Sensibilisation aux risques volcaniques dans l’Etat de Washington (Etats Unis) // Awareness of volcanic risks in Washington State (United States)

Mai est le mois de la sensibilisation aux risques volcaniques dans l’État de Washington. Les volcans de la Chaîne des Cascades ne sont pas loin et les scientifiques de l’USGS organisent des réunions destinées à informer la population. Ce mois de sensibilisation coïncide avec l’anniversaire de l’éruption du Mt St Helens en 1980 ; il permet  aux habitants de l’Etat de Washington de se familiariser avec le risque volcanique là où ils habitent.

Une journée portes ouvertes le 12 mai 2018 dans les locaux de l’USGS de Vancouver et l’ouverture du Johnston Ridge Observatory près du Mont St. Helens le 16 mai feront partie de ce mois de la sensibilisation.
Au cours de la journée portes ouvertes, les visiteurs auront l’occasion de discuter avec des scientifiques, de visiter les laboratoires et de tester leurs connaissances sur les zones de danger et la sécurité sur les volcans.
Des expositions et des exposés illustreront le travail quotidien des scientifiques, notamment l’identification des séismes et l’interprétation des données provenant des stations de surveillance installées sur les volcans de la Chaîne des Cascades.
Les scientifiques présenteront des équipements de surveillance, notamment l’imagerie thermique, l’échantillonnage de gaz volcaniques et un bras robotisé qui permet l’analyse des échantillons de sédiments.
Des simulations informatiques montreront la trajectoire des nuages de cendre lors d’une future éruption ainsi que la distance que les lahars sont susceptibles de parcourir dans les vallées. Ce dernier point est particulièrement important pour le Mt Rainier car la fonte des glaciers lors d’une éruption menacerait rapidement des localités comme Orting le long de la vallée de la Puyallup. Voir cette note que j’ai écrite il y a quelques mois: https://claudegrandpeyvolcansetglaciers.com/2016/03/07/chaine-des-cascades-etats-unis-le-mont-rainier-cascade-range-united-states-mount- rainier /

Le Johnston Ridge Observatory, au terminus de la Highway 504, ouvrira ses portes le 16 mai 2018. Le 19 mai, le Mount St. Helens Institute, un organisme à but non lucratif, présentera «It’s a Blast», un événement destiné aux familles. Il comprendra des activités pratiques, des discussions avec les rangers, des films et des expositions. L’argent des entrées permettra de financer les programmes du Mount St Helens Institute, y compris ceux destinés à l’éducation des jeunes.
Deux sessions en ligne sont également au programme:
Le 9 mai à 10 h 30, Seth Moran, le scientifique responsable de l’observatoire, fera un bilan de l’activité volcanique sur la Chaîne des Cascades. Ce sera le point de départ d’une séance en direct sur  Facebook. (Plus de détails sur la page USGS Volcanoes sur Facebook.)

À 13 heures le 15 mai, la Washington Emergency Management Division, organisme qui gère les situations d’urgence dans l’Etat de Washington, parrainera une réunion axée sur les volcans de la Chaîne des Cascades. Une équipe de volcanologues et de géologues sera sur place pour répondre aux questions.
Toutes les informations sont accessibles sur le site :

https://volcanoes.usgs.gov/observatories/cvo/

Source: USGS.

—————————————–

May is Preparedness month in Washington State. The volcanoes of the Cascade Range are close by and USGS scientists organise meetings destined to inform the population. Volcano Preparedness Month uses the anniversary of the Mt St Helens1980 eruption as an opportunity to help Washington residents become more familiar with volcanic risk in their communities.

An open house on May 12th, 2018 at Vancouver’s USGS centre and the opening of the observatory near the crater of Mount St. Helens on May 16th will be part of this Volcano Preparedness Month.

During the open house, visitors will be given the opportunity to talk with scientists, visit the labs and test their knowledge of volcano hazard zones and volcano safety.

Displays and demonstrations will illustrate the work that happens daily at the observatory, including identification of earthquakes and interpretation of data arriving from monitoring stations on Cascade Range volcanoes.

Scientists will demonstrate monitoring instruments, including thermal imaging, volcanic gas collection and a robotic arm that processes sediment samples.

Computer simulations will show the ash path of a future eruption and forecast how far debris flows will travel downstream. This is particularly important for Mt rainier as the melting of glaciers during an eruption would rapidly threaten communities like Orting along the valley of the Puyallup River. See this note I wrote a few months ago:   https://claudegrandpeyvolcansetglaciers.com/2016/03/07/chaine-des-cascades-etats-unis-le-mont-rainier-cascade-range-united-states-mount-rainier/

The Johnston Ridge Observatory, at the end of state Highway 504, will open for the season on May 16th, 2018. On May 19th, the nonprofit Mount St. Helens Institute will present “It’s a Blast”, a family friendly event. It will feature hands-on activities, ranger talks, films and exhibits. All admissions collected on May 19th will support the Mount St. Helens Institute’s programs, including youth education.

Two online sessions also are on the schedule:

At 10:30 a.m. on May 9th, Seth Moran, the observatory scientist in charge, will deliver a “State of the Cascades” report to begin a live Facebook session. Visit USGS Volcanoes on Facebook for more information.

At 1 p.m. on May 15th, Washington Emergency Management Division will sponsor meeting with a focus on Cascade volcanoes. A team of experts in volcanology, geology and preparedness will be on hand to answer questions.

Information is available at volcanoes.usgs.gov/observatories/cvo

Source : USGS.

Vue de la ville d’Orting qui serait directement menacée par des lahars en cas d’éruption du Mont Rainier (Crédit photo: USGS)

Publicités

Des séismes aux profondeurs négatives // Earthquakes with negative depths

L’USGS nous indique dans un nouvel article que les profondeurs des séismes sous l’archipel hawaiien sont désormais évaluées par rapport au géoïde, ou niveau de la mer. Le géoïde est défini comme « une surface équipotentielle du champ de pesanteur coïncidant au mieux avec le niveau moyen des océans et qui se prolonge sous les continents. »

En conséquence, l’affichage des séismes et de leur profondeur sur la carte présentée sur le site web de l’USGS utilise la couleur rouge foncé pour indiquer les séismes qui sont enregistrés au-dessus du niveau de la mer, mais sous la surface du sol. Les profondeurs positives indiquent que l’on se trouve en dessous du niveau de la mer et les profondeurs négatives que l’on se trouve au-dessus.
Avant le nouveau système, le HVO signalait la profondeur d’un séisme par rapport à la surface du sol au-dessus de l’hypocentre. En fait, cette surface ne représente pas l’élévation réelle du sol, mais l’élévation moyenne des cinq stations sismiques les plus proches. Comme la surface de la Terre n’est pas plane, les approximations de profondeur ne représentaient pas toujours la profondeur réelle d’un séisme. Cela signifiait aussi qu’il n’y avait pas de cadre de référence uniforme pour comparer les profondeurs des différents séismes. L’élévation par rapport au zéro était différente pour chaque événement.
Pour illustrer la différence entre l’ancien et le nouveau système, il suffit d’imaginer un séisme sous le Mauna Loa dont le sommet culmine à plus de 4000 mètres au-dessus du niveau de la mer. La profondeur d’un séisme aurait été précédemment évaluée à 3 km, mais avec le nouveau système, la profondeur du géoïde est maintenant de 3 km moins 4 km, soit une profondeur négative de 1 km. Un avantage des profondeurs par rapport au géoïde est que les erreurs systématiques causées par la topographie des montagnes sont corrigées.
En adoptant le niveau de la mer comme donnée de référence commune, les séismes signalés à l’échelle nationale sont maintenant plus cohérents et comparables. Au cours des dernières années, les réseaux sismiques régionaux à travers les Etats Unis sont passés de la profondeur par rapport à la surface à la profondeur par rapport au géoïde. L’adoption par le HVO de la référence au niveau de la mer la rend conforme à cette norme.
Il est important de noter que l’emplacement absolu des séismes calculés dans l’espace tridimensionnel n’a pas changé. La seule différence est le point auquel on attribue le niveau zéro.

Source: USGS / HVO.

————————————–

USGS informs us in a new article that the depths of earthquakes beneath Hawaii are now reported with respect to the geoid, or sea level. When displaying earthquakes by depth, the HVO website map now includes a dark red colour to indicate earthquakes that occur above sea level but below the ground surface. Positive depths indicate downward from sea level, and negative depths indicate upward from sea level.

Prior to the new system, HVO reported depths with respect to the ground surface above the earthquake hypocenter. This model surface was not the actual ground elevation but, instead, was the average elevation of the five closest seismic stations. Since the earth’s surface is not flat, model depth approximations did not always represent the true depth of an earthquake below ground. More importantly, it meant that there was no uniform frame of reference for comparing depths of different earthquakes. The zero elevation was different for every earthquake.

To illustrate the difference between model and geoid depths, it suffices to imagine an earthquake beneath Mauna Loa, with its summit about 4 km above sea level. The model depth of this earthquake would have been previously reported as 3 km, but with the new system, the geoid depth is now 3 km minus 4 km, or negative 1 km. One advantage of geoid depths is that systematic bias caused by mountain topography is corrected.

By adopting the common reference datum of sea level, earthquakes reported nationwide are now more consistent and comparable. Regional seismic networks around the country have been migrating from model depth to geoid depth over the past few years. HVO’s adoption of the sea level reference brings it in line with this standard.

It’s important to note that the absolute location of earthquakes being computed in three-dimensional space has not changed. The only difference is the point at which we assign zero depth.

Source : USGS / HVO.

Cette figure montre que deux séismes peuvent avoir des profondeurs négatives ou positives en fonction de leur situation par rapport au niveau de la mer (Source: USGS)

Vous n’avez pas trouvé un drone? // Haven’t you found a drone ?

Les volcanologues balinais sont à la recherche d’un drone coûteux qui a disparu au cours d’un vol près du cratère de l’Agung le 23 janvier 2018. Le volcan a connu quatre épisodes éruptifs ce jour-là, mais les nuages de cendre n’ont pas pu être observés car la montagne était enveloppée d’épais nuages. Le drone AI 450 a été envoyé vers le volcan plus tard dans la soirée, avec à son bord des outils pour échantillonner les gaz volcaniques, mais il a dû affronter des vents violents tout le long du chemin. Le contact avec le drone a été perdu vers minuit. [Remarque personnelle: Pourquoi diable ont-ils fait voler le drone si le vent était si fort ?? Les drones sont très sensibles au vent et même de légers coups de vent peuvent les projeter au sol !!]
Les autorités ont demandé que des recherches soient effectuées pour retrouver le drone, en particulier à l’aide d’une carte montrant sa trajectoire avant qu’il disparaisse à 2800 mètres d’altitude, à environ 300 mètres sous le cratère, dans la zone d’exclusion.
D’une valeur de 600 millions de roupies indonésiennes (45 000 dollars américains), le drone avait déjà effectué plusieurs vols autour de l’Agung depuis la reprise d’activité volcanique en août. Sans le drone, les volcanologues sont maintenant dans l’impossibilité d’analyser les gaz à partir desquels les scientifiques peuvent mieux comprendre le comportement d’un volcan en éruption.
Les volcanologues balinais avaient reçu de l’USGS ce drone doté d’un équipement de détection multigaz. Il a donc été demandé aux Américains d’envoyer de nouveaux outils pour poursuivre les missions de surveillance.
Source: Newsweek.

—————————————-

Volcanologists on the island of Bali are looking for an expensive drone that disappeared while flying near the crater of Mount Agung volcano on January 23rd 2018. The volcano erupted four consecutive times on that same day in the morning, but the ash cloud could not be observed as the mountain was concealed by thick clouds. The AI 450 drone was sent on a flight mission to the volcano later in the evening carrying tools to sample volcanic gases, but it had to battle strong winds along its way. Contact with the drone was lost around midnight. [Personal remark : Why on earth did they fly the drone if the wind was so strong ?? Drones are very sensitive to the wind and even slight winds can throw them to the ground!!]

The officials appealed for information about the unmanned aerial vehicle (UAV), showing a map of the drones’ trajectory before it disappeared at an altitude of 2,800 metres, about 300 metres below the volcano’s crater, within the exclusion zone.

Worth 600 million Indonesian rupees (45,000 US dollars), the drone had performed several flights around the mountain since the volcano resumed its activity in August. Without the drone, Bali volcanologists are now unable to analyze the volcanic gases, from which scientists can better understand why and how a volcano erupts.

The Bali volcanologists were given the multigas sensor equipment by USGS which has been asked to send over new tools to continue the monitoring missions.

Source: Newsweek.

Cartes à risques du Mauna Loa (Hawaii) // Risk maps of Mauna Loa Volcano (Hawaii)

Les  scientifiques du HVO ont publié des cartes du Mauna Loa qui aideront les responsables de la Protection Civile et d’autres gestionnaires de services d’urgence à identifier les personnes, les biens et les installations à risque lors de futures éruptions de ce volcan.
La plupart des fractures et bouches éruptives du Mauna Loa se trouvent au sommet du volcan et le long de deux zones de rift qui s’étendent au nord-est et au sud-ouest de Mokuaweoweo, la caldeira sommitale. Cependant, des émissions de lave se produisent parfois le long des fractures radiales qui s’étendent principalement au nord et à l’ouest du sommet.
Les parois du Mokuaweoweo forment des barrières naturelles qui devraient protéger les zones situées au sud-est et à l’ouest de la caldeira contre les coulées de lave provenant de l’intérieur de la caldeira. Toutefois, la paroi du côté ouest est rendue inefficace par les bouches susceptibles de s’ouvrir sur les flancs du volcan.
Grâce à une cartographie géologique détaillée et une modélisation du comportement de la lave en fonction de la topographie, l’USGS-HVO a mis au point neuf cartes représentant 18 zones susceptibles d’être recouvertes par la lave du Mauna Loa. Chaque zone identifie un segment du volcan où la lave pourrait sortir et donner naissance à des coulées vers l’aval.
Les zones en couleur sont celles qui pourraient potentiellement être recouvertes par les coulées produites par les futures éruptions du Mauna Loa. Ces éruptions pourraient provenir du sommet du volcan, des zones de rift, ou des bouches radiales. Il est probable, cependant, que seule une partie d’une zone soit affectée par chaque éruption.
Lorsqu’une éruption commencera sur le Mauna Loa, les cartes aideront les décideurs à identifier rapidement les localités, les infrastructures et les routes situées entre les bouches éruptives éventuelles et la côte, ce qui facilitera les interventions des secours. Le public pourra également utiliser les cartes pour déterminer la direction des coulées de lave une fois que l’éruption aura commencé.
L’ensemble de cartes “Lava inundation zone maps for Mauna Loa, Island of Hawaii,” publié par l’USGS sous l’appellation Scientific Investigations Map 3387, comprend 10 feuilles (cartes) et une brochure explicative. La carte 1 (voir ci-dessous) est une carte de l’ensemble de l’île d’Hawaï avec des contours montrant les zones englobées par les neuf autres cartes. Ces neuf cartes représentent les 18 zones sous la menace de la lave du Mauna Loa. Des instructions sur la façon d’interpréter les cartes sont fournies dans la brochure d’accompagnement.
Les zones menacées sur les cartes sont: Kaumana, Waiakea et Volcano-Mountain View (feuille 2); Kapapala (feuille 3); Pahala, Punaluu et Wood Valley (feuille 4); Naalehu (feuille 5); Kalae (feuille 6); Hawaiian Ocean View Estates, Kapua et Milolii (feuille 7); Hookena, Kaohe et Kaapuna (feuille 8); Honaunau et Kealakekua (feuille 9); et Puako (feuille 10). Les échelles cartographiques varient de 1: 45 000 à 1: 85 000.
Toutes ces cartes ainsi que les fichiers connexes sont disponibles en ligne :

https://doi.org/10.3133/sim3387

Le HVO prévoit également de distribuer des copies papier des cartes aux bibliothèques de l’île d’Hawaii au cours du mois prochain.
Source: USGS / HVO.

——————————————-

Researchers at HVO have produced maps that will help Hawaii County Civil Defence and other emergency managers identify people, property, and facilities at risk during future eruptions.

Most of Mauna Loa’s eruptive fissures and vents are located at the summit of the volcano and along two rift zones that extend northeast and southwest from Mokuaweoweo, the volcano’s summit caldera. A few vents, however, occur along radial fissures that extend primarily north and west from the summit.

The bounding walls of Mokuaweoweo create topographic barriers that should protect areas southeast and west of the caldera from lava flows erupted from within the caldera. But the barrier on the west side is rendered ineffective by the radial vents on the flanks of the volcano.

Using detailed geologic mapping and modeling of how lava responds to surface topography, USGS-HVO have constructed nine maps depicting 18 inundation zones on Mauna Loa. Each zone identifies a segment of the volcano where lava could erupt and send flows downslope.

Coloured regions on these maps show areas on the volcano’s flank that could potentially be covered by flows from future Mauna Loa eruptions. These eruptions could originate from the volcano’s summit, rift zones, or radial vents. It’s likely, however, that only part of a zone would be covered in a single eruption.

When a Mauna Loa eruption starts, the maps can help decision makers quickly identify communities, infrastructure, and roads between possible vent locations and the coast, facilitating more efficient and effective allocation of response resources. The public can also use the maps to consider where lava flows might go once an eruption starts.

Lava inundation zone maps for Mauna Loa, Island of Hawaii,” published by the U.S. Geological Survey as Scientific Investigations Map 3387, comprises 10 sheets and an explanatory pamphlet. Sheet 1 is a map of the entire Island of Hawaii with outlines showing the areas encompassed by the nine other maps. These nine sheets depict the 18 inundation zones for Mauna Loa. Guidelines on how to interpret the maps are provided in the accompanying pamphlet.

The inundation zones identified on the maps are: Kaumana, Waiakea and Volcano-Mountain View (Sheet 2); Kapapala (Sheet 3); Pahala, Punaluu and Wood Valley (Sheet 4); Naalehu (Sheet 5); Kalae (Sheet 6); Hawaiian Ocean View Estates, Kapua and Milolii (Sheet 7); Hookena, Kaohe and Kaapuna (Sheet 8); Honaunau and Kealakekua (Sheet 9); and Puako (Sheet 10). Map scales vary from 1:45,000 to 1:85,000.

The Mauna Loa lava flow inundation maps and related GIS files are also available online:

https://doi.org/10.3133/sim3387

HVO also plans to distribute paper copies of the maps to public libraries around the island in the next month or so.

Source: USGS / HVO.

Vue de la carte n°1 montrant l’ensemble des zones susceptibles d’être menacées par la lave du Mauna Loa (Source: USGS)

Nouvelle carte géologique du flanc nord-est du Mauna Loa // New geological map of the northeast flank of Mauna Loa

Une nouvelle « Carte géologique du flanc nord-est du Mauna Loa », l’aboutissement de nombreuses années de travail par des géologues du HVO, a récemment été publiée par  l’USGS. Le travail a été mené par John P. Lockwood et Frank Trusdell. Cette nouvelle carte a été mise à jour et remplace la « Carte géologique de l’île d’Hawaï » (1996) et la « Carte géologique de l’État d’Hawaii » (2007).
Couvrant 1 140 kilomètres carrés sur le flanc nord-est du Mauna Loa, la nouvelle carte représente une superficie égale aux îles de Molokai et Lanai réunies. La surface cartographique s’étend de l’altitude 3316 mètres jusqu’au niveau de la mer, de Pu’u’ula’ula («Colline Rouge») au sud-ouest jusqu’à Hilo au nord-est.
Le Mauna Loa s’est manifesté à 33 reprises depuis le début des descriptions écrites des éruptions en 1832. Certaines éruptions ont été précédées de brefs épisodes de sismicité, tandis que d’autres ont suivi plusieurs mois à une année de sismicité intense. Depuis 1832, sept éruptions se sont produites dans la zone couverte par la carte: 1852, 1855-56, 1880-81, 1899, 1935-36, 1942 et 1984.
La Zone de Rift Nord-Est (ZRNE) du Mauna Loa mesure environ 40 km de long et 2 à 4 km de large. Les fissures éruptives et les fractures au sol coupent les dépôts volcaniques et des coulées à l’intérieur et à proximité du sommet de la zone de rift. Au départ de la ZRNE, la lave s’écoule généralement vers le nord, l’est ou le sud, selon l’emplacement des bouches éruptives par rapport au sommet de la zone. Par exemple, lors de l’éruption du Mauna Loa en 1880-1881, les coulées se sont d’abord orientées vers le sud, en direction du Kilauea, avant de bifurquer vers le nord-est en direction de Hilo.
Bien que la plupart des bouches éruptives de la ZRNE soient à plus de 30 km de Hilo, une branche de coulée lors de l’éruption de 1880-1881 a presque atteint la baie de Hilo. En fait, la ville de Hilo est entièrement construite sur des coulées de lave en provenance de la ZRNE, la plupart d’entre elles ayant eu lieu avant 1852.
La carte montre la répartition de 105 coulées, réparties en 15 groupes d’âge allant de plus de 30 000 ans avant notre ère, jusqu’à 1984. Le schéma de couleurs adopté pour la carte est basé sur l’âge des dépôts volcaniques. Les couleurs chaudes (rouge, rose et orange) représentent des dépôts d’époques récentes, tandis que les couleurs froides (bleu et violet) représentent des dépôts plus anciens.
Du point de vue géologique, on peut déduire plusieurs faits intéressants de l’histoire géologique de la ZRNE. Par exemple, au cours des 4000 dernières années, les parties centrale et supérieure de la zone de rift étaient plus actives que la partie inférieure, peut-être en raison de la compression exercée sur la partie inférieure de la ZRNE par les volcans Mauna Kea et Kilauea tout proches.
La carte géologique fournit des informations fondamentales sur le comportement éruptif du Mauna Loa sur le long terme. Elle constitue une base à partir de laquelle des études collaboratives en géologie et en biologie pourront être lancées. La carte peut être visualisée ou téléchargée gratuitement sur le site des publications de l’USGS à cette adresse : doi.org/10.3133/sim2932A.

.Source: USGS / HVO

————————————————–

A new “Geologic map of the northeast flank of Mauna Loa volcano” the culmination of many years of work by Hawaiian Volcano Observatory (HVO) geologists, was recently published by the U.S. Geological Survey (USGS). The work was spearheaded by John P. Lockwood and Frank Trusdell.

For the northeast region of Mauna Loa, this updated map supersedes the “Geologic Map of the Island of Hawaii” (1996) and the “Geologic Map of the State of Hawaii” (2007).

Encompassing 1,140 square kilometres of the northeast flank of Mauna Loa, the new map comprises an area equivalent to the islands of Molokai and Lanai combined. The mapped area extends from an elevation of 3316 m to sea level, from Pu‘u‘ula‘ula (“Red Hill”) on the southwest to Hilo on the northeast.

Mauna Loa is known to have erupted 33 times since written descriptions became available in 1832. Some eruptions were preceded by only brief seismic unrest, while others followed several months to a year of increased seismicity. Since 1832, seven eruptions occurred within the area covered by the map: 1852, 1855–56, 1880–81, 1899, 1935–36, 1942, and 1984.

The Northeast Rift Zone (NERZ) of Mauna Loa is about 40 km long and 2–4 km wide. Eruptive fissures and ground cracks cut volcanic deposits and flows in and near the crest of the rift zone. Lava typically flows from the NERZ to the north, east, or south, depending on vent location relative to the rift crest. For instance, during the 1880–1881 eruption of Mauna Loa, flows initially traveled south towards Kilauea, but later, northeast towards Hilo.

Although most of the NERZ source vents are more than 30 km from Hilo, one branch of the 1880–1881 flow nearly reached Hilo Bay. In fact, Hilo is built entirely on lava flows erupted from the NERZ, most of them older than 1852.

The map shows the distribution of 105 eruptive flows, separated into 15 age groups ranging from more than 30,000 years before present to 1984. The color scheme adopted for the map is based on the age of the volcanic deposits. Warm colors (red, pink, and orange) represent deposits from recent epochs of time, while cool colours (blue and purple) represent older deposits.

From the geologic record, we can deduce several facts about the geologic history of the NERZ. For example, in the past 4,000 years, the middle to uppermost sections of the rift zone were more active than the lower section, perhaps due to compression of the lower northeast rift zone by the adjacent Mauna Kea and Kilauea volcanoes.

The geologic map provides fundamental information on the long-term eruptive behaviour of Mauna Loa Volcano. In addition, it offers a valuable foundation from which collaborative studies in geology and biology can be launched. The map can be viewed or freely downloaded from USGS Publications at doi.org/10.3133/sim2932A.

Source : USGS / HVO.

Une image plus grande de la carte peut être téléchargée gratuitement à cette adresse:
A larger image of the map can be freely uploaded at this address :

http://cf.hawaii247.com/wp-content/uploads/2017/07/VW-2017-07-12_Mauna-Loa-NE-geologic-map_full-sheet_USGS.jpg

L’Observatoire Volcanologique de Yellowstone // Yellowstone Volcano Observatory

drapeau-francaisAu cours de son mois de sensibilisation à l’activité volcanique, l’USGS a consacré plusieurs articles aux observatoires gérés par cette institution. Le dernier en date est celui de Yellowstone. Contrairement à ses homologues, le Yellowstone Volcano Observatory (YVO) est un observatoire « virtuel », ce qui signifie qu’il n’y a pas de bâtiment à l’intérieur du Parc. [NDLR :Il y a quelques années, un bureau existait encore sur le site des Mammoth Hot Springs, mais il est vide actuellement.]
L’Observatoire de Yellowstone a été fondée en 2001 pour une meilleure surveillance de l’activité volcanique et sismique dans le Parc National. Il s’est agrandi en 2013, année où il a regroupé huit institutions: les trois premiers partenaires (l’USGS, le National Park Service et l’Université de l’Utah), des universités et des laboratoires géologiques du Montana, du Wyoming et de l’Idaho, ainsi que l’UNAVCO dont la spécialité est l’étude de la déformation des sols. Cette approche collaborative permet de mieux contrôler les processus et les risques géologiques sur les volcans actifs.
Ces différents partenaires se partagent les tâches d’installation et de maintenance des équipements dans la région de Yellowstone. Ainsi, l’Université de l’Utah s’occupe du réseau sismique, l’UNAVCO gère le réseau GPS et d’autres données de déformation, tandis que l’USGS contrôle les températures et les fluides hydrothermaux dans le parc national [NDLR : C’est dans ce cadre que j’ai collaboré aux contrôle des températures dans le Parc il y a quelques années]. Les données  satellitaires et GPS renseignent sur les déformations de la caldeira de Yellowstone tandis que les stations sismiques contrôlent les milliers de séismes enregistrés chaque année dans le Parc. Au cours des dernières décennies, on a pu observer que la caldeira se soulevait et s’abaissait de plusieurs centimètres par an, souvent avec l’apparition d’une sismicité intense.
Une période de déformation spectaculaire s’est produite en 2013-2014, lorsque le Norris Geyser Basin a commencé à se soulever de plusieurs centimètres par an. Le phénomène a duré jusqu’au 30 mars 2014, jour où un séisme de M 4.8 a été enregistré ; c’était l’événement le plus significatif dans la région depuis 1980!
Immédiatement après ce séisme, l’inflation a cessé et le sol s’est abaissé. Les scientifiques pensent que l’inflation a été causée par l’accumulation de fluides sous le Norris Geyser Basin. Le séisme a marqué l’évacuation d’un bouchon dans le système hydrothermal, ce qui a permis aux fluides accumulés de s’évacuer et au sol de s’abaisser.
Il convient de noter que cette même zone a recommencé à se soulever au début de l’année 2016, mais de façon moins spectaculaire qu’en 2014. Au cours des derniers mois, l’inflation a considérablement ralenti et aucun séisme significatif n’a été observé en 2016.

Outre le travail d’observation dans le Parc, l’Observatoire de Yellowstone est également responsable du suivi de l’activité volcanique dans le Montana, le Wyoming, l’Utah, le Colorado, le Nouveau Mexique et l’Arizona. Tous ces Etats possèdent des volcans qui sont entrés en éruption au cours des derniers millénaires, comme le Sunset Crater en Arizona, qui s’est manifesté en 1085 de notre ère.
Des informations erronées sont parfois diffusées par les médias. En avril 2014, des touristes ont vu courir un troupeau de bisons [scène fréquente dans le Parc !] qui semblaient en proie à la panique. La nouvelle s’est répandue qu’ils sentaient venir une éruption, ce qui, bien sûr, était complètement faux!

http://www.ajc.com/news/national/buffalo-running-from-yellowstone-feared-sign-pending-eruption/g5459ZGAVaHng9Tdyy9aTO/

En juillet de la même année, on a vu fondre le goudron d’une route dans le Parc, événement qui a donné naissance à une foule d’articles dans la presse, certains d’entre eux affirmant qu’une éruption était sur le point de se produire!
https://youtu.be/GHTpQ8xsOSI

Vous obtiendrez des informations fiables sur l’activité volcanique dans le Parc National de Yellowstone en cliquant sur ce lien:
Https://volcanoes.usgs.gov/volcanoes/yellowstone/

—————————————–

drapeau-anglaisDuring its Volcano Awareness Month, USGS dedicated several articles to the observatories it manages. The last one was about Yellowstone. Unlike the other USGS volcano observatories, the Yellowstone Volcano Observatory (YVO) is a “virtual” observatory, meaning that there is no physical building.

YVO was founded in 2001 to strengthen the monitoring of volcanic and earthquake activity in the Yellowstone National Park region. It was expanded in 2013 into a consortium of eight organizations: the original three partners (USGS, National Park Service, and University of Utah), plus universities and state geological surveys in Montana, Wyoming, and Idaho, and UNAVCO (a consortium specializing in the study of ground deformation). This collaborative approach to volcano observation ensures better study and monitoring of active geologic processes and hazards.

The YVO consortium shares the task of establishing and maintaining equipment in the Yellowstone region. For example, the University of Utah operates the Yellowstone seismic network, UNAVCO works with GPS and other deformation data, and the USGS uses temperature and stream gages to track changes in hydrothermal activity throughout the National Park. GPS and satellite radar data indicate deformation of the Yellowstone caldera, and ground-based seismic stations monitor the occurrence of thousands of earthquakes in any given year. Over the past several decades, the caldera has been observed to rise and fall by several centimetres per year, often accompanied by intense seismicity.

A recent spectacular period of deformation occurred in 2013–2014, when the Norris Geyser Basin began to uplift suddenly by several centimetres per year. The uplift lasted until March 30th, 2014, when an M 4.8 earthquake occurred, the largest earthquake in the region since 1980!

Immediately thereafter, the region began subsiding. Scientists believe that the uplift was caused by fluid accumulation beneath the Norris area. The earthquake represented the breaking of a seal in the hydrothermal system, which allowed the accumulated fluid to drain away and the ground to subside.

It’s worth noting that the same region began uplifting again in early 2016, although the rate was slightly less than that in 2014. In the last few months, the rate of uplift has slowed considerably. No strong earthquakes have occurred in the region thus far.

Although Yellowstone is clearly the focus of YVO’s monitoring and research efforts, the observatory is also responsible for tracking volcanic activity in Montana, Wyoming, Utah, Colorado, New Mexico, and Arizona. Each of these states is home to volcanoes that have erupted within the past few thousand years, like Sunset Crater in Arizona, which erupted in 1085 A.D.

 Incorrect news is sometimes spread by the media. In April 2014, tourists could see a herd of buffaloes that seemed to be running in a panic. News spread that they were sensing an eruption, which, of course, was completely wrong! http://www.ajc.com/news/national/buffalo-running-from-yellowstone-feared-sign-pending-eruption/g5459ZGAVaHng9Tdyy9aTO/

In July of the same year, a road was seen melting in the Park, which triggered a stream of articles in the press, some of them asserting that an eruption was about to occur!

https://youtu.be/GHTpQ8xsOSI

You will get reliable news about volcanic activity in Yellowstone National Park by clicking on this link:

https://volcanoes.usgs.gov/volcanoes/yellowstone/

norris-geyser-basin

yellowstone-norris

Norris Geyser Basin, l’une des zones les plus chaudes de Yellowstone.

bisons-yell-01

Scène de la vie quotidienne à Yellowstone…

(Photos: C. Grandpey)

 

Hawaii: Brouillard volcanique et aide à la population // Hawaii: The « vog » and how to manage it

drapeau-francaisL’interruption des alizés est un phénomène fréquent sur l’île Hawai’i pendant les mois d’hiver. La présence de ces vents, ou leur absence, joue un rôle essentiel, car ce sont eux qui gèrent la répartition du brouillard volcanique du Kilauea – le « vog », raccourci pour « volcanic fog » – à travers la Grande Ile.

Le « vog », provoqué par le dioxyde de soufre (SO2) émis par le Kilauea, est un problème fréquent, en particulier depuis l’ouverture de la bouche active dans le cratère de l’Halema’uma’u en 2008. On a alors enregistré une augmentation spectaculaire de la quantité de SO2 et d’autres gaz libérés par le volcan, ainsi que les effets néfastes du « vog » sur l’île. Les émissions de gaz ont légèrement diminué par rapport au début de l’éruption sommitale en 2008, mais le « vog » reste un problème pour les zones habitées, avec des conséquences sur la santé, l’agriculture et les infrastructures.

De mai à septembre, les alizés soufflent de 80 à 95% du temps, mais d’octobre à avril, la fréquence passe de 50 à 80%. Lorsque ces vents sont absents, les zones touchées par le « vog » couvrent la partie orientale de la Grande Ile, voire l’île toute entière, et même parfois l’ensemble de l’État d’Hawaii.

Afin de mieux gérer le « vog » cet hiver, de nouvelles ressources sont disponibles pour permettre à la population de se familiariser avec le brouillard, et de minimiser son impact. Un nouveau site Internet intitulé “Hawaii Interagency Vog Information Dashboard” fournit les premières informations sur le « vog ». Les sujets abordés incluent les prévisions concernant ce brouillard, ses concentrations en temps réel, les effets sur la santé, les impacts environnementaux et comment les gens peuvent se protéger. On trouve aussi sur le site des liens vers des publications scientifiques.

Le site oriente également les utilisateurs vers de nouveaux produits d’information sur le « vog ». On trouve, entre autres, un « booklet of frequently asked questions » (livret de questions fréquemment posées), une brochure et une affiche sur la protection contre le « vog » qui sont disponibles en ligne et qui peuvent être consultées ou téléchargées. Des exemplaires imprimés sont disponibles auprès des services de santé. Ils sont également distribués dans les bibliothèques et les écoles de la Grande Ile.

Les services sanitaires hawaiiens diffusent une rubrique intitulée “Hawaii ShortTerm SO2 Advisory”  qui fournit en temps réel des données sur le niveau de SO2, ce qui est extrêmement utile pour les zones proches du Kilauea. Pour les habitants de la partie ouest d’Hawaii (région de Kona en particulier), les informations sur les particules sont disponibles via l’onglet “AirNow particle data” du site Internet mentionné précédemment.

Source: USGS / HVO.

————————————-

drapeau-anglaisA common occurrence on Hawai‘i Island during winter months is the frequent interruption of the trade winds. These winds, or the lack of them, play a leading role in determining where vog (a short word for volcanic fog) from Kilauea volcano is distributed across Big Island.

Vog, caused by sulfur dioxide gas (SO2) emitted from Kilauea, has been a frequent problem on Hawaii Big Island. Since the onset of the summit eruption in 2008, there has been a dramatic increase in the amount of SO2 and other gases released from the volcano and in the damaging effects of vog on the island. Gas emissions have decreased somewhat since the summit eruption began in 2008, but vog continues to challenge Hawai‘i communities, causing impacts to health, agriculture, and infrastructure.

From May to September, trade winds blow 80 to 95% of the time, but from October to April, the frequency drops to 50 to 80%. When trade winds are absent, areas impacted by vog can include East Hawaii, the whole Island of Hawaii, and, at times, the entire State of Hawaii.

For this winter’s vog season, new resources are available to help people become familiar with, and minimize their exposure to vog. A new internet-based “Hawaii Interagency Vog Information Dashboard”   provides a user-friendly starting point to search for information about vog. Topics on this dashboard include vog forecasts, real-time vog concentrations, health effects and environmental impacts of vog, and how people can protect themselves from vog, as well as links to published scientific literature.

The dashboard also leads users to a new suite of concise vog information products. These products, which include a « booklet of frequently asked questions »  and a brochure and poster on protecting yourself from vog, are available online, where they can be viewed or downloaded. Print copies of these vog information products are available through the Hawai‘i Department of Health District offices. They are also in the process of being distributed to public libraries and schools around the Island of Hawai‘i.

The Hawai‘i Department of Health has released “Hawaii ShortTerm SO2 Advisory” which provides data on current SO2 gas levels, is extremely helpful for areas close to Kīlauea. But for West Hawaiʻi (Kona) residents, the more relevant particle information is available through the vog dashboard link to “AirNow particle data.”

Source: USGS / HVO.

kilauea-panache

Le panache de gaz de l’Halema’uma’u contribue à la présence du « vog » à Hawaii.

(Photo: C. Grandpey)