.

Source: Big Island Now.

Zones de failles (rift zones) sur le Mauna Loa (Source: USGS)

Coulée de lave sur le flanc SO du Mauna Loa (Photo: C. Grandpey)

Système d’alerte sur le versant SO du volcan (Photo: C. Grandpey)

La géodésie sur les volcans // Volcano geodesy

Plusieurs paramètres sont à prendre en compte pour analyser le comportement des volcans et tenter de prévoir les éruptions : sismicité, température et composition des gaz, déformation du sol… Ce dernier paramètre est le domaine de la géodésie qui consiste à mesurer la déformation et l’évolution de la surface de la Terre. Un article récemment publié par le Hawaiian Volcano Observatory (HVO) nous donne plus de détails sur cette technologie.
Les principales données géodésiques actuellement utilisées par les scientifiques du HVO pour mesurer la déformation de surface sur le Kilauea sont fournies par les images GNSS (système global de navigation par satellite, qui comprend le GPS), l’inclinaison du sol (tilt en anglais) et l’interférométrie radar (InSAR).

Sur le Kilauea, le réseau de surveillance géodésique comprend plus de 70 stations GNSS et 15 inclinomètres qui enregistrent et transmettent des données en continu. Ces instruments nécessitent une maintenance; de plus, ils doivent être réactualisés périodiquement en raison de leur âge et doivent être remplacés s’ils sont détruits par l’activité volcanique comme en 2018.
A l’heure actuelle à Hawaii, le travail des scientifiques se focalise sur la reconstruction et l’amélioration du réseau géodésique afin de mieux détecter les risques liés à l’activité volcanique. Une partie du travail consiste à remplacer les instruments obsolètes et à améliorer le fonctionnement des instruments de surveillance en temps quasi réel dans des zones les plus sensibles du sommet du Kilauea et des zones de rift. Le rôle de ces instruments est de pouvoir détecter rapidement les mouvements du magma.
En 2018, des coulées de lave ont détruit 3 stations GNSS dans la Lower East Rift Zone (LERZ). Trois autres stations GNSS ont été détruites lors de l’effondrement de la caldeira sommitale du Kilauea. De nouvelles stations GNSS ont été rapidement déployées à proximité pour permettre une surveillance continue pendant la crise éruptive de 2018. Ces stations déployées rapidement comprennent des antennes GNSS montées sur trépied et qui appartiennent à la configuration utilisée pour les situations temporaires d’une durée de plusieurs jours à plusieurs semaines.
Bon nombre de ces sites où des antennes ont été installées rapidement ont été supprimés après 2018. Cependant, environ 13 d’entre eux sont toujours utilisés pour la surveillance en cas d’urgence et restent sur des trépieds temporaires. Ces sites seront modernisés et de nouveaux sites seront également mis en place pour remplacer ceux détruits en 2018.
Le HVO a déployé 3 nouvelles stations GNSS à fonctionnement semi-continu suite à l’éruption du Kilauea en décembre 2020. Ces stations ont permis aux scientifiques d’avoir une vue plus complète du retour du magma vers le sommet.
De même, le HVO a déployé un équipement GNSS à réponse rapide sur 2 repères préexistants lors de l’intrusion magmatique au niveau de la caldeira sud du Kilauea en août 2021. Cela a permis aux scientifiques de suivre la migration du magma depuis la caldeira vers le sud.
Dans l’article, l’Observatoire explique que le réseau géodésique permet aux scientifiques de surveiller les déformations du sol sur les volcans, de réagir face aux éruptions et de mieux comprendre le stockage et le mouvement du magma sous terre.
Source : USGS, HVO.

———————————————–

Several parameters need to be taken into account to analyse the behaviour of volcanoes and try to predict eruptions: seismicity, gas temperature and composition, ground deformation… This last parameter is the domain of geodesy which is the study of measuring and understanding how the Earth’s surface deforms and changes. As article recently published by the Hawaiian Volcano Observatory (HVO) gives us more details about this technology.

The main geodetic datasets currently used by HVO scientists to measure surface deformation on Kilauea Volcano are GNSS (global navigation satellite system, which includes GPS), tilt, and satellite radar (InSAR) imagery.

On Kilauea, geodetic monitoring network includes over 70 GNSS stations and 15 tiltmeters that continuously record and transmit data. These instruments require routine maintenance, must be upgraded periodically due to age, and must be replaced if destroyed by volcanic activity such as in 2018.

Current upgrades focus on rebuilding and improving HVO’s geodetic network in order to better detect and respond to volcanic hazards related to Hawaiian Volcanoes. Some of the network upgrades include replacing out-of-date instruments and improving the network of near real-time monitoring instruments at critical areas on Kilauea’s summit and rift zones to support early detection of magma movement.

In 2018, lava flows destroyed 3 GNSS stations in the lower East Rift Zone. Another 3 GNSS stations were destroyed in the caldera collapses at Kilauea’s summit. New GNSS stations were rapidly deployed at nearby locations to allow for continued monitoring during the 2018 crisis. These rapidly deployed stations included GNSS antennas mounted on surveys tripods, which is a set-up used for temporary deployments that last several days to weeks.

Many of these rapidly deployed sites were removed after 2018. However, approximately 13 of them are still being used for emergency monitoring and remain on temporary tripods. These sites will be upgraded and new sites will also be installed to replace those destroyed in 2018.

HVO has deployed 3 new semi-continuous GNSS stations in response to the December 2020 Kilauea eruption. These stations gave scientists a more complete view of magma returning to the summit.

Similarly, HVO deployed rapid-response GNSS equipment at 2 pre-existing benchmarks during the Kilauea south caldera intrusion event in August 2021, allowing scientists to track the migration of magma from the south caldera to farther south.

In the article, the Observatory explains that the geodetic network ensures that scientists can monitor changes in the shape of volcanoes, respond to eruptions, and understand magma storage and movement underground.

Source: USGS, HVO.

Station géodésique GNSS sur le plancher de la caldeira du Kilauea (Crédit photo : HVO)

Exemple d’interférogramme InSAR du Kilauea pendant l’éruption de 2018 (Source: NASA / Université de Liverpool).