Le Mauna Loa (Hawaii) confirme que nous ne savons pas prévoir une éruption volcanique // Mauna Loa (Hawaii) confirms that we cannot predict a volcanic eruption

Aujourd’hui, bien que les volcans soient dotés de toutes sortes d’instruments (sismomètres, tiltmètres, etc.), bien que des équipements de très haute technologie – en particulier à bord des satellites – soient mis à la disposition des observatoires,  nous ne sommes toujours pas en mesure de prévoir les éruptions volcaniques. Un article récent publié par les scientifiques de l’USGS sur le volcan Mauna Loa à Hawaï confirme cette affirmation.

Le 17 septembre 2015, l’Observatoire des Volcans d’Hawaii (HVO) a fait passer le niveau d’alerte du Mauna Loa de « Normal » à « Advisory » et l’alerte aérienne à la couleur Jaune. Deux ans plus tard, le volcan conserve ces niveaux d’alerte. Que se passe-t-il sur le Mauna Loa ? La situation risque-t-elle d’évoluer? Les habitants peuvent-ils vivre tranquillement ou rester vigilants? Bien malin celui qui pourrait répondre à ces questions !
La hausse du niveau d’alerte en 2015 a été justifiée par plus d’un an d’inflation, signe que le magma remplissait lentement le réservoir peu profond sous le sommet du volcan et sous la partie supérieure du Rift Sud-Ouest. Il s’agissait d’un comportement inhabituel du volcan après plusieurs années de calme plat. Dans le même temps, le nombre de séismes superficiels sous le volcan était en hausse, reflétant les contraintes qui apparaissent lorsque le volcan se met en pression.
Depuis cette époque, l’inflation et la sismicité ont alterné hausse et baisse, mais sont restées au-dessus du niveau normal sur le long terme. En outre, des séismes mineurs (moins de M3) sous le Mauna Loa ont été détectés en plus grand nombre qu’avant l’éruption de 1984.
De 2013 à 2015, les séismes superficiels se sont concentrés dans des endroits identiques à ceux qui ont précédé les deux éruptions du Mauna Loa en 1975 et 1984. Toutefois, la libération d’énergie est restée relativement faible par rapport aux éruptions de ces deux années. Cette faible libération d’énergie était une indication qu’une éruption n’allait pas se produire avant plusieurs mois, voire plusieurs années.
Aujourd’hui, l’énergie libérée par les séismes depuis 2013 correspond grosso modo aux quantités d’énergie libérées avant 1975 et avant 1984. Cela signifie-t-il qu’une éruption peut se produire dans les semaines ou les mois à venir? Probablement pas.
Si le Mauna Loa suit la même évolution qu’en 1975 et 1984 avant que le volcan entre en éruption, le HVO enregistrera un grand nombre de petits séismes sous le sommet pendant une période de plusieurs mois. Les scientifiques s’attendront à observer au moins une heure, ou des heures de tremor, signe ultime que le magma est en ascension vers la surface. Mais est-il certain que Mauna Loa suivra le même processus qu’en 1975 et 1984? On ne le sait pas.
On ne peut exclure la possibilité d’une éruption qui démarrerait plus rapidement qu’en 1975 et 1984. Il se pourrait aussi que l’activité observée actuellement cesse progressivement sans que le volcan entre en éruption, comme cela s’est produit en 2002 et 2004. Le HVO doit donc continuer à vivre dans l’incertitude quant à la date et au déroulement de la prochaine éruption du Mauna Loa. En attendant, l’Observatoire surveille attentivement le volcan et travaille avec les agences partenaires et les autorités locales pour se préparer à une prochaine éruption.
Depuis 1984, le HVO a mis à niveau et ajouté des instruments de surveillance, avec de nouveaux systèmes d’alarme pour informer rapidement le personnel de l’observatoire des changements qui pourraient indiquer qu’une éruption du Mauna Loa est imminente ou en cours.
S’agissant de la question, «Les habitants doivent-ils vivre tranquillement ou doivent-ils rester vigilants?» La réponse est «Soyez prêts». Il leur faut prévoir un plan d’urgence pour la famille et des fournitures d’urgence. Il faut que les gens sachent dans quelle zone du Mauna Loa ils habitent et se plient aux instructions concernant ladite zone.
Source: USGS / HVO.

———————————————

Today, even though volcanoes are well equipped with all kinds of instruments (seismometers, tiltmeters, and so on), even though we can now use high technology – especially on board satellites – we still are not able to predict volcanic eruptions. A recent article released by USGS scientists about Mauna Loa volcano in Hawaii confirms my affirmation.

On September 17th, 2015, the Hawaiian Volcano Observatory (HVO) upgraded the volcano alert level for Mauna Loa from Normal to Advisory and the Aviation Colour Code from Green to Yellow. Two years later, the volcano remains at Advisory/Yellow. What’s up with Mauna Loa, and is any change in sight? Should residents relax or stay vigilant?

The 2015 alert level upgrade followed more than a year of inflation as magma slowly filled shallow reservoirs beneath the summit and upper Southwest Rift Zone. This was new behaviour for the volcano following several years of no new magma input into the shallow plumbing system. At the same time, the rate of shallow, small earthquakes beneath the volcano was elevated, reflecting stresses that built as the volcano became pressurized.

Since then, rates of inflation and seismicity have waxed and waned, but have remained above the long-term background levels. In addition, more small magnitude (less than M3) earthquakes beneath Mauna Loa have been detected than at any time since the previous eruption in 1984.

From 2013 to 2015, shallow earthquakes clustered in locations similar to those that preceded Mauna Loa’s two most recent eruptions in 1975 and 1984. But, the cumulative energy release remained relatively low compared to the years before the 1975 and 1984 eruptions. That low energy release was one indication that an eruption was at least many months to years away.

But today, the cumulative energy release of earthquakes since 2013 has essentially matched the pre-1975 and pre-1984 energy releases. Does this mean an eruption could occur within weeks to months? Not likely.

If Mauna Loa follows the “script” of 1975 and 1984, before the volcano ramps up to an eruption, HVO would expect to see lots of small earthquakes occurring frequently beneath the summit over a period of months. Scientists would also expect at least an hour, or hours, of tremor as a final warning that magma is on its way to the surface. How certain is it that Mauna Loa will follow the script of 1975 and 1984? That’s the unknown.

We cannot discount the possibility that Mauna Loa will move from current conditions to eruption more quickly than it did in 1975 and 1984. It also remains possible that the current unrest will gradually cease without the volcano erupting, as it did during periods of unrest in 2002 and 2004. And so, we must continue to live with uncertainty about the timing and details of Mauna Loa’s next eruption. In the meantime, HVO is closely monitoring the volcano and working with partner agencies and communities to prepare for a future eruption response.

Since 1984, HVO has upgraded and added monitoring instrumentation, developing alarm systems to rapidly notify the staff of changes that might indicate that a Mauna Loa eruption is imminent or in progress.

Getting back to the question, “should residents relax or stay vigilant?” The answer is, “be prepared.” Develop a family emergency plan and review emergency supplies. Know where you live and work with respect to Mauna Loa hazard zones.

Source : USGS / HVO.

Le Mauna Loa vu depuis le Ka’u Desert

Coulées de lave sur le versant sud-ouest du Mauna Loa

Système d’alerte sur le Mauna Loa

(Photos: C. Grandpey)

 

Publicités

L’esprit d’innovation en volcanologie // Volcanology requires an innovative spirit

Tous les volcanologues savent qu’il faut être inventif lorsque l’on travaille sur le terrain. Je me souviens de l’ »autocuiseur » mis au point par le regretté François Le Guern pour prélever et analyser des gaz sur l’Etna. Personnellement, j’ai conçu une gaine de cuivre spéciale pour protéger la sonde de mon thermomètre lors des mesures de températures au milieu de gaz agressifs sur l’île de Vulcano en Sicile.
Un article écrit par des scientifiques de l’Observatoire des Volcans d’Hawaii (HVO) explique qu’ils continuent une longue tradition d’innovation – débutée avec la naissance du HVO en 1912 – en ce qui concerne les outils utilisés pour surveiller l’activité des volcans de l’archipel. Les géologues créent continuellement des équipements et des méthodes afin de s’adapter aux conditions changeantes et profiter des nouvelles technologies.
Par exemple, une innovation récente a été motivée par un tiltmètre défectueux logé à l’intérieur d’un trou de forage sur le flanc ouest du Mauna Loa. Le tiltmètre, qui a été installé il y a 17 ans, fonctionnait parfaitement jusqu’au jour où il a rendu l’âme. Il fait partie d’un réseau d’instruments logés en profondeur sur le Mauna Loa, avec des sismomètres, des tiltmètres et des jauges de contraintes. Ces instruments extrêmement sensibles sont logés dans des trous de forage de plus de 15 mètres de profondeur pour les protéger des effets de la température, des précipitations et des fluctuations de la pression atmosphérique susceptibles de causer des signaux parasites.
Le tiltmètre proprement dit est un tube en métal d’un mètre de long et 5 centimètres de diamètre qui contient des capteurs électrolytiques de précision capables de détecter les moindres variations d’inclinaison dans deux directions perpendiculaires. Il peut mesurer des inclinaisons inférieures à un microradian, ce qui est à peu près  la pente créée en mettant une pièce d’un centime d’euro sous l’extrémité d’une tige d’un kilomètre de long!
La difficulté consiste à faire descendre ce tube à une quinzaine de mètres dans un trou de 10 centimètres de diamètre avec un tas de câbles qui serpentent déjà à l’intérieur. Il faut positionner le tiltmètre de telle manière qu’il reste debout sans reposer sur aucun de ces câbles, ni sur les côtés du trou pendant que l’on verse du sable pour le maintenir en place. Qui plus est, il faut orienter le tiltmètre pour que ses capteurs soient alignés dans le sens nord-sud et est-ouest. Tout cela demande une bonne dose de technique !

Le HVO a trouvé une solution pour faciliter ce travail complexe. Il s’agit d’un logiciel de conception assistée par ordinateur (CAO) qui a permis de concevoir une gaine qui entoure le tiltmètre tout en mettant à l’écart tous les câbles pendant que l’instrument est descendu dans le trou de forage. Cette gaine a été fabriquée à l’aide d’une imprimante 3-D qui a déposé, l’une après l’autre, plusieurs couches de thermoplastique pour réaliser un objet solide adapté à la tâche à effectuer.

Un autre appareil spécialement conçu, équipé d’une lumière et d’une caméra vidéo, maintient le tiltmètre et donne une vue en temps réel de la descente du tiltmètre à l’intérieur du trou de forage jusqu’à son positionnement final. L’installation a été couronnée de succès et le nouveau tiltmètre enregistre fidèlement les mouvements du sol sur le flanc ouest du Mauna Loa. Ces données sont envoyées au HVO via des liens radio afin que l’observatoire les reçoive en moins d’une minute. La finalité est que ce multimètre puisse alerter le plus tôt possible l’observatoire en cas d’ascension rapide du magma vers la surface, ce qui annoncerait une éruption imminente du Mauna Loa.
Source: USGS / HVO.

—————————————-

All volcanologists know they have to be inventive when they are working on the field. I can remember the late François Le Guern “pressure cooker” to collect gases on Mt Etna. Personally, I devised a special copper sheath to protect the probe of my thermometer to measure temperatures on the island of Vulcano, amidst aggressive gases.

A weekly article written by scientists at the Hawaiian Volcano Observatory (HVO) explains that they have a long tradition of innovation when it comes to the tools that they use to monitor the status and activity of volcanoes. The tradition that started with HVO’s birth in 1912 continues to this day, with geologists continually adapting and creating equipment and methods in response to changing conditions and to take advantage of new technologies.

For example, a recent innovation was caused by a malfunctioning tiltmeter in a deep borehole on the west flank of Mauna Loa Volcano. The tiltmeter, which was originally installed 17 years ago, was fully operational before giving up. This instrument is part of a network of several deep sites on Mauna Loa that include seismometers, tiltmeters and strainmeters. These extremely sensitive instruments are housed in boreholes more than 15 metres deep to help isolate them from the effects of temperature, rainfall, and atmospheric pressure fluctuations, all of which can cause spurious signals.

The tiltmeter itself is a metal tube, one metre long and 5 centimetres in diameter, which contains precision electrolytic sensors that detect tiny tilt variations in two perpendicular directions. It can measure tilts smaller than one microradian, which is about the same as the slope created by putting a one-cent coin under one end of a board that is one kilometre long!

The difficulty lies with lowering that tube about 15 metres into a 10-centimetre diameter hole that also has a bunch of cables snaking up through it. You also have to position the tiltmeter so that it stays upright and does not rest on any of those cables or the sides of the hole while you pour sand to keep it in place. At that, you must orient the tiltmeter so that its sensors are aligned to north-south and east-west directions. This demands good engineering.

The solution HVO’s technical crew adopted was to use computer assisted drawing (CAD) software to design a specialized jig that sits around the tiltmeter and gently channels all the cables out of the way while the instrument is lowered into the borehole. The jig was manufactured using a 3-D printer, which put down layer after layer of thermoplastic to build a solid object with customized specifications.

Another specially built apparatus holds the jig, the tiltmeter, a light, and a video camera that provides a real-time view of the tiltmeter’s descent as it is lowered into the borehole and positioned at the bottom. The installation was successful, and the new tiltmeter is now faithfully recording ground tilt on the west flank of Mauna Loa. These data are sent back to HVO via radio links so that the observatory receives them in less than a minute. The finality is that this tiltmeter helps provide the earliest possible warning of rapid magma movement toward the surface, which would signal an impending Mauna Loa eruption.

Source: USGS / HVO.

Caldeira sommitale du Mauna Loa (Photo: C. Grandpey)

 

Modernisation du réseau sismique sur le Kilauea (Hawaii) // Upgrading of Kilauea’s seismic network (Hawaii)

Grâce à plusieurs années de travail, les techniciens du HVO ont récemment terminé la modernisation des stations sismiques au sommet du Kilauea. À partir de 2014, chacune de ces stations a été progressivement remise à niveau avec un sismomètre large bande de nouvelle génération, des panneaux  solaires, une radio, une antenne, un caisson de protection et un nouveau câblage. Les nouveaux caissons sont conçus avec de meilleures propriétés d’isolation afin de mieux supporter les variations de température tout au long de la journée. L’équipement est dissimulé pour minimiser son impact visuel sur l’environnement naturel. La modernisation du réseau sismique représente une étape importante pour le HVO. Elle permettra de mieux comprendre l’alimentation magmatique complexe sous le sommet du volcan.
Les premiers sismomètres gérés par le HVO ont été installés en 1994. Il était prévu qu’ils restent en place pendant un an. Il s’agissait de sismomètres « large bande », autrement dit des capteurs numériques plus sensibles sur une gamme de fréquences beaucoup plus élevée que les anciens sismomètres analogiques à courte période qui étaient les plus utilisés jusqu’à cette époque. Malgré tout, les sismos large bande de 1994 ont été conservés au-delà de la période d’essai d’un an car ils se sont montrés très utiles pour l’enregistrement de nombreux types de séismes et de signaux volcaniques que les scientifiques ont pu analyser en utilisant de nouvelles techniques.
La fréquence revient à décrire le nombre d’oscillations contenues dans un signal sismique. Elle est généralement mesurée en cycles par seconde, ou Hertz (Hz). En volcanologie, la fréquence dominante d’un signal sismique est liée à différents processus à l’intérieur du volcan. Par exemple, les ondes haute fréquence (supérieures à 1 Hz) enregistrées pour les séismes classiques sont généralement liées à un glissement sur une faille. Les ondes basse fréquence (moins de 1 Hz) sont souvent liées au mouvement du magma ou des fluides et des gaz qui s’échappent par des fractures. Les sismomètres large bande fournissent des enregistrements complets des ondes à haute et basse fréquence en provenance du volcan. Les sismomètres courte période les plus répandus sont calibrés pour enregistrer uniquement les ondes haute fréquence.
Le mouvement du magma sous le Kilauea génère une variété de séismes basse fréquence (souvent appelés Long-Period-LP) et Very Long Period (VLP) avec des fréquences de pointe de 0,17 Hz ou 60 secondes. Ces derniers séismes, qui ne peuvent être détectés qu’avec des sismomètres large bande, étaient pratiquement absents du réseau sismique existant. La nécessité d’un bon réseau large bande est devenue évidente au début de l’éruption sommitale de l’Halema’uma’u en 2008.
En 2009, l’American Recovery and Reinvestment Act (ARRA), un plan de relance économique aux Etats Unis, a permis au HVO de recueillir des fonds pour transformer le réseau mixte de surveillance – analogique et numérique – en un réseau entièrement numérique, le premier pour un observatoire volcanologique américain. Avec le financement de l’ARRA, le HVO a acheté de nouveaux ordinateurs de terrain qui enregistrent des signaux sismiques sur place, et des radios numériques pour transmettre les données en temps réel au HVO. Les derniers ordinateurs ont considérablement élargi la gamme dynamique utile de l’ancien réseau large bande. Cette capacité supplémentaire est importante pour caractériser le mécanisme qui génère des signaux sismiques associés à des effondrements dans le lac de lave sommital. Les scientifiques utilisent également les signaux sismiques pour développer des modèles de hausse et de baisse de la surface du lac de lave liées à l’accumulation et à la libération des gaz dans sa partie supérieure.
On s’est rendu compte en 2011 que les conditions environnementales adverses dans la caldeira sommitale du Kilauea posaient des problèmes aux sismomètres vieillissants. Les instruments étaient victimes de la corrosion à l’intérieur et à l’extérieur, ce qui entraînait des erreurs dans les mesures. Certains capteurs tombaient en panne. C’est pourquoi, à partir de 2014, le HVO a donné la priorité à l’amélioration du réseau large bande au sommet du volcan. Les stations sismiques ont été modernisées par étapes, en fonction de l’arrivée des financements.
Ce nouveau réseau de surveillance sismique est à la pointe de la technologie et offre aux sismologues un outil performant pour étudier les processus qui provoquent la sismicité sur le Kilauea. Il permet également de mieux comprendre le système d’alimentation magmatique du volcan, l’activité éruptive et les dangers qui l’accompagnent.

Source : USGS / HVO.

—————————————–

HVO field engineers recently completed a multi-year effort to upgrade a subset of seismic stations at the summit of Kilauea Volcano. Starting in 2014, each of the stations was progressively upgraded with a new-generation broadband seismometer, solar-power system, radio, antenna, enclosure, and cabling. The new enclosures for the seismometers are designed with better insulation properties to buffer the effects of changing temperatures throughout the day. The equipment is camouflaged to minimize its visual impact on the natural environment. The latest upgrades are an important milestone for HVO. It will improve the understanding of the complex magma plumbing system beneath volcano’s summit area.

HVO’s original seismometers were installed in 1994 as a year-long field test of “broadband” seismometers, digital sensors that are more sensitive over a much greater frequency range than are the short-period analog seismometers that were widely used at the time. But the 1994 broadband instruments were kept past the one-year test period, because they proved crucial for recording many types of earthquake and volcanic signals that scientists were able to analyze in new ways.

Frequency is one way of describing the number of oscillations of a seismic signal, typically measured in cycles per second, or Hertz (Hz). In volcano seismology, the dominant frequency of a seismic signal is related to different processes within the volcano. For example, high frequency waves (greater than 1 Hz) recorded for normal earthquakes are typically related to slip on a fault. Low frequency waves (less than 1 Hz) for some earthquakes are related to the movement of magma or fluids and gases through fractures. Broadband seismometers provide complete recordings of both high and low frequency waves coming from the volcano. The more commonly used short-period seismometers are tuned to record only high frequency waves.

The movement of magma under Kilauea generates a variety of low-frequency (often called Long-Period – LP) and Very Long Period (VLP) earthquakes with peak frequencies of 0.17 Hz or 60 seconds. The latter earthquakes, which can only be detected with broadband seismometers, were virtually invisible to the existing seismic network. The value of the dense broadband network became even more apparent when the summit eruption within Halema‘uma‘u began in 2008.

In 2009, the American Recovery and Reinvestment Act (ARRA) provided resources for HVO to convert the mixed analog and digital monitoring network to an all-digital network, a first for a U.S. volcano observatory.With ARRA funding, HVO purchased new field-hardened computers called digitizers to record seismic signals on-site and digital radios to transmit the data in real time to HVO. The digitizers significantly expanded the useful dynamic range of the original broadband network. This added capability was important for characterizing the mechanism that generates seismic signals associated with large rockfalls into the summit lava lake. Scientists also are using the expanded seismic signals to develop models of the short-term rise and fall of the lava lake surface related to the accumulation and release of volcanic gas in the uppermost part of the lava lake.

It became clear in about 2011 that the harsh environmental conditions in Kilauea’s summit caldera were taking a toll on the aging seismometers. The instruments were corroding inside and outside, leading to inconsistent measurements of ground shaking. Some sensors were failing. So, starting in 2014, HVO placed a high priority on improving the summit broadband network, and the stations were upgraded in phases as resources allowed.

This upgraded network reflects state-of-the-art earthquake monitoring, and offers volcano seismologists a more powerful tool to investigate processes that cause ground shaking at Kilauea. This in turn supports advances in the understanding of the volcano’s magma plumbing system, eruptive activity, and hazards.

Source: USGS / HVO.

Les sismos à tambour en vitrine sur le Kilauea montrent aux touristes les frémissements du volcan. Les scientifiques utilisent aujourd’hui des instruments numériques beaucoup plus modernes et performants. (Photo: C. Grandpey)

 

Mesure de la déformation du sol sur le Mauna Loa et le Kilauea (Hawaii) // Measuring ground deformation on Mauna Loa and Kilauea (Hawaii)

La déformation du sol est l’un des paramètres qui permettent de mieux comprendre l’activité volcanique. Il est particulièrement révélateur des modifications de volume du magma à l’intérieur d’un volcan. Par exemple, à Hawaii, les épisodes d’inflation et de déflation du Kilauea coïncident généralement avec le comportement du lac de lave dans le cratère de l’Halema’uma’u. L’élévation de la surface du sol correspond à  une accumulation de magma dans les zones de stockage en profondeur tandis que l’affaissement peut indiquer la vidange d’une poche ou chambre magmatique. Les variations rapides de déformation précèdent ou accompagnent souvent une nouvelle activité éruptive.
Sur la Grande Ile d’Hawaii, on mesure la déformation principalement à l’aide de trois techniques: les tiltmètres, le GPS (Global Positioning System) et l’InSAR (Interferometric Synthetic Aperture Radar).
– Une vingtaine de tiltmètres sont actuellement répartis sur les volcans Kilauea et Mauna Loa. Le HVO a mis en place des alarmes automatisées qui informent les scientifiques des variations inclinométriques en temps réel, celles susceptibles d’annoncer une éruption imminente.
– Environ 70 stations GPS sont réparties sur la Grande Île, mais elles se concentrent sur le Kilauea et le Mauna Loa, les deux volcans hawaïens les plus actifs. Ces stations GPS enregistrent continuellement le mouvement de la surface du sol en trois dimensions. Les positions quotidiennes moyennes et précises des sites GPS fournissent une bonne indication sur le long terme de la déformation au sol, et donc du comportement des réservoirs magmatiques.

– L’InSAR est une technique spatiale qui compare les données radar recueillies à partir de satellites à différents moments. Les variations de distance entre le satellite et le sol proviennent des déplacements de la surface entre les passages des satellites. Les données InSAR fournissent des « instantanés » exceptionnellement clairs et précis montrant la déformation du sol, mais seulement lorsque les satellites passent au-dessus de la zone concernée (en moyenne, environ une fois par semaine).
En utilisant cet ensemble de données, les scientifiques du HVO ont pu suivre les variations d’inflation du Kilauea et du Mauna Loa au cours des dernières années.
La chambre magmatique du Mauna Loa a commencé à se remplir – et donc à gonfler – immédiatement après le dernière éruption de 1984. L’inflation a ensuite montré des épisodes de hausse et de baisse au cours des 30 années suivantes. L’épisode d’inflation le plus récent et prolongé du Mauna Loa a commencé en 2014, accompagné d’un nombre conséquent de séismes superficiels.
Le Kilauea a également gonflé ces dernières années. Comme pour le Mauna Loa, l’inflation du Kilauea se produit principalement au niveau d’un système de stockage magmatique situé sous la caldeira sommitale et la partie supérieure de la zone de rift sud-ouest (SWRZ). Mais ce réservoir magmatique est plus circulaire et centré sous la partie sud de la caldeira du Kilauea. Comme je l’ai indiqué précédemment, de petits événements d’inflation et de déflation (DI events) sont enregistrés sur le Kilauea de manière assez fréquente ; ils viennent se superposer à l’inflation globale et entraînent des variations assez spectaculaires du niveau du lac de lave sommital, dans le cratère de l’Halema’uma’u.
Il convient de noter que le HVO a modifié son site Web pour que les visiteurs puissent suivre les variations sur les stations GPS et inclinométriques en quelques clics de souris.
https://volcanoes.usgs.gov/volcanoes/kilauea/monitoring_deformation.html

Source: USGS / HVO.

—————————————–

Ground deformation is one of the parameters that help better understand volcanic activity. It is especially indicative of changes in the volume of magma within a volcano For instance, at Hawaii, the inflation and deflation episodes of Kilauea Volcano usually coincide with the behaviour of the lava lake within Halema’uma’u Crater. Uplift of the ground surface suggests accumulation of magma in underground storage areas, while subsidence can indicate magma drainage. Rapid changes in the rate of deformation often precede or accompany new eruptive activity.

On Hawaii Big Island, deformation is measured primarily with three techniques: tiltmeters, GPS (Global Positioning System), and InSAR (Interferometric Synthetic Aperture Radar).

– About 20 tiltmeters are currently installed on Kilauea and Mauna Loa volcanoes. The Hawaiian Volcano Observatory (HVO) has implemented automated alarms that notify scientists of real-time changes in tilt that might reflect the impending onset of an eruption.

– About 70 GPS stations are spread across the Big Island, but are focused on Kilauea and Mauna Loa, currently the two most active Hawaiian volcanoes. These GPS stations continuously record motion of the ground surface in three dimensions. Precise, daily average positions of GPS sites provide an important long-term record of ground deformation that indicates the locations and conditions of magma reservoirs.

InSAR is a space-based technique that compares radar data collected from satellites at different times. Variations in the distance between the satellite and the ground are caused by surface displacements between the times of the satellite overpasses. InSAR data provide exceptionally clear “snapshots” of deformation, but only when satellites are overhead (on average, about once a week).

Using this combination of datasets, HVO scientists have tracked inflation of both Kilauea and Mauna Loa over the past several years.

Mauna Loa began refilling with magma – and inflating – immediately after the most recent eruption in 1984. Inflation then waxed and waned over the next 30 years. The most recent and ongoing episode of Mauna Loa inflation started in 2014, with significantly increased numbers of shallow earthquakes.

Kilauea has also been inflating in recent years. Similar to Mauna Loa, inflation of Kīlauea is mainly occurring in a magma storage system beneath the volcano’s summit caldera and upper Southwest Rift Zone. But this magma reservoir is more circular and centered beneath the south part of Kilauea’s caldera. As I put it above, small, deflation-inflation events in Kilauea tilt that occur over a few days to a week are superimposed on this overall inflation and result in rather dramatic fluctuations in the summit lava lake level.

It should be noted that HVO has modified its website sothat visitors can now track changes at any of HVO’s tilt and GPS stations on the island with a few mouse clicks.

https://volcanoes.usgs.gov/volcanoes/kilauea/monitoring_deformation.html

Source: USGS / HVO.

Exemples de données consultables sur le site Web du HVO.

Un géochimiste de terrain // A field geochemist

Le personnel de l’Observatoire des Volcans d’Hawaii (HVO) vient d’honorer Jeff Sutton, un géochimiste qui a pris sa retraite après 38 ans de travail pour l’USGS. Jeff Sutton est le contraire de ces scientifiques qui passent leur temps dans un laboratoire. Tout au long de sa carrière, il s’est efforcé d’améliorer les méthodes d’échantillonnage des gaz volcaniques et notre compréhension de ce que les gaz peuvent révéler sur les processus éruptifs.

Le travail de Jeff va bien au-delà de la Grande Ile d’Hawaï car il a travaillé sur d’autres volcans actifs dans l’ouest des États-Unis et dans le monde entier. Jeff a compris que l’instrumentation sur le terrain présente plusieurs avantages par rapport aux mesures intermittentes et aux analyses des gaz volcaniques en laboratoire. Tout d’abord, cela réduit le nombre de visites à risques sur un site volcanique. De plus, les mesures en continu fournissent une vue plus détaillée que les échantillons occasionnels de l’évolution des concentrations de gaz avec l’activité volcanique. Enfin, en envoyant des données à l’observatoire en temps réel, on obtient dans les meilleurs délais une indication de toute modification des émissions de gaz pouvant signaler un changement d’activité éruptive.
Le projet d’échantillonnage des gaz volcaniques en continu a permis à Jeff Sutton de travailler pour le compte de l’Observatoire Volcanologique des Cascades. En 1993, il a été affecté pour 2 ou 3 ans au HVO, mais y a travaillé au final pendant 24 ans! Jeff envisage de continuer à travailler au HVO de manière intermittente en tant que « scientifique émérite » car il a l’intention de mener à leur terme des projets de recherche importants.
Jeff Sutton appartient à cette catégorie de scientifiques de terrain que j’apprécie le plus. Il me rappelle le regretté François Le Guern qui a passé son temps à inventer de nouvelles méthodes d’échantillonnage de gaz volcaniques à la source, avant qu’ils soient pollués par l’air ambiant. En travaillant pour Haroun Tazieff, il a compris très tôt que les gaz étaient le moteur d’une éruption et que leur étude et leur analyse devraient être prioritaires.
Source: USGS / HVO.

————————————–

Hawaiian Volcano Observatory (HVO) staff has just honoured Jeff Sutton, a gas geochemmist who retired after 38 years of work for USGS. .

Jeff Sutton is the contrary of those scientists who spend their time in a laboratory. Throughout his career, Jeff strived to improve methods of sampling volcanic gasses and our understanding of what the gasses can tell us about eruptive processes.

Jeff’s impact extends far beyond Hawaii, as he has worked at active volcanic systems throughout the western U.S. and around the world. Jeff realized that field-based instrumentation has several advantages over intermittent measurements and laboratory analyses of volcanic gasses. First, it alleviates the need for hazardous visits to a volcanic site. Secondly, continuous measurements provide a more detailed view of how gas concentrations and compositions change with changing volcanic activity than occasional samples. Finally, by sending data to the observatory in real-time, we can get the earliest possible indication of any change in gas emissions that could signal a change in eruptive activity.

The continuous sampling project led to Jeff’s appointment to a position at the Cascades Volcano Observatory. In 1993, he was assigned to a 2-3 year tour at HVO. Fortunately for his colleagues at HVO, that “temporary” tour lasted 24 years! Jeff plans to continue working at HVO intermittently as a “scientist emeritus”—meaning that he will volunteer his time to continue the work he loves and to finish important projects.

Jeff  Sutton belongs to the category of on-the-field scientists I appreciate most. He reminds me of the late François Le Guern who spent his time inventing new methods of sampling volcanic gases at the source, before being polluted by the ambient air. Working for Haroun Tazieff, he understood very early that gases were the motor of an eruption and that their study and analysis should be given priority.

Source: USGS / HVO.

Mesure des émissions gazeuses pendant l’éruption fissurale de Kamoamoa en 2011. (Crédit photo : USGS / HVO)

 

Du Kilauea (Hawaii) au Bogoslof (Iles Aléoutiennes / Alaska) // From Kilauea Volcano (Hawaii) to Bogoslof Volcano (Aleutians / Alaska)

Situé au cœur des Iles Aléoutiennes en Alaska, le Bogoslof est loin d’Hawaii, mais pas si loin que cela d’un point de vue volcanologique. En 1907, Thomas Jaggar, le fondateur de l’Observatoire des Volcans d’Hawaii (HVO) s’est rendu au chevet du Bogoslof  au cours d’une expédition organisée par le Massachusetts Institute of Technology. Son but était l’exploration des volcans de l’Alaska et la recherche de minéraux. Le rapport de l’expédition concernant l’évolution du Bogoslof se trouve dans le Bulletin of the American Geographical Society publié en juillet 1908.
Thomas Jaggar était un observateur avisé et ses notes sur le Bogoslof prennent en compte le récit de l’activité éruptive décrite par les marins pendant les années qui ont précédé 1907. En utilisant ces anciens récits et ses propres observations lors de l’exploration de l’île, Jaggar a compilé une série de cartes montrant les changements intervenus sur l’île, de la même façon que le font les géologues de l’Observatoire des Volcans d’Alaska (AVO) aujourd’hui.
Il a également montré le mécanisme qui anime les éruptions du Bogoslof et a trouvé des similitudes entre les formations de lave mises en place par ce volcan et celles qu’il avait observées sur la Montagne Pelée à la Martinique en 1902. Il a également noté des preuves de l’élévation de l’île et a réfléchi aux causes de ce phénomène.
A l’issue de son voyage, Jaggar a rappelé la nécessité de créer des observatoires pour étudier les volcans, les séismes et d’autres phénomènes naturels. Il était convaincu que leur étude attentive et systématique était essentielle pour vivre en toute sécurité sur notre planète.
Un tel réseau d’observatoires volcanologiques existe aujourd’hui dans une grande partie du monde. Ils fonctionnent grâce à des données envoyées par les satellites qui passent plusieurs fois par jour au-dessus des volcans. A côté de cela, le réseau mondial de détection de la foudre envoie des alertes quelques minutes après que des éclairs aient été détectés à proximité du Bogoslof ; ils coïncident souvent avec des explosions de cendre. Enfin, des ondes infrasoniques ou de pression de l’air produites par les explosions sont détectées par des capteurs sismiques et infrasoniques sur les volcans Okmok et Makushin situés pas très loin du Bogoslof.
Source: USGS / HVO.
Vous obtiendrez plus d’informations sur l’activité éruptive du Bogoslof en vous connectant au site Internet de l’AVO : www.avo.alaska.edu.

La dernière mise à jour d’AVO (en date du 5 avril 2017) indique qu' »aucune nouvelle activité n’a été observée sur les données  sismiques ou infrasoniques du Bogoslof depuis une petite explosion le 13 mars. La dernière éruption significative a eu lieu le 8 mars 2017 et les images satellitaires ne révèlent pas d’activité éruptive depuis cette époque. Au vu de l’absence d’activité volcanique au cours des trois dernières semaines, l’AVO a décidé d’abaisser l’alerte aérienne à la couleur Jaune. »

A noter qu’un bulletin similaire vient d’être diffusé à propos du volcan Cleveland pour lequel l’alerte aérienne a également été abaissée à la couleur Jaune.

———————————

Located in the Aleutians in Alaska, Bogoslof Volcano is far from Hawaii but not far from a volcanological point of view. In 1907, Hawaiian Volcano Observatory (HVO) founder Thomas Jaggar sailed to this very island volcano in Alaska on an expedition from the Massachusetts Institute of Technology. Their objectives to explore Alaska’s volcanoes and search for mineral deposits led to a report on the evolution of Bogoslof published in the Bulletin of the American Geographical Society in July 1908.

Jaggar was a keen observer and his notes on Bogoslof chronicle the record of eruptive activity summarized by mariners in the century leading up to 1907. Using these data and his own observations while exploring the island, Jaggar compiled a sequence of maps of the changing island in a manner very similar to Alaska Volcano Observatory (AVO) geologists today.

He also surmised the mechanism of Bogoslof eruptions and found similarities in the extrusive lava formations with those he had seen at Mount Pelee in the Caribbean in 1902. He also noted evidence of uplift of the island and pondered its significance.

Jaggar used his trip to renew his call for the establishment of Earth observatories to study volcanoes, earthquakes and other earth processes. He was convinced that careful and systematic study of these phenomena was essential to living safely on our planet.

Such a network of volcano observatories exists today for much of the world. They act with data sent by satellites in Earth orbit that peer down at the volcano multiple times per day. The World Wide Lightning Location Network provides automated alerts within minutes of lightning near Bogoslof that often coincides with explosions of ash. Moreover, infrasound or pressure waves from explosions are detected on seismic and infrasound sensors at nearby Okmok and Makushin volcanoes.

Source : USGS / HVO.

You will get more news about the ongoing eruption at Bogoslof by following the Alaska Volcano Observatory at www.avo.alaska.edu.

AVO’s latest update (April 5th) indicates that “ No new volcanic activity has been observed at Bogoslof Volcano in satellite, seismic or infrasound data since a small explosion was detected on March 13. The last major explosive event occurred on March 8, 2017, and satellite images have shown no eruptive activity since that time. Based on the absence of detected activity over the past three weeks, AVO is lowering the Aviation Colour Code to Yellow. »

A similar update has just been released about Cleveland Volcano whose aviation colour code has been lowered to Yellow.

Crédit photo: Alaska Volcano Observatory

Hawaii: Brouillard volcanique et aide à la population // Hawaii: The « vog » and how to manage it

drapeau-francaisL’interruption des alizés est un phénomène fréquent sur l’île Hawai’i pendant les mois d’hiver. La présence de ces vents, ou leur absence, joue un rôle essentiel, car ce sont eux qui gèrent la répartition du brouillard volcanique du Kilauea – le « vog », raccourci pour « volcanic fog » – à travers la Grande Ile.

Le « vog », provoqué par le dioxyde de soufre (SO2) émis par le Kilauea, est un problème fréquent, en particulier depuis l’ouverture de la bouche active dans le cratère de l’Halema’uma’u en 2008. On a alors enregistré une augmentation spectaculaire de la quantité de SO2 et d’autres gaz libérés par le volcan, ainsi que les effets néfastes du « vog » sur l’île. Les émissions de gaz ont légèrement diminué par rapport au début de l’éruption sommitale en 2008, mais le « vog » reste un problème pour les zones habitées, avec des conséquences sur la santé, l’agriculture et les infrastructures.

De mai à septembre, les alizés soufflent de 80 à 95% du temps, mais d’octobre à avril, la fréquence passe de 50 à 80%. Lorsque ces vents sont absents, les zones touchées par le « vog » couvrent la partie orientale de la Grande Ile, voire l’île toute entière, et même parfois l’ensemble de l’État d’Hawaii.

Afin de mieux gérer le « vog » cet hiver, de nouvelles ressources sont disponibles pour permettre à la population de se familiariser avec le brouillard, et de minimiser son impact. Un nouveau site Internet intitulé “Hawaii Interagency Vog Information Dashboard” fournit les premières informations sur le « vog ». Les sujets abordés incluent les prévisions concernant ce brouillard, ses concentrations en temps réel, les effets sur la santé, les impacts environnementaux et comment les gens peuvent se protéger. On trouve aussi sur le site des liens vers des publications scientifiques.

Le site oriente également les utilisateurs vers de nouveaux produits d’information sur le « vog ». On trouve, entre autres, un « booklet of frequently asked questions » (livret de questions fréquemment posées), une brochure et une affiche sur la protection contre le « vog » qui sont disponibles en ligne et qui peuvent être consultées ou téléchargées. Des exemplaires imprimés sont disponibles auprès des services de santé. Ils sont également distribués dans les bibliothèques et les écoles de la Grande Ile.

Les services sanitaires hawaiiens diffusent une rubrique intitulée “Hawaii ShortTerm SO2 Advisory”  qui fournit en temps réel des données sur le niveau de SO2, ce qui est extrêmement utile pour les zones proches du Kilauea. Pour les habitants de la partie ouest d’Hawaii (région de Kona en particulier), les informations sur les particules sont disponibles via l’onglet “AirNow particle data” du site Internet mentionné précédemment.

Source: USGS / HVO.

————————————-

drapeau-anglaisA common occurrence on Hawai‘i Island during winter months is the frequent interruption of the trade winds. These winds, or the lack of them, play a leading role in determining where vog (a short word for volcanic fog) from Kilauea volcano is distributed across Big Island.

Vog, caused by sulfur dioxide gas (SO2) emitted from Kilauea, has been a frequent problem on Hawaii Big Island. Since the onset of the summit eruption in 2008, there has been a dramatic increase in the amount of SO2 and other gases released from the volcano and in the damaging effects of vog on the island. Gas emissions have decreased somewhat since the summit eruption began in 2008, but vog continues to challenge Hawai‘i communities, causing impacts to health, agriculture, and infrastructure.

From May to September, trade winds blow 80 to 95% of the time, but from October to April, the frequency drops to 50 to 80%. When trade winds are absent, areas impacted by vog can include East Hawaii, the whole Island of Hawaii, and, at times, the entire State of Hawaii.

For this winter’s vog season, new resources are available to help people become familiar with, and minimize their exposure to vog. A new internet-based “Hawaii Interagency Vog Information Dashboard”   provides a user-friendly starting point to search for information about vog. Topics on this dashboard include vog forecasts, real-time vog concentrations, health effects and environmental impacts of vog, and how people can protect themselves from vog, as well as links to published scientific literature.

The dashboard also leads users to a new suite of concise vog information products. These products, which include a « booklet of frequently asked questions »  and a brochure and poster on protecting yourself from vog, are available online, where they can be viewed or downloaded. Print copies of these vog information products are available through the Hawai‘i Department of Health District offices. They are also in the process of being distributed to public libraries and schools around the Island of Hawai‘i.

The Hawai‘i Department of Health has released “Hawaii ShortTerm SO2 Advisory” which provides data on current SO2 gas levels, is extremely helpful for areas close to Kīlauea. But for West Hawaiʻi (Kona) residents, the more relevant particle information is available through the vog dashboard link to “AirNow particle data.”

Source: USGS / HVO.

kilauea-panache

Le panache de gaz de l’Halema’uma’u contribue à la présence du « vog » à Hawaii.

(Photo: C. Grandpey)