Les leçons du séisme de dimanche à Anchorage // The lessons of Sunday’s earthquake in Anchorage

drapeau-francaisLes sismologues en poste à Anchorage ont remarqué que le séisme de M 7.1 enregistré dimanche matin a secoué les quartiers de la ville de manière très inégale. Cette observation a pu être faite grâce à un vaste réseau de sismographes installés dans toute la ville. Il a été conçu il y a près de 20 ans, installé il y a une décennie et vraiment testé pour la première fois dimanche dernier.
Les instruments montrent que certains quartiers d’Anchorage ont ressenti le séisme de dimanche aussi fortement qu’en 1964. Toutefois, le tremblement de terre de1964 a causé beaucoup plus de dégâts, avec des mouvements du sol beaucoup plus importants et une durée beaucoup plus longue. La secousse de 1964 a duré 4 minutes, un laps de temps suffisant pour liquéfier le sol dans certaines parties de la ville. En revanche, le séisme de dimanche matin a duré seulement 10 à 15 secondes.
Les sismologues savent depuis longtemps que la partie E d’Anchorage a des sols plus résistants et donc plus susceptibles de faire face à des séismes. Par contre, le secteur O de la ville repose sur une couche d’argile très sensible aux séismes et qui peut se liquéfier en cas de secousses très fortes.
Après le séisme de 1964, les ingénieurs et les géologues ont déconseillé la reconstruction de certaines zones de la ville où les sols argileux s’étaient effondrés au cours des glissements de terrain qui avaient emporté des bâtiments. Ils ont réussi à limiter le développement urbain dans des zones à risque de glissement de terrain où le gouvernement fédéral a financé un important projet de stabilisation. Mais les autorités locales n’ont pas toujours écouté les scientifiques et elles ont autorisé la reconstruction dans d’autres secteurs. Ainsi, dans le quartier de Turnagain, où des dizaines de maisons se sont effondrées dans des fractures, ou ont terminé leur course dans l’océan en 1964, de nouvelles maisons, des routes et des services publics ont été construits sur leurs ruines. Plusieurs sismologues ont déclaré qu’ils n’accepteraient pas de vivre dans ces maisons et qu’ils éviteraient de fréquenter certains bâtiments du centre-ville.
Dans les années 1990, il y a eu un projet visant à installer un réseau d’instruments à Anchorage afin de montrer comment le sol peut avoir un comportement différent selon les endroits. Il était prévu qu’un réseau de 40 sismographes fonctionnerait en continu dans les services d’incendie, dans le sous-sol, dans les zones élevées et dans les parcs, etc. Le financement et l’installation de ce réseau ont pris de nombreuses années. Il a fallu ensuite attendre l’événement sismique qui permettrait d’activer les capteurs de mouvements du sol et de fournir des données détaillées. Cet événement s’est produit dimanche !
L’information donnée par les capteurs permettra de valider les modèles que les ingénieurs utilisent pour concevoir des bâtiments dans un pays exposé aux séismes. Les données pourraient également permettre aux scientifiques de répartir les sols en différentes catégories à travers Anchorage en fonction de leur capacité à accélérer les secousses sismiques. Ces informations pourraient définir des normes de construction dans des zones étroitement définies.
Source: Alaska Dispatch News.

————————————-

drapeau anglaisSeismologists in Anchorage noticed that Sunday morning’s M 7.1 earthquake shook the town neighbourhoods with vastly different force.
This observation could be made thanks to the best urban seismograph network in Alaska, conceived almost 20 years ago, installed a decade ago and receiving its definitive test Sunday.
The instruments show that Sunday some parts of Anchorage experienced a shaking probably as high as during the massive 1964 earthquake that transformed the region. But the 1964 did vastly more damage with massively greater motion and much longer duration. The rupture in 1964 lasted 4 minutes, long enough to liquefy ground in Anchorage. The latest quake lasted only 10 to 15 seconds.
Experts have long known that the east side of Anchorage generally has stiffer soils and bedrock that resist shaking. The west side of town rests on a layer of clay that shakes readily and can turn to liquid with enough shaking.
After the 1964 earthquake, engineers and geologists tried to prevent rebuilding of some areas of the city where clay soils collapsed into slides that took down buildings. The experts succeeded in limiting development on some of the slides where the federal government paid for a massive stabilization project. But the city overruled the experts to allow rebuilding in other areas. In Turnagain, where scores of houses fell into cracks or sank into the ocean, new houses, roads and utilities were built over their ruins. Earthquake experts declared they would not live in those homes and they avoid some buildings downtown.
In the 1990s, there was a project to set up a system of instruments in Anchorage that would show how the ground moves differently over our varied soils. A thick network of 40 seismographs would operate continuously in fire houses, underground in drill holes, in high rises and parks, and elsewhere. The network took many years to fund and build. Then came the long wait for the kind of large earthquake that could activate the strong-motion sensors and give detailed data.
That moment came Sunday.
The information will help validate models that engineers use to design buildings in earthquake country. With extensive study, the data could also allow scientists to designate soils in different areas around town according to how they accelerate seismic shaking. That information could determine building design standards in closely defined zones.
Source : Alaska Dispatch News.

Le séisme de dimanche en Alaska // The Sunday earthquake in Alaska

drapeau-francaisLa partie sud-ouest de l’Alaska a été secouée par un violent séisme de magnitude M 7.1 aux premières heures du dimanche 24 janvier 2016, avec la destruction de quatre maisons sur la péninsule de Kenai et un mouvement de panique dans toute la région. Le séisme s’est produit à 1h30 (heure locale) sur la rive ouest de Cook Inlet, à environ 105 km à l’ouest de Homer et à environ 260 km au sud-ouest d’Anchorage, à une profondeur de 120 km. Il a duré une trentaine de secondes et a été ressenti jusqu’à Juneau et Fairbanks.
Le séisme a fait tomber des articles des étagères dans plusieurs magasins et a secoué les bâtiments dans toute région. Il n’y a pas eu de blessés. Des pannes de courant ponctuelles ont été signalées.
La péninsule de Kenai a subi l’essentiel des dégâts. Plusieurs heures après le séisme, des équipes de pompiers étaient encore sur les lieux d’une fuite de gaz qui avait provoqué des explosions et déclenché plusieurs incendies dans la région de Lilac Lane. Le risque d’autres fuites de gaz a incité les autorités à évacuer les habitants le long de plusieurs routes de la région et à mettre en place un abri temporaire dans la structure de la Garde nationale.
Le séisme a ouvert une fissure importante dans la Kalifornsky Beach Road, près de Kasilof. La route est devenue une attraction pendant la journée de dimanche, avec de nombreux badauds venus prendre des photos des fissures dans la chaussée. La route a été partiellement fermée et réduite à une voie, avec condamnation des endroits où la chaussée s’était effondrée.
Une série de répliques a suivi le séisme, avec un événement de M 4,7 enregistré environ quatre heures après le séisme initial et ressenti à Anchorage. Le Service d’incendie d’Anchorage a enregistré de nombreux appels concernant des odeurs de gaz, des systèmes d’alarme qui se sont déclenchés, des conduites d’eau rompues, etc., mais la police n’a pas fait état de dégâts vraiment importants.
De nombreux habitants ont déclaré que c’était le plus fort séisme qu’ils avaient ressenti depuis des décennies en Alaska.
Source: Anchorage Dispatch News.
Les séismes sont fréquents en Alaska. Ils sont le résultat de la subduction de la plaque Pacifique sous la plaque nord-américaine. Il convient de noter que le séisme s’est produit dans une zone non loin de volcans actifs comme l’Illiamna, le Redoubt et l’Augustine. Bien que le lien entre séismes et éruptions volcaniques n’ait jamais été clairement établi, il sera intéressant d’observer le comportement de ces volcans dans les prochaines semaines.
En cliquant sur ce lien, vous verrez une série de photos mise en ligne par l’Anchorage Dispatch News avec, en particulier, les fractures sur la Kalifornsky Beach Road :
http://www.adn.com/article/20160124/strong-earthquake-felt-throughout-southcentral-alaska

—————————————-

drapeau anglaisSouthcentral Alaska was rocked by a strong and prolonged M 7.1 earthquake early Sunday January 24th 2016, destroying four homes on the Kenai Peninsula and causing panic throughout the region. The quake struck at 1:30 a.m (local time) on the west side of Cook Inlet, about 105 km west of Homer and about 260 km southwest of Anchorage, at a depth of 120 km. It was felt from Juneau to Fairbanks.
The quake knocked items off shelves and walls and shook buildings throughout the region. There were no immediate reports of injuries. Isolated power outages were reported throughout the region.
The Kenai Peninsula bore the brunt of the damage. Hours after the quake, Kenai Fire Department crews were still at the scene of a « gas leak/explosion » and several fires in the area of Lilac Lane. Concerns over continued gas escapement prompted officials to evacuate residents along several roads in the area and establish a shelter in the National Guard structure.
The quake opened a sizeable crack in the Kalifornsky Beach Road in the Kasilof area. The road became something of an attraction later Sunday as waves of people parked their cars and took photos of the massive cracks wrought in the pavement by the quake. The road was partly closed, reduced to one lane after blocking off the parts where the pavement collapsed.
A series of aftershocks followed the quake, including an M 4.7 event that struck about four hours after the initial quake and could be felt again in Anchorage. The Anchorage Fire Department reported it was « very busy with reports of gas odours, alarm systems sounding, broken water lines, etc. Anchorage police had no reports of major damage.
Facebook and Twitter users reported scattered power outages around the region from the quake, which continued for about 30 seconds.
Many residents said it was the strongest earthquake they’d felt in decades of living in Alaska.
Source: Anchorage Dispatch News.
Earthquakes are frequent in Alaska. They are the result of the subduction of the Pacific plate beneath the North-American plate. It should be noted that the earthquake struck in an area not far from active volcanoes like Mt Illiamna, Mt Redoubt and Augustine. Although the link between earthquakes and volcanic eruptions has never been clearly established, it will be interesting to observe the behaviour of these volcanoes in the coming weeks.
By clicking on this link, you will see a series of photos posted by the Anchorage Dispatch News; many of them show the fissures on the Kalifornsky Beach Road:
http://www.adn.com/article/20160124/strong-earthquake-felt-throughout-southcentral-alaska

 Iliamna-blog-2

Redoubt-blog-2

L’Illiamna et le Redoubt sont deux volcans près de l’épicentre du séisme

(Photos: C. Grandpey)

Les émissions de CO2 dans les zones de rift // CO2 emissions in rift areas

drapeau-francaisDes scientifiques de l’Université du Nouveau-Mexique ont effectué des recherches visant à étudier le dioxyde de carbone (CO2) qui s’échappe des systèmes de failles dans le Rift Est-Africain (REA) afin de mieux comprendre dans quelle mesure ce gaz en provenance de l’intérieur de la Terre affecte l’atmosphère. La recherche a été financée par le programme Tectonique de la National Science Foundation.
On pense en général que le CO2 qui se trouve à l’intérieur de la Terre est envoyé dans l’atmosphère par les volcans actifs. Cependant, ce gaz peut également s’échapper le long de failles situées loin de centres volcaniques actifs.
Les scientifiques ont mesuré les émissions diffuses de CO2 du bassin Magadi-Natron dans le Rift Est-Africain entre le Kenya et la Tanzanie. Plusieurs volcans actifs émettent de grandes quantités de CO2 dans la région, notamment le Nyiragongo au Congo et l’Ol Doinyo Lengai en Tanzanie. En outre, des quantités importantes de CO2 sont stockées dans les grands lacs anoxiques de ce secteur.
Pour mesurer le flux de CO2 émis par les failles, les chercheurs ont utilisé un analyseur EGM-4 avec une chambre d’accumulation cylindrique. Les échantillons de gaz ont ensuite été recueillis dans des ampoules sous vide afin de procéder à leur analyse chimique et isotopique dans les laboratoires de l’Université du Nouveau-Mexique.
Les données fournies par l’ensemble des échantillons prélevés le long des failles ont été comparées aux analyses de gaz de l’Ol Doinyo Lengai. On a découvert qu’elles avaient des compositions isotopiques du carbone qui indiquaient une forte contribution magmatique au CO2 observé.
L’étude a généré des données intéressantes qui ont permis aux scientifiques de quantifier les émissions massives et prolongées de CO2 par des failles profondes. Ils ont constaté que le bassin Magadi-Natron, à la frontière entre le Kenya et la Tanzanie, émettait environ 4 mégatonnes de CO2 mantellique par an. La sismicité à des profondeurs de 15 à 30 km enregistrée au cours de l’étude suppose que les failles dans cette région pénètrent probablement la croûte terrestre inférieure. Ainsi, la source du CO2 serait la croûte inférieure ou le manteau, ce qui est compatible avec les isotopes de carbone mesurés dans le gaz.
Les résultats indiquent que le CO2 provient probablement du manteau supérieur ou de corps magmatiques situés dans la croûte inférieure le long de ces failles profondes. L’extrapolation des mesures à l’ensemble de la branche Est du système de rift révèle une émission de CO2 de 71 mégatonnes par an, comparable à l’ensemble des émissions des dorsales médio-océaniques qui se situe entre 53 et 97 mégatonnes par an.
En comparaison avec les grandes éruptions volcaniques qui transfèrent instantanément des quantités importantes de CO2 et d’autres gaz dans l’atmosphère où ils peuvent affecter le climat de la planète pendant plusieurs années, les zones de rift continental diffusent ces gaz extrêmement lentement mais, à l’échelle de temps géologique, les émanations de gaz le long des zones de rift ont pu jouer un rôle jusqu’alors insoupçonné dans le réchauffement de l’atmosphère et peut-être même mis un terme aux ères de glaciation.
Toutefois, même si l’on inclut les émissions de CO2 nouvellement quantifiées dans le Rift Est-Africain dans l’ensemble du CO2 émis sur la planète, ces émissions naturelles sont éclipsées par celles provenant de l’utilisation de combustibles fossiles qui s’élevaient à 36 giga tonnes de CO2 en 2013. Cette comparaison montre que l’humanité émet actuellement en CO2 l’équivalent de 500 Rifts Est-Africains dans l’atmosphère chaque année !
Source: Science Blog: http://scienceblog.com/

————————————–

drapeau anglaisScientists at the University of New Mexico have conducted research to study carbon dioxide (CO2) emissions through fault systems in the East African Rift (EAR) in an effort to understand CO2 emissions from the Earth’s interior and how this gas affects the atmosphere. The research was funded by the National Science Foundation Tectonics Program.
CO2 from Earth’s interior is thought to be released into the atmosphere mostly via degassing from active volcanoes. However, the gas can also escape along faults away from active volcanic centres.
The scientists set out to measure diffuse CO2 flux from the Magadi-Natron basin in the East African Rift between Kenya and Tanzania. Several active volcanoes emit large volumes of CO2 including Nyiragongo in the Congo and Ol Doinyo Lengai in Tanzania. Additionally, significant amounts of CO2 are stored in large anoxic lakes in this region.
To measure diffuse CO2 flux, the researchers used an EGM-4 CO2 gas analyzer with a cylindrical accumulation chamber. The gas samples were then diverted from the chamber into pre-evacuated glass vials in order to carry out gas chemistry and carbon isotope analyses in the laboratories at the University of New Mexico.
The data from all samples were then compared to gas data from the active volcano Ol Doinyo Lengai and were found to have carbon isotope compositions that indicated a strong magmatic contribution to the observed CO2.
The research generated interesting data allowing the scientists to quantify the massive and prolonged deep carbon emissions through faults. They found that about 4 megatonnes per year of mantle-derived CO2 is released in the Magadi-Natron Basin, at the border between Kenya and Tanzania. Seismicity at depths of 15 to 30 kilometers detected during the project implies that extensional faults in this region may penetrate the lower crust. Thus, the ultimate source of the CO2 is the lower crust or the mantle, consistent with the carbon isotopes measured in the gas.
The findings suggest that CO2 is transferred from upper mantle or lower crustal magma bodies along these deep faults. Extrapolation of the measurements to the entire Eastern branch of the rift system implies a huge CO2 flux 71 megatonnes per year, comparable to emissions from the entire global mid-ocean ridge system of 53 to 97 megatonnes per year.
Compared with large volcanic eruptions that instantly transfer significant amounts of CO2 and other gases into the atmosphere where they affect the global climate over a few years, continental rifting is extremely slow at spreading these gases but on geologic time-scales, large-scale rifting events could have played a previously unrecognized role in heating up the atmosphere and perhaps ending global ice ages.
It is important to note, however, even when including the newly quantified CO2 emissions from the EAR in the global CO2 budget, natural emissions are dwarfed by emissions from fossil fuel use which were 36 giga tons of CO2 in 2013. This comparison shows that humanity is currently emitting the equivalent of 500 East African Rifts in CO2 to the atmosphere per year.
Source : Science Blog : http://scienceblog.com/

L 07

L 10

L 12

Ol Doinyo Lengai, l’un des volcans du Rift Est-Africain  (Photos: C. Grandpey)