The volcano and the barometer: Strombolian activity and atmospheric pressure

drapeau-anglaisSince the dawn of science, man has always tried to account for his activities or his behaviour through external phenomena among which lunar attraction, barometric pressure and the amplitude of ocean tides were given priority. Even today, a gardener will tell you that he sows during « the rising moon period » and that he plants during « the waning moon period » ; those who suffer from asthma find it more difficult to breathe when air pressure is high ; many a fisherman associates the quality of his catch with the coefficient of the tide ; and many other similar examples could undoubtedly be found round the world…
The world of volcanoes itself does not lie beyond this tradition. However, the subject of this study will be confined to the possible correlation between atmospheric pressure and eruptive activity on strombolian-type volcanoes. At one time, I was going to associate atmospheric pressure and fumarolian intensity ; actually, in the course of my frequent visits to Vulcano (Aeolian Islands – Italy), I realised that the density of the gas clouds was related more to the degree of hygrometry of the air than to its pressure, though there may occasionally exist a relationship between both phenomena. Nevertheless, at Vulcano, the density of the fumarolian clouds, essentially observed in the morning, very rarely corresponds with a fluctuation in atmospheric pressure.

1. Personal approach.

At Stromboli, the correlation between weather conditions and eruptive activity has existed for a very long time. In 1862, in a book entitled Volcanoes, G. P. Scrope wrote that « the inhabitants of Stromboli positively make use of their volcano as a weather-glass ». Even today, most inhabitants do observe ‘their’ volcano to forecast the weather, relying on the perception or non-perception of the explosions from the villages. Yet, we may believe that, more than barometric pressure, it is the direction of the wind that leads the Strombolians’ forecasts. Indeed, the explosions in the craters are mainly audible when the wind blows from the west, where most disturbances come from, not forgetting however that they are accompanied by a fall in barometric pressure.
Among the people at Stromboli, those who know the volcano best are the guides. One evening, I was chatting with one of them – Antonio Aquilone – on the Cima, while the activity at the craters was quite normal and sustained. Suddenly, a fog shrouded the top of the mountain and the eruptive explosions stopped at the same time. I won’t forget Tonio’s remark : « See, he (meaning the volcano) has understood the weather was changing ». During the (cold) hours that followed, the eruptive activity remained remarkably low. When the fog eventually cleared up around 5 a .m., the explosions started anew. My personal barometer had recorded a fall in pressure that coincided with these observations.
One day of April 1995, I witnessed a similar phenomenon, with a sudden fall in barometric pressure (10 mBars or so) late in the afternoon, together with a coming of clouds from the north and a strong decrease of explosive activity. I then obtained the following diagrams :

Baro 1

Baro 2

Such observations are confirming others performed at Stromboli over 12- to 18-hour periods, in relation with studies of explosive frequency.

2. Scientific approach.

As far as I know, scientific reports on the possibility of a relationship between eruptive activity and atmospheric pressure are very few and apart from some excerpts from Acta Vulcanologica, there is little scientific literature on the subject. Professor S. Falsaperla (Volcanological Institute of Catania) and Professor E. Schick (Geophysical Institute of Stuttgart) are apparently the only people in Europe to have published noteworthy articles.
In a letter, Prof. Falsaperla told me that her « personal opinion was that both on Stromboli and on whatever volcano a relationship exists, although it can be more or less important with reference to the internal state of the volcanic system. As many physical and chemical parameters may play a role in the rate of explosive activity, the influence of pressure is not easy to model even in a relatively ‘simple’ volcano as Stromboli ».
Between January and April 1983, Prof. Falsaperla took part in a workshop about barometric pressure and the frequency of seismic events at Stromboli. The complete results have been collected in Volume 3 of IAVCEI Proceedings in Volcanology edited in 1992 and been summed up in the following diagrams :

Baro 4_modifié-1

The positive side of these diagrams is to clearly show the whole situation over a given period (January-April) ; however, the compactness of the graphs does not allow us to see certain punctual occasions when a sudden and brutal fall (10 mBars or more) in atmospheric pressure seems to cause a change in eruptive activity [ see 1st part of this study]. Such a phenomenon would more clearly appear in a daily or even a weekly diagram.
Nevertheless, studying Prof. Falsaperla’s diagrams, we may reasonably assert that if common points do exist, they are not numerous enough to let us conclude with certainty that there exists a systematic coincidence at Stromboli between seismic (namely eruptive) activity and barometric pressure.
Besides, Pr. Falsaperla remarks that, in order to study the relationship between atmospheric pressure and the hourly occurrence of eruptive shocks, another variable – the dynamic behaviour of magma – should be taken into account. Indeed, some vulcanologists (for instance B. Martinelli in 1991) admit that the mixture of magma and gases is an unstable thermodynamic equilibrium that may undergo a transformation (explosive degassing or overpressure) following disturbances – should they be slight – in the magmatic conduits ; such disturbances might be caused by variations in tides or barometric pressure. Prof. Falsaperla seems to approve this theory since she concludes her study by writing that other external phenomena such as tidal forces, wind, rainfall loading, sea-wave surges etc… are likely to act as a complement to atmospheric pressure.
As far as tides are concerned, again very few studies have been published. The most interesting was performed in 1983 by a team led by Prof. Emter ; after 5,000 hours of observations corresponding with 30,000 explosions, these scientists did not find any tangible sign of the influence of tides on the triggering process of eruptions.

Among scientists themselves, opinions may diverge. French vulcanologist Haroun Tazieff wrote me that after 30 years of visits to Sicilian volcanoes he « could neither establish a correlation between eruptive activity and atmospheric pressure, nor with tides, nor with lunar attraction ». Moreover, he was « extremely sceptical about Prof. Falsaperla’s suggestions », leaning on the fact that « his own observations about that hypothetical correlation had not only been made at Stromboli, but on many prolonged activities ranging from Kituro or Nyiragongo to Erta’Ale or Capelinhos ».

3. Hygrometry.

During the latest observations, an additional parameter – hygrometry – has been taken into account. Indeed, in most cases, a drop in atmospheric pressure is paralleled by an increase in humidity.
It should be noted (not only about Stromboli) that such a change in hygrometry may lead to considerable changes in the morphology of the plumes escaping from active vents or fumarolic fields. Therefore, one has to be very careful before making a link between density of the plume and eruptive activity.
This remark has been confirmed during observations on various sites such as La Fossa di Vulcano, Mount Etna and Stromboli.

4. Conclusion.

On comparing scientific opinion with my own observations, I have arrived at the following conclusions :
As far as large-scale volcanic systems are concerned (I mean those that have very powerful feeding conduits, such as Kilauea or Nyiragongo, and involve huge magmatic and degassing forces), if barometric pressure has any influence over the eruptive process, it is negligible compared to the forces coming from the inner of the earth and so is not detected.
On the other hand, when eruptive activity is more reduced, or even sporadic – as is often the case at Stromboli – it is easier to apprehend that phenomenon, to observe it and to measure it, above all when it is occasional or punctual. This remark confirms B Martinelli’s (see above) about external factors liable to cause a disequilibrium in the mixture of magma and gases.
Anyway, even though this parameter may seem interesting, it does not look as if the correlation between eruptive activity and barometric pressure is an essential factor to volcanic approach. Other more prolonged observations ought to be performed to shed light on this phenomenon.

++++++++++++++

I would like to thank J. M. Bardintzeff, S. Falsaperla, H. Tazieff and the Stromboli guides who, through their collaboration, allowed me to achieve this study.

++++++++++++++

R E F E R E N C E S

Acta Vulcanologica. Vol 3. (1993.)

IAVCEI Proceedings in Volcanology, vol 3. (1992).

Emter D., Zuern W., Schick R.., Lombardo G. : Search for tidal effects on volcanic activities at Mt Etna & Stromboli. (1986).

Falsaperla S., Neri G. : Seismic monitoring of volcaoes : Stromboli (Southern Italy).(1986).

Martinelli B. : Fluidinduzierte Mechanismen für die Entstehung von vulkanischen Tremor-Signalen. (1991).

Schick R., Mueller W. : Volcanic activity and eruption sequences at Stromboli during 1983-1984. (1988)

Scrope G. P. : Volcanoes (1862) Ed.. Longmans & Roberts, London.

Str blog 01

Str blog 05

Str blog 07

Str blog 08

Photos: C. Grandpey

Le volcan et le baromètre: Activité strombolienne et pression atmosphérique

drapeau-francaisDepuis fort longtemps, depuis l’époque où la science n’en était qu’à ses premiers balbutiements, l’homme essaye d’expliquer ses activités et son comportement au travers de phénomènes extérieurs parmi lesquels la pression barométrique d’une part , l’attraction lunaire et l’amplitude concomitante des marées d’autre part sont privilégiées. Aujourd’hui encore, tel asthmatique affirmera qu’il a des difficultés à respirer quand « le baromètre est haut » ; tel jardinier dira qu’il sème « en lune montante » ou qu’il plante « en lune descendante » ; tel marin associera la qualité de sa pêche au coefficient de la marée ; et bien d’autres exemples semblables pourraient être trouvés à travers le monde…
Le monde des volcans n’échappe pas, lui non plus, à ce genre de tradition. Le sujet de cet article se limitera toutefois à la corrélation possible entre la pression barométrique et l’activité éruptive en milieu strombolien. A une époque, j’avais cru pouvoir associer pression atmosphérique et intensité fumerollienne ; en fait, au cours de mes fréquentes observations dans la Fossa de Vulcano, je me suis rendu compte que la densité des nuages de gaz qui s’en échappent était davantage liée au degré d’hygrométrie de l’air plutôt qu’à la pression de ce dernier, bien qu’à certains moments il puisse exister une correspondance entre les deux phénomènes. Néanmoins, à Vulcano, l’abondance des nuages fumerollliens observée essentiellement le matin ne correspond que très rarement à une fluctuation de la pression atmosphérique.

1. Approche personnelle.

A Stromboli, la corrélation entre conditions météorologiques et activité éruptive existe depuis très longtemps. Déjà en 1862, dans son ouvrage Volcanoes, G.P. Scrope écrivait que les Stromboliens « se servent de leur volcan comme d’un baromètre » ; aujourd’hui encore, un grand nombre d’habitants de l’île se fient à celui qu’ils appellent familièrement ‘Iddu’ – Celui-ci – pour faire leurs prévisions météo, s’appuyant sur la perception (ou la non-perception) des explosions depuis les villages. A ce niveau, on peut cependant penser que, plus que la pression barométrique, c’est l’orientation du vent qui dicte les prévisions des Stromboliens. En effet, les explosions sont surtout audibles quand souffle le vent d’ouest, principal porteur de perturbations, étant bien entendu que ces dernières s’accompagnent aussi d’une baisse du baromètre.
Parmi les habitants de Stromboli, les guides sont sûrement ceux qui connaissent le mieux le volcan. Un jour, tandis que je conversais avec l’un d’eux – Antonio Aquilone – sur la Cima, et que les cratères avaient une activité normale voire soutenue, le brouillard est soudain venu recouvrir le sommet de la montagne, faisant brusquement cesser les explosions. Je me souviendrai toujours de la réflexion de Tonio : « Tu vois, il (le volcan) a compris que le temps est en train de changer ». Pendant les heures – froides ! – qui ont suivi, l’activité éruptive est restée remarquablement faible. Quand le brouillard s’est enfin levé vers 5 heures du matin, les explosions ont repris de plus belle. Mon baromètre personnel avait enregistré une variation de pression relativement parallèle à ces observations.
Un jour d’Avril 1995, j’ai assisté à nouveau à un phénomène tout à fait semblable, avec une brusque chute de pression barométrique (environ 10 millibars) en fin d’après-midi, accompagnée d’une venue de nuages en provenance du nord et d’une nette réduction de l’activité explosive. Cet épisode se trouve résumé dans les diagrammes suivants :

        Baro 1 

Baro 2

Ces observations viennent s’ajouter à d’autres effectuées sur le Stromboli et recouvrant des périodes de 12 à 18 heures de relevés barométriques en même temps que de fréquences explosives.

2. Approche scientifique.

A ma connaissance, les rapports scientifiques sur l’éventualité d’une relation entre activité éruptive et pression barométrique sont très peu nombreux et hormis certains extraits de l’Acta Vulcanologica, la littérature scientifique se fait très discrète sur le sujet abordé. Il n’y a guère que le Professeur S. Falsaperla (Institut Volcanologique de Catane) et le Professeur R. Schick ( Institut Géophysique de Stuttgart) qui aient publié des articles dignes d’intérêt.
Dans un courrier, le Prof. Falsaperla m’écrit qu’elle pense qu’ « une relation existe sûrement à Stromboli ( ou sur tout autre volcan) entre la fréquence et la violence des explosions d’une part et la pression atmosphérique d’autre part, mais que cette relation est plus ou moins évidente en fonction du comportement interne du système volcanique. Etant donné que beaucoup de paramètres physiques et chimiques sont susceptibles de jouer un rôle dans l’intensité explosive, l’influence de la pression atmosphérique n’est pas facile à modéliser, même sur un volcan ‘simple’ comme Stromboli ».
Entre Janvier et Avril 1983, le Prof. Falsaperla a participé à un travail d’étude sur la comparaison de la pression barométrique et la fréquence des événements sismiques à Stromboli. L’ensemble des résultats a été synthétisé dans le Volume 3 de IAVCEI Proceedings in Volcanology édité en 1992 et apparaît dans les schémas ci-dessous :

Baro 4_modifié-1

 

Ces diagrammes ont l’avantage de bien montrer la globalité de la situation sur une période donnée (Janvier – Avril) ; cependant, la compacité du graphique ne fait pas suffisamment ressortir certaines situations ponctuelles où une variation soudaine et brutale – 10 millibars ou plus – de la pression atmosphérique semble entraîner une modification de l’activité éruptive (voir 1ère partie). Ce phénomène apparaîtrait certainement plus clairement dans un diagramme journalier, voire hebdomadaire.
Néanmoins, au vu des diagrammes ci-dessus, on peut affirmer raisonnablement que, s’il existe des points communs, ces derniers ne sont pas suffisamment nombreux pour prétendre avec certitude qu’il existe une coïncidence systématique entre activité sismique et pression barométrique.
Le Prof. Falsaperla fait par ailleurs remarquer que pour étudier la relation entre la pression atmosphérique et la fréquence horaire des secousses éruptives, une autre variable, en l’occurrence le comportement dynamique du magma, doit être prise en compte. En effet, certains volcanologues (par exemple B. Martinelli en 1991) admettent que le mélange magma/gaz constitue un équilibre thermodynamique instable qui peut subir une transformation (allant du dégazage explosif à l’excès de pression) à la suite de perturbations – même faibles – survenues dans les conduits magmatiques, ces perturbations pouvant être causées par des variations d’amplitude des marées ou des modifications de pression barométrique. Le Prof. Falsaperla semble approuver cette approche, puisqu’elle conclut son rapport en écrivant que d’autres phénomènes externes tels que l’amplitude des marées, mais aussi le vent, la pluviométrie, la modification du volume océanique, les variations de température etc. sont susceptibles de venir s’ajouter à l’influence de la pression atmosphérique.
S’agissant de l’influence des marées, les études sont également très succinctes. La plus intéressante a été faite en 1983 par une équipe dirigée par le Prof. Emter ; s’appuyant sur 5000 heures d’observations couvrant 30000 explosions, ces scientifiques n’ont décelé aucun signe tangible de l’influence des marées sur le processus de déclenchement des éruptions.

Au sein même du corps scientifique, les avis sont partagés. H. Tazieff n’a pas hésité à m’écrire qu’après 30 années de visites fréquentes aux volcans siciliens, il « n’avait pu établir de corrélation entre activité éruptive et pression atmosphérique, pas plus qu’avec les marées ni l’attraction lunaire ». Il se montrait d’autre part « des plus sceptiques à propos de la suggestion du Professeur Falsaperla », s’appuyant sur le fait que « ce n’est pas sur le seul Stromboli que [ses] observations sur cette hypothétique corrélation ont porté, mais sur toutes les activités éruptives suffisamment prolongées, du Kituro et Niragongo à l’Erta’Ale en passant par le Capelinhos ».

3. L’hygrométrie.
Au cours des dernières observations, un paramètre supplémentaire – l’hygrométrie de l’air ambiant – a été pris en compte. En effet, dans la plupart des cas, la baisse de la pression atmosphérique s’accompagne d’une hausse de l’humidité.
Il est à noter ( et pas seulement à propos de Stromboli) que cette modification de l’hygrométrie de l’air peut entraîner des changements considérables dans la morphologie des panaches provenant des bouches actives et des évents fumerolliens ; il faut donc faire preuve de la plus grande méfiance avant d’associer densité du panache et activité éruptive.

Cette remarque s’est trouvé confirmée lors d’observations sur des sites aussi différents que la Fossa de Vulcano, l’Etna ou Stromboli.

4. Conclusion.

En synthétisant les avis spécialisés et mes propres observations, j’en arrive à la conclusion suivante :
S’agissant d’appareils volcaniques de grande échelle dotés d’une alimentation extrêmement puissante tels que le Kilauea ou le Nyiragongo, qui mettent en œuvre une force magmatique et un dégazage hors du commun, si la pression barométrique peut avoir une influence quelconque sur le processus éruptif, elle sera négligeable par rapport aux forces venant de l’intérieur de la terre et donc indécelable.
Par contre, là où l’activité est plus réduite, voire sporadique, comme c’est souvent le cas à Stromboli, il est plus facile d’appréhender le phénomène, de l’observer et de le mesurer, surtout lorsqu’il se manifeste de façon ponctuelle. Cette remarque rejoint celles formulées ci-dessus par B. Martinelli à propos de facteurs extérieurs susceptibles de créer un déséquilibre dans le mélange magma/gaz.
Quoi qu’il en soit, si ce paramètre peut paraître intéressant, la corrélation entre l’activité éruptive et la pression barométrique ne semble pas être à l’heure actuelle un facteur essentiel dans l’approche volcanologique. D’autres observations prolongées sur le terrain mériteraient d’être effectuées afin d’éclaircir davantage ce phénomène.

++++++++++++++++

Avec tous mes remerciements à J.M. Bardintzeff, S. Falsaperla, H. Tazieff et aux guides de Stromboli qui, par leur collaboration, m’ont permis de réaliser cette étude.

++++++++++++++++

R E F E R E N C E S

Acta Vulcanologica. Vol 3. (1993.)

IAVCEI Proceedings in Volcanology, vol 3. (1992).

Emter D., Zuern W., Schick R.., Lombardo G. : Search for tidal effects on volcanic activities at Mt Etna & Stromboli. (1986).

Falsaperla S., Neri G. : Seismic monitoring of volcaoes : Stromboli (Southern Italy).(1986).

Martinelli B. : Fluidinduzierte Mechanismen für die Entstehung von vulkanischen Tremor-Signalen. (1991).

Schick R., Mueller W. : Volcanic activity and eruption sequences at Stromboli during 1983-1984. (1988)

Scrope G. P. : Volcanoes (1862) Ed.. Longmans & Roberts, London.

 Str blog 01

Str blog 05

Str blog 07

Str blog 08

(Photos: C. Grandpey)