Kilauea (Hawaii): Quelques réflexions sur l’éruption // A few thoughts about the eruption

Même si le HVO ne cesse de répéter qu’il faut attendre plusieurs semaines pour être certain que l’éruption est effectivement terminée, on peut raisonnablement dire que la lave ne coulera plus dans la Lower East Rift Zone (LERZ) et le District de Puna.

Débutée le 3 mai 2018, cette dernière éruption a été l’une des plus spectaculaires jamais observées au cours des dernières décennies. Aucun mort n’est à déplorer et seules deux personnes ont été blessées par des bombes volcaniques projetées par la lave. En revanche, les dégâts matériels sont considérables car plus de 700 maisons ont été détruites.

Si je devais faire le bilan de cette éruption, j’insisterais sur plusieurs points :

Les informations ont été de grande qualité, qu’elles soient en provenance du HVO ou de la Protection Civile. Les bulletins – souvent relayés par la presse locale – étaient très complets et illustrés de nombreuses photos ou vidéos. Les autorités ont vraiment joué la transparence.

– Si les images étaient largement disponibles sur Internet, l’approche de l’éruption par les touristes et les personnes autres que les scientifiques et les membres de la Protection Civile a été une catastrophe. Ce fut vraiment « l’éruption interdite ». Il a souvent été question de la mise en place d’une ou plusieurs plateformes d’observation, mais elles n’ont jamais vu le jour. La seule solution pour les touristes était donc de mettre la main au portefeuille et d’acheter des survols en hélicoptère ou des approches des coulées par la mer. A se demander si la volonté des autorités n’était pas de faire travailler ces structures commerciales. Personnellement, je ne suis pas loin de le penser ! Vouloir mettre l’accent sur la sécurité comme le font en permanence les Américains dans les parcs nationaux et autres sites potentiellement ouverts aux touristes, c’est bien, mais il ne faut pas pousser le bouchon trop loin !

– D’un point de vue scientifique, on a eu la confirmation de notre incapacité à prévoir le déroulement d’une éruption. On sent d’ailleurs la gêne et la frustration des scientifiques locaux qui se sont faits surprendre par la fin relativement rapide de l’éruption alors qu’ils avaient misé sur un événement de longue durée.

Le démarrage de l’éruption était prévisible car il était évident que le réservoir magmatique sommital était à saturation avec des débordements des lacs de lave dans l’Halema’uma’u et le Pu’uO’o. De plus, cela faisait plusieurs mois que les tiltmètres montraient que le Kilauea traversait une longue phase d’inflation. La sortie de la lave était donc assez facile à pronostiquer, même si personne ne savait où l’événement allait avoir lieu. A aucun moment l’Observatoire n’a prévu son apparition dans les Leilani Estates. Les scientifiques n’ont pu que constater la sortie de la lave.

La suite et la fin de l’éruption ont fait l’objet de nombreux articles. Toutes les hypothèses ont été avancées, tant pour l’activité sommitale que le long de l’East Rift Zone. Comme je l’écrivais précédemment, beaucoup pensaient que l’éruption pourraient durer des mois, voire des années. D’autres s’attendaient à un regain d’activité quand la Fracture n° 8 a montré des signes de faiblesse et n’a plus envoyé la lave dans le chenal vers l’océan, mais Madame Pele a décidé de siffler la fin de la partie.

– Toujours d’un point de vue scientifique, l’éruption a montré que l’intrusion initiale dans la Lower East Rift Zone avait remobilisé une ancienne lave plus froide et plus « évoluée » que celle observée dans les lacs de lave de l’Halema’uma’u et du Pu’uO’o. La lave émise dans la LERZ au début de l’éruption dans les Leilani Estates était semblable à la première lave émise lors de l’éruption de 1955 dans la même région. Au cours des jours suivants, les analyses chimiques ont révélé une lave progressivement plus chaude et moins évoluée, jusqu’à ce qu’elle se stabilise à des températures de 1130-1140°C et débouche sur l’éruption spectaculaire de la Fracture n° 8. C’est la première fois qu’une telle évolution dans la nature de la lave a pu être observée et étudiée en direct sur le terrain.

– Autre point positif : Les scientifiques ont pu observer en direct l’affaissement simultané du cratère sommital qui accompagnait la vidange du réservoir magmatique peu profond et l’évacuation de la lave dans la Lower East Rift Zone. L’événement a été particulièrement spectaculaire, avec de gros effondrements qui ont généré une forte sismicité dans toute la zone sommitale.

– Comme je l’ai indiqué plus haut, le bilan matériel est lourd avec des centaines de structures avalées par la lave. Beaucoup se demandent pourquoi des lotissements ont été autorisés dans une zone de fractures (Rift Zone) déjà envahie par la lave dans les décennies précédentes. La réponse est facile : parce que le terrain est beaucoup moins cher qu’ailleurs sur la Grande Ile, en particulier dans le secteur de Kailua-Kona. Dans le District de Puna, on se trouve près de la mer, dans de très beaux paysages et les terrains ne coûtent pas trop cher. S’y établir est un peu jouer à la roulette russe car la lave peut surgir sans prévenir.

Si votre habitation est détruite, va se poser le problème de l’assurance et des dédommagements. Il faut savoir que les polices d’assurances liées aux risques naturels comme les séismes et les éruptions sont très, très chères aux Etats-Unis et beaucoup d’habitations ne sont pas assurées contre ces sinistres. Vous allez me dire : On peut faire jouer la garantie incendie, étant donné que la maison a flambé ! Eh bien non ! Pour que la garantie incendie soit acceptée par les assureurs, il faut que les fondations de la maison soit apparentes après le sinistre, ce qui n’est pas le cas si une coulée de lave est passée par là.

Seules des aides locales et fédérales peuvent venir en aide aux sinistrés, mais elles seront loin de couvrir le montant des dommages subis. Certains ont essayé de négocier des aides à l’amiable avec leurs compagnies d’assurances alors que d’autres préfèrent passer par des actions en justice.

—————————————————

Even though HVO keeps repeating that we need to wait several weeks to be certain that the eruption is actually over, it is reasonable to say that lava will no longer flow in the Lower East Rift Zone (LERZ) and the Puna District. .
Started on May 3rd, 2018, this eruption was one of the most dramatic ever observed in recent decades. No deaths were reported and only two people were injured by volcanic bombs. However, the material damages are considerable because more than 700 houses were destroyed.
If I had to analyse this eruption, I would insist on several points:

The information was of a high quality, whether from HVO or the Civil Defense. The reports – often relayed by the local press – were very complete and illustrated with many photos or videos. The authorities really played transparency.

– If the images were widely available on the Internet, the approach of the eruption by tourists and people other than scientists and members of the Civil Defense was a disaster. It was really « the forbidden eruption« . There has often been talk of setting up one or more observation platforms, but they have never existed. The only solution for the tourists was therefore to buy helicopter overflights or approach the eruption from the sea. One may wonder wonder if the authorities’ aim was not to bring work to these commercial structures. Personally, I’m not far from thinking it! It is a good idea to focus on safety, as Americans are always doing in national parks and other sites that are potentially open to tourists, but the safety measures are often exaggerated!

– From a scientific point of view, there was the confirmation of our inability to predict the course of an eruption. We can feel the embarrassment and frustration of local scientists who were surprised by the relatively rapid end of the eruption while they had bet on a long-term event.
The onset of the eruption was predictable as it was obvious that the shallow magma reservoir was saturated. The lava lakes in Halema’uma’u and Pu’uO’o often overflowed. In addition, the tiltmeters had shown for several months that Kilauea was going through a long period of inflation. The breakout of lava was easy enough to predict, although no one knew where it was going to take place. At no time has the Observatory anticipated its appearance in the Leilani Estates. Scientists could only observe the event.
The continuation and the end of the eruption have been the subject of many articles. All the hypotheses have been suggested, both for activity at the summit and along the East Rift Zone. As I put it earlier, many scientists thought the eruption could last for months or even years. Others were expecting a renewal of activity when Fracture # 8 showed signs of weakness and no longer sent lava in the channel to the ocean, but Madame Pele decided to blow the whistle.

– Still from a scientific point of view, the eruption has shown that the initial intrusion into the Lower East Rift Zone remobilized an older, colder and more « evolved » lava than the one observed in the Halema’uma’u and Pu’uO’olava lakes. The lava emitted in the LERZ at the beginning of the eruption in the Leilani Estates was similar to the first lava emitted during the 1955 eruption in the same region. Over the following days, the chemical analyzes revealed a progressively warmer and less evolved lava until it stabilized at temperatures of 1130-1140°C and resulted in the dramatic eruption of Fracture no. 8. This was the first time such an evolution in the nature of lava could be observed and studied live on the field.

– Another positive point was that scientists were able to observe live the simultaneous collapse of the summit crater that accompanied the emptying of the shallow magma reservoir and the evacuation of the lava in the Lower East Rift Zone. The event was particularly spectacular, with large collapses that generated strong seismicity throughout the summit area.

– As I indicated above, the material outcome is severe with hundreds of structures swallowed by lava. Many people are wondering why building houses was allowed in a Rift Zone already invaded by lava in previous decades. The answer is easy: because the land is much cheaper than elsewhere on the Big Island, especially in the ​​Kailua-Kona area. In the District of Puna, houses are near the sea, in beautiful landscapes and the land is not too expensive. However, settling there is a little Russian roulette because the lava can come out any time, without warning.
If your home is destroyed, there will be the problem of insurance and compensation. You should know that insurance policies related to natural hazards such as earthquakes and eruptions are very, very expensive in the United States and many homes are not insured against these damages. You might be inclined to use fire warranty, since the house has been burnt! You would be wrong ! For the fire insurance to be accepted by insurers, the foundations of the house must be apparent after the disaster, which is not the case if a lava flow has passed through.
Only local and federal funds can help the victims, but they will not be enough to finance the damage suffered during the eruption. Some owners have tried to negotiate out-of-court assistance with their insurance companies, while others prefer to go to court.

Crédit photo: USGS / HVO

Publicités

Eruption du Kilauea: Un avenir imprévisible // Kilauea eruption: An unpredictable future

L’éruption du Kilauea se poursuit de manière stable à partir de la Fracture n° 8 et les explosions accompagnées d’effondrements secouent toujours le cratère de l’Halema’uma’u. Dans un rapport que l’Observatoire des Volcan d’Hawaii (HVO) a récemment remis à la Protection Civile, les volcanologues expliquent que l’éruption dans la Lower East Rift Zone se poursuivra probablement pendant des mois, voire des années.
L’éruption, qui a débuté le 3 mai dans les Leilani Estates, a dépassé de loin les autres éruptions des 200 dernières années dans la région en termes de volume, et elle a donné naissance à un chenal de lave de 12,8 kilomètres de long qui se termine à Ahalanui. Plus de 700 maisons ont été détruites.
Les scientifiques indiquent que l’évacuation constante du magma au sommet du Kilauea sans apparition de déformations significatives du sol sur la Lower East Rift Zone laisse supposer que l’éruption est stable. Ils pensent que si l’éruption en cours maintient le rythme soutenu observé actuellement, elle ne prendra pas fin avant des mois ou même un an ou deux. Bien que cette hypothèse semble la plus probable, une pause suivie d’une reprise d’activité ne saurait être exclue, tout comme un arrêt brutal de l’activité, ou une transition vers une activité stable et de plus longue durée avec un volume de lave émis plus faible. [NDLR: En d’autres termes, malgré tous les instruments dont dispose l’USGS sur le volcan, personne ne sait comment l’éruption va évoluer et aucune prévision fiable ne peut être faite!]
L’éruption reste concentrée sur la Fracture n° 8 depuis la fin mai et, selon le rapport du HVO, il semble peu probable qu’elle migre vers un autre site. La fracture a construit un cône de matériaux de plus de 55 mètres de haut, mais continue d’émettre de la lave sur une ouverture de 60 à 80 mètres de long. Si cette activité devenait plus concentrée, il n’est pas impossible que l’on assiste à des fontaines de lave de près de 300 mètres de hauteur, avec des retombées de cendre et de cheveux de Pele sur une zone plus vaste.
Les émissions de gaz restent également beaucoup plus élevées que ces dernières années, avec plus de 30 000 tonnes par jour. C’est plus de quatre fois la moyenne quotidienne au sommet du Kilauea avant le 3 mai.
Le rapport du HVO se penche sur les différents dangers induits par l’éruption en cours, y compris la possibilité de voir la lave envahir d’autres zones habitées. Pour les habitants des Nanawale Estates et du secteur de Waa Waa, le principal risque semble être un blocage dans le chenal de lave – dont la hauteur atteint 21 mètres par endroits – ce qui pourrait provoquer des débordements. C’est ce qui s’est produit près du Kapoho Crater, lorsque le flux de lave s’est détourné vers Ahalanui et a détruit le site de «Warm Pond» et l’école de Kua o ka La. La lave se dirige maintenant vers Isaac Hale Beach Park et la rampe d’accès pour bateaux de Pohoiki. Pour le moment, le front de coulée s’est stabilisé à 480 mètres de la rampe d’accès.
Les effondrements au sommet du Kilauea ont endommagé la Highway 11 dans le Parc National des Volcans d’Hawaï. La vitesse a été réduite à 40 km / h entre les bornes kilométriques 28 et 30.
Source: USGS / HVO.

——————————————–

The Kilauea eruption is going on in a stable way at Fissure 8 and collapse explosions are still shaking Halema’uma’u Crater. In a report the Hawaiian Volcano Observatory (HVO) recently submitted to Hawaii County Civil Defense, geologists say the eruption on the Lower East Rift Zone most likely will continue for months to years.

The eruption, which started on May 3rd in Leilani Estates, has far outpaced other eruptions of the past 200 years in the area in terms of volume, and is producing a 12.8-kilometre-long lava channel to the ocean at Ahalanui. More than 700 homes have been destroyed.

Geologists say the sustained withdrawal of magma from Kilauea’s summit without appreciable ground deformation on the lower rift zone suggests the eruption remains stable. They say that if the ongoing eruption maintains its current style of activity at a high eruption rate, then it may take months to a year or two to wind down. While this seems to be the most likely outcome, a pause in the eruption, followed by additional activity, cannot be ruled out, nor can an abrupt cessation or a transition to a steady, longer-lived activity at a lower effusion rate. [NDLR: In other words, despite all the instruments USGS has set up on the volcano, nobody knows how the eruption will develop and no reliable prediction can be made!]

The eruption has remained focused at Fissure 8 since late May and the chances of it moving to another site are becoming less likely, according to the report. The fissure has created a cinder cone more than 55 metres tall, but continues to erupt over a 60- to 80-metre-long segment and, if it becomes more concentrated, could create lava fountains nearly 300 metres tall and spread Pele’s hair and cinder over a wider area.

Gas emissions also remain much higher than recent years, with more than 30,000 tons per day being released. This is more than four times the daily average for the summit prior to May 3rd.

The HVO report looks at different hazards posed by the ongoing event, including the potential for other residential areas to be inundated. For residents of Nanawale Estates and the Waa Waa area, the main risk appears to be a blockage in the lava channel, itself now 21 metres tall in places, which could divert the flow. That was seen near Kapoho Crater, when the flow moved toward Ahalanui and destroyed the “Warm Pond” and Kua o ka La Public Charter School. The ocean entry there has spread toward Isaac Hale Beach Park and Pohoiki boat ramp, but remained 480 metres from the ramp on July 20th in the afternoon.

Collapse events at Kilauea’s summit have damaged Highway 11 at Hawaii Volcanoes National Park. The state Department of Transportation is reducing the speed limit there to 40 km per hour between mile markers 28 and 30.

Source: USGS / HVO.

Crédit photo: USGS / HVO

Si l’Öræfajökull (Islande) entrait en éruption… // If Öræfajökull erupted in Iceland…

L’Öræfajökull est un volcan sous-glaciaire dans le sud-est de l’Islande. Il est entré deux fois en éruption dans les temps historiques, en 1362 et en 1728. L’éruption en 1362 a provoqué la destruction d’une région connue sous le nom de Litla-Hérað et la cendre volcanique a atteint l’Europe occidentale. Plus de 40 ans se sont écoulés avant que les gens s’installent à nouveau dans la région connue aujourd’hui sous le nom d’Öræfi, ou terre désertique.
Il n’y a actuellement aucun signe qu’une éruption est imminente, mais il y a une dizaine de mois, un regain d’activité a été observé au niveau de l’Öræfajökull. Une hausse de la sismicité a été détectée, ainsi que le creusement d’une dépression à la surface de la glace dans la caldeira, et la présence dans une rivière glaciaire de gaz provenant d’une activité géothermale. À cette époque, on a considéré que l’activité sous l’Öræfajökull était en hausse par rapport aux décennies précédentes.
Selon le Met Office islandais, l’activité sismique  sous l’Öræfajökull a diminué et s’est stabilisée au cours des derniers mois. Les mesures hydrologiques et géochimiques montrent des valeurs stables. Des mesures effectuées à la fin du mois de mars ont indiqué que la production de chaleur due à l’acticité géothermale sous la caldeira avait considérablement diminué. Au final, il n’y a aucun signe d’une éruption imminente.
Toutefois, si une éruption majeure devait se produire sur l’Öræfajökull, elle pourrait paralyser le trafic aérien en Europe pendant plusieurs jours. Tout le monde a encore en tête l’éruption de l’Eyjafjallajökull en avril 2010. Elle a bloqué le trafic aérien en Europe pendant plusieurs jours et a empêché des millions de passagers d’atteindre leur destination. L’éruption a causé la plus grande perturbation du trafic aérien depuis la Seconde Guerre mondiale et entraîné des pertes estimées à 5 milliards de dollars avec plus de 100 000 vols annulés.

Un groupe de chercheurs de l’Université d’Islande a établi deux scénarios d’éruption pour l’Öræfajökull en se basant sur des événements historiques, afin de prévoir les impacts possibles d’éruptions plus importantes que celles survenues sur l’Eyjafjallajökull. Les deux scénarios ont été modélisés en s’appuyant sur les conditions météorologiques de l’éruption de 2010. Le modèle NAME, modèle de dispersion de la cendre mis au point par le VAAC (Volcanic Ash Advisory Centre) de Londres, a été utilisé pour simuler les nuages ​​de cendre dans les deux scénarios.
1) Le premier scénario décrit des éruptions à répétition de l’Eyjafjallajökull avec un volume de cendre similaire à celui de 2010, mais suppose que la durée totale de l’éruption est de six mois, soit quatre fois plus longue qu’en 2010. Des éruptions de cette durée sont possibles, comme l’a montré la dernière éruption dans l’Holuhraun qui a débuté à la fin de l’été 2014 et s’est poursuivie pendant six mois. Un tel scénario aurait principalement un impact sur le trafic aérien à basse altitude et affecterait essentiellement les décollages et les atterrissages.

2) Le deuxième scénario décrit une éruption de l’Öræfajökull en se basant sur l’éruption de 1362, l’une des plus grandes éruptions en Islande depuis l’arrivée des premiers colons. Le scénario propose une importante émission de cendre sur une période assez courte. Il montre qu’une émission de cendre d’une telle ampleur paralyserait le trafic aérien en Europe, affecterait les vols à toutes les altitudes et interromprait tout le trafic pendant plusieurs jours. Les effets de l’éruption dans ce scénario pourraient même atteindre l’Atlantique Nord où elle affecterait également le trafic maritime, comme pendant l’éruption de 1362: A cette époque l’éruption a provoqué l’accumulation d’une épaisse couche de pierre ponce à la surface de l’océan. Un événement de ce genre de nos jours pourrait nuire au trafic maritime et à la pêche.

L’étude sur une possible éruption de l’Öræfajökull montre que «l’infrastructure de gestion des risques qui s’appuie sur les événements de 2010 peut donner une fausse impression de sécurité à l’industrie aéronautique et à d’autres secteurs. […] Des années après cet événement très perturbateur, le manque de sensibilisation au risque d’éruptions accompagnées de cendre volcanique en Europe est flagrant et est en partie dû à des lacunes dans l’échange d’informations entre les différents secteurs. Un plan alternatif est nécessaire. Lorsque les aéronefs ne peuvent pas décoller, le transport des passagers et des marchandises doit être transféré vers les routes, les voies ferrées et les voies maritimes afin de réduire les problèmes et les pertes économiques. Un effort commun des différents secteurs est nécessaire pour anticiper les problèmes et pour établir des plans d’urgence alternatifs.  »
Source: Iceland Review.

————————————————

Öræfajökull is an ice-covered volcano in South East Iceland. It has erupted twice in historical times, in 1362 and in 1728.  The eruption in 1362 caused the distruction of a district known as Litla-Hérað and volcanic ash travelled as far as to western Europe. More than 40 years passed before people settled in the area now known as Öræfi which means wasteland.

There are no signs of an imminent eruption, but about ten months ago some unrest was detected in Öræfajökull. Elevated seismicity was detected, as well as the development of a depression in the ice surface within the caldera, and the presence of geothermal gases from a glacial river. At that time, geothermal activity beneath Öræfajökull was assessed to be high relative to previous decades.

According to the Iceland Met Office, seismic activity at Öræfajökull has declined and been stable over the past months. Hydrological and geochemical measurements show stable values. Measurements in late March indicated that the geothermal heat output beneath the cauldron had diminished significantly. On the whole, there are no signs of an imminent eruption.

If a major eruption were to occur in Öræfajökull, this could paralyse all air traffic across Europe for days on end. Everybody has in mind the Eyjafjallajökull eruption in April 2010 which wreaked international havoc. It halted air traffic in Europe for several days and prevented millions of passengers from reaching their destinations. The eruption led to the greatest disruption of air traffic since World War II and caused an estimated worldwide loss of 5 billion dollars with over 100,000 flights cancelled.

A research group at the University of Iceland has formulated two eruption scenarios for Öræfajökull based on historical events to predict possible impacts of eruptions larger than the one that occurred in Eyjafjallajökull. Both scenarios were modelled around the weather conditions from the 2010 eruption. The NAME model, an ash dispersion model used by the London Volcanic Ash Advisory Centre (VAAC), was used to simulate the ash clouds in the eruption scenarios.

1) The first scenario describes recurring eruptions of the Eyjafjallajökull volcano with an ash volume similar to the event in 2010, but assumes a total eruption time of six months, four times longer than in 2010. Eruptions of this duration are feasible, like during the recent eruption in Holuhraun which began in late summer 2014 and continued for six months. This scenario would mostly impact air traffic at low altitudes, affecting take-offs and landings.  2) 2) The second scenario, an eruption in Öræfajökull, is based on the volcano’s eruption in 1362, one of the largest eruptions in Iceland since the settlement. It describes a large ash emission over a rather short period of time. It reveals that such an enormous ash eruption would paralyse air traffic in Europe, affect flights at all altitudes and halt all air traffic for several days. The effects of the eruption in this scenario could even reach across the North Atlantic. Not only would such an eruption affect air traffic, it would also impact maritime traffic, as indicated by records from the 1362 eruption: the eruption caused a thick layer of pumice to collect on the surface of the ocean. An event of this kind today could hinder shipping traffic and fishing.

According to the study about a possible Öræfajökull eruption, “the risk management infrastructure that is based on the parameters of the events in 2010 can provide a false sense of security to the aviation industry and to other sectors. […] Years after the highly disruptive event, the lack of risk awareness of volcanic ash eruptions in Europe is remarkable and is partly due to gaps in information exchange between sectors. An alternative plan is needed. When aircraft cannot take off, the transportation of passengers and goods needs to be transferred to roads, rail and sea passages to reduce inconvenience and economic loss. A call for a communal effort of different sectors is needed in anticipation of what lies ahead and for establishing alternative contingency plans.”

Source: Iceland Review.

Modélisation de la dispersion de cendre pour l’EyjafjallaJôkull et pour l’Öræfajökull (Source: Université d’Islande)

Kilauea (Hawaii): Quand l’éruption finira-t-elle ? // When will the eruption come to an end ?

Quand l’éruption finira-t-elle? C’est la question à laquelle seule Madame Pele est capable de répondre. Bien sûr, les scientifiques qui étudient actuellement l’éruption du Kilauea tireront de nombreuses leçons des événements qu’ils ont pu observer au sommet et sur l’East Rift Zone. Ils ont à leur disposition des technologies de pointe qui n’existaient pas pendant les éruptions de 1924, 1955 et 1960. Le HVO existe depuis plus de 100 ans et les techniques de surveillance du Kilauea ont beaucoup évolué. Les volcanologues ont utilisé de nouvelles méthodes pour évaluer la profondeur du lac de lave de l’Halema’uma’u, ou encore la hauteur des panaches et les particules de cendres. Les drones ont été essentiels à la cartographie des coulées de lave. Cette éruption marque probablement l’arrivée des drones en volcanologie grâce à leur capacité de collecter des données dans des zones dangereuses et inaccessibles. En plus, ils sont relativement bon marché et ne mettent pas des personnes en danger.
Cependant, même avec toutes ces nouvelles technologies et tous les scientifiques mobilisés pour étudier l’éruption du Kilauea, beaucoup de questions restent sans réponse, au moins pour l’instant.
Si la hausse de l’activité sismique, les déformations du sol et d’autres paramètres peuvent alerter les scientifiques sur l’imminence d’une éruption, les prévisions à plus long terme restent impossibles. Comme l’a dit un volcanologue: « Il est très difficile d’étudier un volcan et de prévoir la date de sa prochaine éruption, tout comme il est impossible de prévoir les séismes. On peut examiner le comportement d’un volcan dans le passé et voir à quelle fréquence il est entré en éruption, mais nous ne savons pas vraiment ce qui se passe sous terre.  »
La question que tout le monde se pose à l’heure actuelle est la suivante: Quand cessera l’éruption du Kilauea?
L’étude des éruptions les plus récentes peut fournir quelques indices. Les événements majeurs qui se sont produits sur l’East Rift Zone en 1840, 1955 et 1960 ont duré respectivement 26 jours, 88 jours et 36 jours. La journée d’aujourd’hui marque le 41ème anniversaire de la sortie de la lave dans les Leilani Estates. La plus longue des trois éruptions précédentes a duré un peu moins de trois mois. La plus longue éruption sommitale a duré 70 ans. L’éruption qui se déroule actuellement à Puna est très différente et la plupart des scientifiques pensent qu’il est peu probable qu’elle dure aussi longtemps.
Une évaluation approximative du volume de lave émis par l’éruption actuelle a été proposée au vu de la zone couverte le 5 juin. On estime que le volume de lave dans les Leilani Estates avait alors atteint 84,5 millions de mètres cubes, ce qui est inférieur aux éruptions de 1840 (205 millions de mètres cubes), de 1955 (87,6 millions de mètres cubes) et de 1960 (113,2 millions de mètres cubes). Il y a certes une marge d’erreur dans le chiffre proposé pour l’éruption actuelle, mais la quantité de lave émise – au moins jusqu’à présent – est loin des impressionnants volumes précédents.
Le magma de l’éruption actuelle est probablement issu du point chaud qui alimente habituellement les volcans hawaiiens et il ne peut pas être exclu que l’éruption des Leilani Estates donne naissance à une nouvelle bouche qui serait active sur le long terme, comme l’a été le Pu’u O’o. Cependant, ce n’est qu’une simple hypothèse, car personne ne sait comment évoluera l’éruption en cours.
Adapté d’un article dans le Honolulu Star Advertiser.

—————————————————-

When will the eruption come to an end? This is the question only Madame Pele is able to answer. Sure, scientists studying the current eruption of Kilauea will learn a lot from the events at the summit and along the East Rift Zone. They are benefiting from advanced technologies that were not available during corresponding events in 1924, 1955 and 1960. The Hawaiian Volcano Observatory has existed for more than 100 years and the technology has changed tremendously with new ways to monitor Kilauea. For instance, scientists have been using new techniques to track the depth of the Halemaumau lava lake, plume heights and ashfall particles. Drones have been essential to mapping lava flows. This eruption may be really the coming of age of drone technology being able to collect data from dangerous and inaccessible areas relatively cheaply and with minimal danger to people.

However, even with all the advanced science and staff mobilized to document and study the Kilauea eruption, many questions about the volcano will remain unanswered, at least for now.

Although increased seismic activity, ground movement and other signs can alert scientists to imminent eruptions, longer-term forecasts are still impossible. As one volcanologist put it: “It’s very difficult to look at a volcano and put a date on a calendar when it will erupt next, just like it’s impossible to predict earthquakes. You can look at what it’s done in the past and how frequently it’s erupted, but we don’t really know what’s going on underground.”

The most pressing question at the moment is: When will Kilauea stop erupting?

Studying previous eruptions most similar to the current one may provide some clues. Major East Rift Zone events in 1840, 1955 and 1960 lasted 26 days, 88 days and 36 days, respectively. Today marks the 40th day since lava emerged in the Leilani Estates. The longest of those three previous eruptions lasted just shy of three months. The longest eruption at the summit lasted 70 years. The current one down in Puna is very different, and most scientists think it is unlikely to last that long.

A rough calculation has been made of the volume of lava produced by the current eruption, based on the area covered as of June 5th. It is estimated the Leilani Estates flows put out 84.5 million cubic metres of lava, less than the eruptions of 1840 (205 million cubic metres), 1955 (87.6 million cubic metres) and 1960 (113.2 million cubic metres). The margin of error is big, but at least so far the amount of lava is far from the impressive previous volumes.

Magma is probably still being supplied from the hotspot and it cannot be excluded that the Leilani Estates eruption will become a new long-term vent, like Pu’u O’o. However, this is just a simple hypothesis as nobody knows about the future of the current eruption.

Adapted from an article in the Honolulu Star Advertiser.

Crédit photo: USGS

Eruption du Fuego (Guatemala): Un bilan toujours plus lourd // The death toll is still mounting

Le bilan de l’éruption du Fuego ne cesse de s’alourdir. Il atteignait 99 morts le 6 juin 2018 et de nombreuses personnes sont toujours portées disparues.

 Le volcan a envoyé une nouvelle coulée pyroclastique mercredi après-midi, ce qui a mis les sauveteurs encore plus en danger et les a obligés à suspendre la recherche des victimes. Les restes des 99 personnes ont été envoyés à la morgue ; seuls 28 corps ont été identifiés jusqu’à présent. Les autorités locales possèdent des données avec des noms et des lieux où se trouvent 192 personnes disparues.
L’éruption du Fuego a provoqué des évacuations dans les localités au pied du volcan. Les zones touchées par les coulées pyroclastiques montrent des scènes de désolation. Les maisons sont enfouies dans la cendre qui est parfois encore chaude au toucher. Un silence macabre a envahi ces villages où ne subsistent que quelques poulets qui ont réussi à échapper à l’éruption. Des roches volcaniques de la taille des balles de baseball, ou plus volumineuses, jonchent le sol. Des pneus de voiture gisent dans des flaques de caoutchouc et d’acier tordu.
Un autre danger est que les fortes pluies provoquent des lahars, rivières de boue qui peuvent remobiliser la cendre volcaniques.
Un état de catastrophe naturelle a été déclaré pour les régions d’Escuintla, Sacatepequez et Chimaltenango, qui ont le plus souffert de la catastrophe.
Source: Associated Press.

En tout, environ 300 personnes sont probablement mortes pendant l’éruption de dimanche. Le bilan est à peu près le même que pour le Merapi (Indonésie) en 2010. Les deux volcans appartiennent à la Ceinture de Feu du Pacifique et comme les autres volcans dans cette partie du monde, ils sont extrêmement explosifs et leurs éruptions sont très difficiles à prévoir, comme on l’a vu avec le Mont Agung à Bali où de dizaines de milliers de personnes ont été évacuées sans que se produise la moindre avalanche pyroclastique. De plus, les explosions sont très soudaines. Un couple vivant sur les pentes du Fuego a déclaré qu’ils se sont mis à courir dimanche après qu’un de leurs enfants leur ait crié de fuir. Au moment où ils ont atteint un abri dans la ville d’Escuintla, ils étaient couverts de cendre. Malheureusement, il n’y a aucun moyen efficace d’avertir les gens. Les sirènes suggérées par certains seraient inutiles car les coulées pyroclastiques se déplacent trop vite, à plusieurs centaines de kilomètre par heure. La seule solution est d’évacuer les habitants le plus loin possible lorsque les instruments des volcanologues annoncent  une possible éruption et de leur demander d’attendre dans les refuges jusqu’à la fin de l’alerte. Une telle situation est très difficile à gérer par les autorités.

—————————————————–

The death toll from Guatemala’s Fuego volcano rose to at least 99 on June 6th, 2018, with many people still missing.

The volcano triggered a new pyroclastic flow on Wednesday afternoon, which put rescuers even more in danger and forced them to suspend the search for victims. The remains of the 99 people have been sent to morgues, while just 28 have been identified so far. Local authorities have data with names and locations where there are missing persons and that number is 192

The volcano’s increased activity prompted evacuations of nearby communities. The areas affected by the pyroclastic flows show scenes of desolation. Homes are buried in ash, some of it still hot to the touch. An eery silence hangs in the air, apart from the presence of chickens that somehow managed to survive the explosion. Volcanic rocks the size of baseballs and larger litter the ground. Melted car tires lay in puddles of rubber and twisted steel.

Another danger is that heavy rains in the area could provoke lahars due to the large flows of volcanic mud.

A state of disaster has been declared for the departments of Escuintla, Sacatepequez and Chimaltenango, which suffered the most in the disaster.

Source: Associated Press.

In all, about 300 people probably died during Sunday’s eruption. The toll is about the same as for Mount Merapi (Indonesia) in 2010. Both volcanoes belong to the Pacific Ring of Fire and like the others in that part of the world they are highly explosive and their eruptions are very difficult to predicy, as could be seen with Mt Agung in Bali where thousands of people were evacuated and no pyroclatic flow ever occurred. Besides, their explosions are very sudden. A couple living on the slopes of Fuego said they ran Sunday after one of their children urged them to flee. By the time they reached a shelter in the city of Escuintla, they were covered in ashes. Unfortunately, there are no means to warn people. The sirens suggested by some would be useless as the pyroclastic flows travel too fast. The only solution is to evacuate the residents as far as possible when the experts’ instruments announce a possible eruption and then ask them to wait in shelters until the eruption has ended. Such a situation is very difficult to manage by the authorities.

         Vue aérienne d’un village recouvert par la cendre du Fuego (Crédit photo: CONRED)

Les séismes lents du Kilauea (Hawaii) // Kilauea Volcano’s slow earthquakes (Hawaii)

Périodiquement, des séismes sont enregistrés sur le flanc sud du Kilauea et le HVO les attribue au glissement lent de l’édifice volcanique dans l’Océan Pacifique. Le dernier événement de ce type a eu lieu en octobre 2015 et, auparavant, en mai 2012, février 2010 et juin 2007.
Ces séismes de glissement lent se produisent lorsqu’une faille commence à glisser, mais si lentement que le phénomène prend plusieurs jours au lieu de quelques secondes dans le cas d’un tremblement de terre classique. Sur le Kilauea, les séismes lents se produisent sur la faille de décollement presque horizontale qui se trouve sous le flanc sud du volcan, à une profondeur de 6 à 8 km. C’est cette même faille qui a été responsable du séisme de magnitude M 7,7 à Kalapana en 1975. Cependant, les séismes lents ne produisent pas d’ondes sismiques et donc pas de fortes secousses destructrices comme un séisme classique. Ils permettent d’évacuer une partie de la contrainte qui s’est accumulée sur la faille.
Au cours d’un séisme lent, le flanc sud du Kilauea avance en général d’environ 3 cm vers l’océan. L’événement s’étale sur 2 ou 3 jours, et présente les mêmes caractéristiques qu’un séisme de magnitude M 6.0. Le réseau GPS du HVO montre que le flanc sud avance régulièrement vers la mer d’environ 6 cm chaque année. Les événements de glissement lent du Kilauea ont tendance à se produire uniformément dans le temps; en particulier, ceux postérieurs à 2005 qui ont eu lieu tous les deux ans et demi, à trois mois près. Ils ont été provoqués chaque fois par un glissement sur la même section de la faille et présentent la même magnitude.
Les séismes lents du Kilauea sont des exemples de « séismes types», autrement dit des événements à répétition, de magnitude et de localisation identiques, qui correspondent à une rupture la même section de la faille. Au début, la notion de « séisme type » a été avancée dans l’espoir qu’elle pourrait permettre de prévoir les séismes classiques, les plus destructeurs. Cette idée a fait suite à l’observation d’une série de séismes qui semblaient se produire tous les 22 ans près de la ville de Parkfield en Californie. Après les séismes de 1857, 1881, 1901, 1922, 1934 et 1966, tous de magnitude M 6.0 sur le même section de la faille de San Andreas, les scientifiques avaient prédit que le prochain séisme se produirait en 1988. En fait, le séisme de Parkfield n’a pas eu lieu avant 2004, soit 16 ans après la date prévue. Cependant, même si l’hypothèse de « séisme type » n’a pas permis de prévoir un séisme classique, elle est utile pour prévoir des « séismes lents » partout dans le monde. De tels événements, récurrents et prévisibles, affectent la zone de subduction de Cascadia au large des Etats de Washington et de l’Oregon. Cette faille génère tous les 15 mois des glissements lents équivalant à un séisme de magnitude M 6. Au Japon, sur la zone de subduction le long de la fosse de Nankai, des glissements importants se produisent environ tous les 7 ans et correspondent à des séismes de magnitude M 7,0.
Dans la mesure où l’événement de glissement lent le plus récent sur le Kilauea s’est produit en octobre 2015 et que les « séismes lents » ont une périodicité de 2,5 ans (à 3 mois près), le HVO pense que le prochain pourrait être enregistré d’ici août 2018, mais aucune secousse ne sera ressentie par la population. .
Source: USGS / HVO.

——————————————

Occasionally, earthquakes are recorded on the southern flank of Kilauea Volcano and HVO attributes them to the slow sliding of the volcanic edifice into the Pacific Ocean. The last slip event was in October 2015, and before then, in May 2012, February 2010, and June 2007.

Slow slip events are sometimes called “slow earthquakes.” They happen when a fault begins sliding, just like in a regular earthquake, but so slowly that it takes several days to finish instead of several seconds. At Kilauea, slow earthquakes occur on the nearly flat-lying décollement fault that underlies the volcano’s south flank at a depth of 6-8 km. This is the same fault that was responsible for the M 7.7 Kalapana earthquake in 1975. However, slow earthquakes produce no seismic waves and, therefore, none of the damaging shaking of a regular earthquake. They help relieve a small amount of stress on the fault.

During a slow earthquake, the south flank usually surges seaward by about 3 cm. This additional motion occurs over 2-3 days, and is about the same amount that would happen in a regular M 6.0 earthquake. HVO’s GPS monitoring network shows that the south flank moves steadily seaward about 6 cm every year. Kilauea slow slip events tend to occur evenly in time; in particular, events after 2005 have occurred every 2.5 years, give or take 3 months. They are also caused by slip on the same section of the fault every time and tend to be about the same size.

Kilauea slow slip events are examples of so-called “characteristic” earthquakes, a series of several earthquakes of similar magnitude and location, which indicates that they are breaking the exact same part of the fault again and again. The characteristic earthquake hypothesis was originally developed in hope that it could predict regular, and possibly damaging, earthquakes. This idea emerged from observations of a series of earthquakes that seemed to strike about every 22 years near the town of Parkfield, California. After earthquakes in 1857, 1881, 1901, 1922, 1934, and 1966, all of which occurred as M 6.0 events in the same part of the San Andreas Fault, scientists predicted the next earthquake would occur in 1988. As it turned out, the next Parkfield earthquake did not occur until 2004, 16 years after the predicted date. However, even though the characteristic earthquake hypothesis was not successful at predicting a regular earthquake, it has been useful for forecasting the occurrence of slow slip events around the world. Locations where recurring, predictable slow slip events happen include the Cascadia Subduction zone offshore of Washington and Oregon. This fault produces slow slip events equivalent to an M 6.7 earthquake every 15 months. In Japan, on the subduction zone along the Nankai Trough, major slow slip events occur approximately every 7 years and are equivalent to M 7.0 earthquakes!

Because the most recent slow slip event on Kilauea happened in October 2015, and the events have a recurrence time of 2.5 years (give or take 3 months), HVO can forecast that the next one might occur between now and August 2018. But there won’t be any shaking that could be easily felt by individuals.

Source: USGS / HVO.

Sur le schéma ci-dessus, les flèches noires montrent l’intensité des séismes lents (voir échelle en bas du schéma), ainsi que leur orientation telle qu’elle a été enregistrée par le réseau GPS du HVO en octobre 2015. Les couleurs font référence à la topographie, depuis le niveau de la mer (en vert) jusqu’à 1200 m d’altitude (en marron). L’océan est en bleu. (Source : HVO)

Les leçons de l’éruption du Moto-Shirane (Japon) // The lessons of the Moto-Shirane eruption (Japan)

Les Japonais sont des gens très scrupuleux. Chaque fois qu’un problème survient, ils essaient d’en déterminer les causes et de trouver des solutions. Cet état d’esprit peut être observé dans de nombreux domaines d’activité et les volcans en font partie.
Lorsque le Mont Moto-Shirane est entré soudainement en éruption le 23 janvier 2018, tuant une personne et en blessant 11 autres, l’Agence Météorologique Japonaise (JMA) a été dans l’impossibilité d’émettre un bulletin d’alerte immédiatement après l’événement. Le premier a été publié seulement environ une heure plus tard. La ville de Kusatsu, une station de ski près du volcan, a réussi à diffuser un bulletin d’alerte par radio 50 minutes après l’éruption. L’Agence a réagi avec un tel retard parce qu’il fallait qu’elle vérifie non seulement ce qui s’est passé sur volcan, mais aussi si le système d’observation et d’alerte des volcans de la région avait fonctionné. Cet événement montre que le gouvernement japonais et la communauté scientifique (en l’occurrence les volcanologues) auraient tout intérêt à revoir le système actuel de surveillance et d’alerte, et examiner les moyens de répondre au mieux aux éruptions une fois qu’elles ont eu lieu.
Le Japon compte 111 volcans actifs, ce qui  représente environ 7% des volcans actifs de la planète, et 50 sont surveillés 24 heures sur 24. La zone volcanique où l’éruption s’est produite le 23 janvier en fait partie. L’Institut de Technologie de Tokyo a un observatoire sur le Moto-Shirane ; ce qui s’est passé est donc d’autant moins excusable.
L’éruption a eu lieu au niveau du cratère Kagamiike sur le Mont Moto-Shirane. Les volcanologues et l’Agence ne s’attendaient pas à une éruption sur ce site car il n’y avait pas eu d’activité volcanique depuis environ 3 000 ans. Les efforts de surveillance dans la région se concentrent sur le cratère Yugama, à environ 2 km au nord. Les données indiquent que l’éruption du 23 janvier a été très soudaine. Une activité sismique a été enregistrée vers 9h59 et l’éruption a eu lieu à 10h02. Tout bulletin d’alerte aurait donc été inutile en matière d’évacuations.
La dernière éruption semble montrer que le système d’observation du Moto-Shirane est inadéquat, même si un meilleur équipement n’aurait  pas forcément permis de prévoir une éruption phréatique. Cet événement devrait toutefois inciter la JMA à vérifier si le réseau national de sismomètres et de caméras de surveillance volcanique ne présente pas des lacunes. Bien qu’il y ait des contraintes budgétaires, l’Agence devrait utiliser au mieux ses ressources pour accroître l’efficacité du réseau d’observation. Par exemple, il n’y avait pas de carte à risques couvrant le site de la dernière éruption. La JMA devra donc revoir la façon dont la carte est élaborée en tenant compte du fait que les activités volcaniques peuvent être très irrégulières.
La JMA devra analyser les données de la dernière éruption pour déterminer l’étendue exacte des dégâts. Pour cela, il faudra identifier les zones où le volcan a envoyé des projectiles et de la cendre, le type spécifique et l’ampleur de l’éruption, si de l’eau chaude a été émise et s’il y a eu des coulées pyroclastiques. L’Agence devra également étudier pourquoi il a fallu si longtemps pour émettre une alerte d’éruption. Le premier bulletin a été émis environ une heure après l’éruption, avec élévation du niveau d’alerte de 1 à 2 sur une échelle de 5, niveau qui indique que l’entrée dans la zone du cratère est limitée. Environ une heure et 50 minutes après l’éruption, le niveau d’alerte est passé à 3, en vertu duquel l’entrée dans la zone du cratère est soit interdite, soit restreinte. Le problème est que l’Agence n’a pas partagé ce bulletin d’alerte avec les autorités locales à Kusatsu.
Le système d’alerte éruptive rapide a été mis en place à la suite de l’éruption du Mont Ontake en 2014, qui a tué 58 personnes. Le but est d’inciter les gens à évacuer la zone et ainsi à limiter le nombre de victimes. Afin d’expliquer pourquoi les bulletins d’alerte n’ont pas été émis immédiatement, la JMA a déclaré qu’il a fallu du temps pour confirmer les faits liés à l’éruption en raison du manque de caméras de surveillance près du site. Dans un tel cas et dans un but de sécurité, il faudrait que l’Agence obtienne le plus rapidement possible des informations auprès des randonneurs et des touristes qui se trouvent près du site de l’éruption et qu’elle émette des bulletins d’informations appropriés, même si ces informations ne peuvent pas être vérifiées. Les municipalités proches des volcans devraient également agir selon le même principe, même si elles sont susceptibles d’obtenir des informations contradictoires, comme ce fut le cas pour la mairie de Kusatsu.
Beaucoup de volcans japonais sont des lieux touristiques et les gens ne se rendent pas forcément compte du risque éruptif. La plupart des municipalités situées à proximité des volcans ne possèdent pas de plans d’évacuation pouvant être utilisés en cas de problème..
Bien que l’éruption du Mont Moto-Shirane nous rappelle la difficulté à prévoir de tels événements, elle devrait pousser le gouvernement japonais à intensifier ses efforts pour améliorer le système de surveillance volcanique. Un bon point de départ consisterait à allouer des ressources suffisantes pour former une nouvelle génération de volcanologues, car le pays souffre cruellement d’une pénurie de jeunes scientifiques dans ce domaine.
Source: The Japan Times.

——————————————–

The Japanese are very scrupulous people. Each time a problem occurs, they try to find its causes and possible solutions. This behaviour can be observed in many fields of activity and volcanoes are concerned too.

When Mount Moto-Shirane erupted without warning on January 23rd 2018, killing one person and injuring 11 others, the Japan Meteorological Agency (JMA) was unable to issue an alert immediately after the eruption; the first one was issued only about an hour later. The town of Kusatsu, the site of a ski resort near the volcano, only managed to broadcast a disaster warning through a wireless system 50 minutes after the eruption. Along with verifying what happened at the volcano, the Agency needs to look into whether the volcano observation and alert system in the area worked. The government and the volcanologist community should re-examine the current monitoring and alert system, and review ways to best respond to eruptions once they have taken place.

Japan has 111 active volcanoes accounting for about 7% of active volcanoes around the world, and 50 of them are observed round the clock. The volcanic area where the eruption occurred last week is one of these 50 areas. The Tokyo Institute of Technology has an observatory there, making what happened all the more shocking.

The eruption took place at the Kagamiike crater on Mount Moto-Shirane. Volcanologists and the Agency had not anticipated an eruption at that site since there had been no volcanic activity there in some 3,000 years. The monitoring efforts in the area are concentrated at the Yugama crater of Mount Shirane, some 2 km to the north. Data indicate the January 23rd eruption was very sudden. Volcanic tremors were observed in the area around 9:59 a.m. and the eruption took place at 10:02 a.m.

It is clear that the system to observe Mount Moto-Shirane is inadequate, although even a better one may not have enabled the prediction of a phreatic eruption. This event should prompt the Agency to look into whether the nation’s network of seismometers and video cameras to monitor volcanic activities has too many holes. While there are budgetary constraints, the Agency should make the best use of its resources to increase efficiency of the observation network. The hazard map for volcanic activities and eruptions did not cover the site where last week’s eruption took place. Thus, the Agency should review the way the map is created based on the understanding that volcanic activities can be very irregular.

The Agency needs to analyze data from the latest eruption to determine the exact extent of the damage, including identifying the areas where the volcano spewed stones and ash, the specific type and scale of the eruption, whether hot water was discharged and whether there were debris flows. It should also scrutinize how and why it took so long to issue an eruption alert. The first warning came about an hour after the eruption, raising the volcanic status level from 1 to 2 on a scale of 5, a level at which entry into the crater area is restricted. About one hour and 50 minutes after the eruption, it raised the status level to 3, under which entering the mountain area is either banned or restricted. However, the Agency did not share this warning with the Kusatsu Municipal Government.

The system of issuing a prompt eruption alert was established in the wake of the 2014 eruption of Mount Ontake which killed 58 people, in an effort to encourage people to evacuate and limit casualties as much as possible. Explaining why the warnings were not issued immediately, JMA said it took time to confirm the facts related to the eruption due to the lack of monitoring cameras near the site. In such a case, the Agency should get information from climbers and tourists who were near the scene as quickly as possible and issue relevant warnings – even if the information provided cannot be verified – under the principle that safety comes first. Municipalities near volcanoes also should act under the same principle, although they may get conflicting information, as the Kusatsu town office did.

Many of Japan’s volcanoes constitute tourism resources, and people may not have a sufficient sense of caution regarding the possibility of eruptions. Most municipalities near volcanoes are said to lack advance evacuation plans in the event of an incident.

Although what happened last week at Mount Moto-Shirane reminds us of the difficulty of forecasting volcanic eruptions, that should not lead the government to slacken its efforts to improve the system to monitor volcanic activities. A good starting point would be to allocate sufficient resources to train a new generation of volcanologists since the nation is suffering from an acute shortage of young experts in the field.

Source : The Japan Times.

Zone sommitale du Moto-Shirane (Crédit photo: F. Gueffier)