L’éruption du Hunga-Tonga Hunga-Ha’apai ne cesse de surprendre // The Hunga-Tonga Hunga-Ha’apai eruption was really amazing

Des mois après qu’elle se soit produite (15 janvier 2022), l’éruption du volcan sous-marin Hunga-Tonga Hunga-Ha’apai intrigue toujours la communauté scientifique car sa puissance n’avait jamais été observée à l’occasion d’autres éruptions sur Terre.
Une analyse des ondes sismiques a révélé quatre événements qui ont été interprétés comme de puissantes poussées de roche en fusion sous le volcan. En l’espace de cinq minutes, chacun de ces coups de boutoir a probablement développé une force d’un milliard de tonnes.
Comme je l’ai écrit précédemment, le Hunga-Tonga Hunga-Ha’apai a généré la plus grande explosion atmosphérique jamais enregistrée par l’instrumentation moderne. Elle a déplacé environ 10 kilomètres cubes de roche, de cendres et de sédiments. Une grande partie a été évacuée par la caldeira du volcan et a été propulsée directement dans le ciel.
Des scientifiques se sont réunis à Chicago lors de la réunion d’automne de l’American Geophysical Union (AGU) pour comparer les derniers résultats de leurs études à propos de cette éruption hors du commun.
Un scientifique de l’Université de Houston (Texas) a détaillé l’analyse, par son équipe, des ondes sismiques qui ont accompagné l’événement de magnitude M 5,8 et qui se sont propagées pendant un peu plus de 10 minutes après le début de l’éruption. Ces signaux ont été captés par plus de 400 stations à travers le monde. Le chercheur les attribue à une poussée magmatique qui a percuté la base de la caldeira. Il semble qu’une nouvelle arrivée de magma ait tout à coup atteint la chambre magmatique et l’ait mise en surpression. Il ajoute : « Le magma a surgi à grande vitesse, comme un train qui aurait percuté un mur. Le phénomène s’est produit à quatre reprises en 300 secondes. »
Les satellites ont montré que les cendres du Hunga-Tonga ont atteint une altitude de 57 km; c’est le panache volcanique le plus élevé jamais enregistré. De nouvelles données présentées lors de la réunion de l’AGU ont indiqué que les cendres sont montées jusque dans l’espace. En effet, les capteurs des satellites de l’agence spatiale américaine et de l’US Air Force qui mesurent le rayonnement ultraviolet lointain du Soleil ont détecté dans leurs données un fort coefficient d’absorption à une altitude supérieure à 100 km, ce qui correspond à la ligne Karman, la frontière avec l’espace.
Les analyses de l’éruption ont également révélé que le volcan avait envoyé dans l’espace une masse de vapeur d’eau estimée entre 20 000 à 200 000 tonnes. Les scientifiques expliquent qu’il n’est pas surprenant qu’un volcan sous-marin envoie de l’eau dans le ciel lors d’une éruption, mais la hauteur atteinte par cette eau défie l’entendement.

Cette eau a de toute évidence contribué à créer les conditions nécessaires à la plus grande concentration de foudre jamais détectée. Le panache de l’éruption du Hunga-Tonga a produit 400 000 éclairs le 15 janvier, avec jusqu’à 5 000 à 5 200 événements par minute. C’est un ordre de grandeur supérieur à celui observé pendant les orages supercellulaires qui sont parmi les plus puissants sur Terre. La concentration d’éclairs était si élevée qu’elle a saturé les capteurs. Le nombre de 400 000 est donc très probablement en dessous de la vérité.
Une conséquence remarquable de tous ces éclairs est qu’ils ont produit un flash de rayons gamma détecté par un satellite de la NASA qui recherche dans l’Univers ces émissions à haute énergie. Elles sont censées provenir de trous noirs lointains ou d’explosions d’étoiles. C’était la première fois que le vaisseau spatial Fermi captait un tel flzsh en provenance d’un volcan sur Terre. Cela confirme le caractère extrême et exceptionnel de l’éruption Hunga-Tonga.
Source : la BBC.

——————————————–

Months after it happened on January 15th 2022, the eruption of Hunga-Tonga Hunga-Ha’apai summarine volcano still puzzles scientists around the word as its power had never been observed on other eruptiond on Earth.

An analysis of seismic waves has revealed four individual events that are interpreted to be thrusts of molten rock beneath the underwater mountain. Occurring within a five-minute period, each of these blows is calculated to have had a force of a billion tonnes.

As I put it previously, the seamount produced the biggest atmospheric explosion ever recorded by modern instrumentation. It displaced some 10 cubic kilometers of rock, ash and sediment, much of it exiting through the volcano’s caldera, to shoot straight up into the sky.

Scientists have gathered in Chicago at the American Geophysical Union (AGU) Fall Meeting to compare the latest results of their investigations into what happened.

A scientist from the University of Houston (Texas) detailed his team’s analysis of the Magnitude 5.8 seismic waves generated just over 10 minutes into the climactic eruption. These signals were picked up at more than 400 monitoring stations around the globe. The researcher attributes them to a pulse of magma moving up from below the mountain and hitting the base of the caldera. It looked as if a new batch of magma had suddenly just reached into the magma chamber and over-pressured the chamber. He adds : « The pulse of the magma was travelling up at high speed and it was like a train hitting the base of the wall. It hammered four times within 300 seconds. »

Ash from Hunga-Tonga was measured by weather satellites to have travelled 57 km above the Earth’s surface, the highest ever recorded volcanic plume. But new data presented at the AGU meeting indicated the disturbance went higher still, all the way to space. Sensors on US space agency and US Air Force satellites that measure far-ultraviolet radiation from the Sun noticed a strong absorption feature in their data correlated to an altitude above 100 km, which corresponds to the Karman Line, the recognised boundary to space.

Analyses of the eruption aloso revealed that the volcano sent into space a mass o water vapour estimated between 20,000 to 200,000 tonnes. Scientists say that a submarine volcano throwing so much water into the sky during an eruption is not a surprise, but the height to which that water travelled is. This water also clearly played a role in creating the conditions necessary to generate the greatest concentration of lightning ever detected. The Hunga-Tonga eruption plume produced 400,000 lightning events on January 15th, with rates of up to 5,000 to 5,200 events per minute. This is an order of magnitude higher than the one observed in super-cell thunderstorms, some of the strongest thunderstorms that exist on Earth. The rates were so high that they saturated the sensors. The 400,000 number is most probably below the truth.

One remarkable consequence of all this lightning is that it produced a gamma-ray flash detected by a Nasa satellite that normally looks out into the Universe for such high-energy emissions. These are expected to come from far-off black holes or exploding stars. This was the first time the Fermi spacecraft had caught a flash coming from a volcano on Earth. This confirms the extreme and exceptional nature of the Hunga-Tonga eruption.

Source: The BBC.

Images montrant l’étendue du nuage de cendres au moment de l’éruption du Hunga-Tonga Hunga-Ha’apai (Source: USGS)

L’éruption du Hunga Tonga-Hunga Ha’apai (Tonga) a battu des records // The Hunga Tonga-Hunga Ha’apai eruption (Tonga) broke records

L’éruption sous-marine du Hunga Tonga-Hunga Ha’apai (archipel des Tonga) le 15 janvier 2022 a battu simultanément deux records : le panache volcanique a atteint des hauteurs encore jamais observées par les satellites, et l’éruption a généré un nombre encore jamais observé d’éclairs, avec près de 590 000 impacts de foudre en trois jours.
Deux satellites météorologiques – le Geostationary Operational Environmental Satellite 17 (GOES-17) de la NOAA et le Himawari-8 de l’Agence japonaise d’exploration aérospatiale – ont observé cette éruption exceptionnelle depuis l’espace, ce qui a permis aux scientifiques de calculer jusqu’où le panache avait pénétré dans l’atmosphère.Ils ont déterminé que, à son point culminant, le panache s’est élevé à une hauteur de 58 km, ce qui signifie qu’il a percé la mésosphère, la troisième couche de l’atmosphère. Après qu’une première explosion ait généré ce panache très volumineux, une nouvelle explosion a propulsé des cendres, du gaz et de la vapeur à plus de 50 km dans le ciel. A titre de comparaison, en 1991, le mont Pinatubo (Philippines) avait généré un panache qui s’étendait sur 35 km au-dessus du volcan. Dans la stratosphère (donc sous la mésosphère), le gaz et les cendres du volcan se sont accumulés et se sont étalés pour couvrir une superficie de 157 000 kilomètres carrés.
Pour étudier la foudre, l’équipe scientifique a utilisé les données de GLD360, un réseau de détection de foudre au sol. Ces données ont révélé que, sur les quelque 590 000 coups de foudre détectés lors de l’éruption, environ 400 000 se sont produits dans les six heures qui ont suivi la puissante explosion du 15 janvier.
Avant l’éruption du Hunga Tonga-Hunga Ha’apai, le plus grand événement de foudre volcanique s’était produit en Indonésie en 2018, lorsque l’Anak Krakatau est entré en éruption et a généré environ 340 000 éclairs en une semaine. Environ 56% de la foudre produite par l’éruption des Tonga a frappé la surface de la terre ou de l’océan, et plus de 1 300 impacts ont été recensés sur l’île principale des Tonga, Tongatapu.
La foudre peut se diviser en deux catégories. Un type de foudre a été causé par une « charge sèche », dans laquelle des cendres, des roches et des particules de lave entrent en collision dans l’air et échangent des électrons chargés négativement. Le deuxième type de foudre a été causé par la « charge de glace », qui se produit lorsque le panache volcanique atteint des hauteurs où l’eau peut geler et former des particules de glace qui s’entrechoquent.
Ces deux processus conduisent à des coups de foudre en provoquant l’accumulation d’électrons sur la partie inférieure des nuages; ces particules chargées négativement jaillissent ensuite vers des régions de nuages plus élevées et chargées positivement ou vers des régions chargées positivement du sol ou de la mer en dessous.
Source : space.com.

—————————————–

The submarine eruption that occurred in the Tonga archipelago on January 15th, 2022 shattered two records simultaneously: The volcanic plume reached greater heights than any eruption ever captured in the satellite record, and the eruption generated an unparalleled number of lightning strikes, with almost 590,000 bolts over the course of three days.

Two weather satellites – NOAA’s Geostationary Operational Environmental Satellite 17 (GOES-17) and the Japan Aerospace Exploration Agency’s Himawari-8 – captured the unusual eruption from above, allowing scientists to calculate just how far the plume penetrated the atmosphere.They determined that, at its highest point, the plume rose 58 km into the air, meaning it pierced the mesosphere, the third layer of the atmosphere. After an initial blast generated this towering plume, a secondary blast sent ash, gas and steam more than 50 km into the air. As a comparison,.in 1991, Mount Pinatubo (Philippines) unleashed a plume that extended 35 km above the volcano. In the stratosphere (beneath the mesosphere), gas and ash from the volcano accumulated and spread to cover an area of 157,000 square kilometers.

To study the lightning, the scientific team used data from GLD360, a ground-based lightning detection network. These data revealed that, of the nearly 590,000 lightning strikes that took place during the eruption, about 400,000 occurred within six hours after the big blast on January 15th.

Prior to the Tonga eruption, the largest volcanic lightning event happened in Indonesia in 2018, when Anak Krakatau erupted and generated about 340,000 lightning strikes over the course of a week. About 56% of the lightning during the Tonga eruption struck the surface of the land or ocean, and more than 1,300 strikes landed on Tonga’s main island of Tongatapu.

The lightning came in two categories. One type of lightning was caused by « dry charging, » in which ash, rocks and lava particles repeatedly collide in the air and swap negatively charged electrons. The second type of lightning was caused by « ice charging, » which occurs when the volcanic plume reaches heights where water can freeze and form ice particles that slam into each other.

Both of these processes lead to lightning strikes by causing electrons to build up on the undersides of the clouds; these negatively charged particles then leap to higher, positively charged regions of the clouds or to positively charged regions of the ground or sea below.

Source : space.com.

Panache émis par l’éruption du 15 janvier 2022 (Source: Tonga Services

Piton de la Fournaise (Ile de la Réunion) : clap de fin et une question // End of the eruption

L’OVPF indique que « suite à l’arrêt du tremor volcanique le 24 mai 2021 vers 2 heures (heure locale), aucune reprise d’activité n’a été constatée. » L’éruption est donc terminée.

———————————–

OVPF indicates that « the eruptive tremor stopped on May 24th, 2021 at 2 :00 (local time). No resumption of activity has been observed.” The eruption is over.

Photo: Christian Holveck

++++++++++

Cette dernière éruption du Piton de la Fournaise s’est soldée par la mort de deux jeunes randonneurs âgés de 19 ans, étudiants de l’Université de La Réunion, dont les corps ont été découverts le jeudi 22 avril 2021 au matin à proximité du site éruptif.

Des autopsies ont été réalisées le 23 avril. Lors d’un point de presse, la procureur Caroline Calbo a déclaré : « Ce n’est pas encore très précis » mais les décès semblent liés « à une exposition thermique et toxique. » La magistrate a ajouté  « Cela nécessite toutefois des investigations complémentaires. Des analyses viendront préciser ces éléments-là ».

Depuis le 23 avril, c’est le silence radio. Aucune information supplémentaire convaincante n’a été donnée.

Une personne qui semble ignorer le sens réel de ce mot m’a accusé de ‘complotisme’, ce qui m’a bien fait rire. Ma seule demande est que la cause réelle de la mort de ces deux jeunes soit expliquée au public. Nous sommes nombreux à fréquenter les sites volcaniques actifs et il est bien évident que l’explication très vague fournie par la procureure ne satisfait personne. Il m’est arrivé, comme beaucoup de volcanophiles, de traverser un champ de lave actif où la chaleur est intense et où des gaz s’échappent du sol…et nous sommes toujours là ! De très nombreux touristes fréquentent le site éruptif en ce moment en Islande ; ils s’approchent de coulées qui dégagent une chaleur intense ; le site est souvent envahi par les gaz et aucun accident mortel n’a été recensé.  L’explication donnée par la procureure est un peu légère et ne peut qu’ouvrir la porte au doute et aux questions!

La météo était particulièrement défavorable sur le volcan au moment du drame, avec un très grand nombre d’impacts de foudre. Comme je l’ai indiqué précédemment, j’ai eu l’occasion  de voir les corps de deux personnes qui avaient été foudroyées sur l’Etna (Sicile). A première vue, elles semblaient dormir sur le sentier et ne portaient pas de marques visibles de l’impact de foudre. Je n’ai aucune compétence médicale, mais les articles médicaux à propos du foudroiement de personnes confirment qu’elles peuvent ne porter aucune trace sur leur corps. On peut lire dans l’un d’entre eux : « Dans le cas de décès sans lésions, y compris à l’autopsie, les lieux et circonstances de découverte doivent être soigneusement étudiés, avec avis complémentaires de différents experts : électrotechniciens, météorologues… » Si un médecin lit cette note, j’aimerais avoir son avis.

Il n’est, bien sûr, pas question de violer l’intimité des familles dont je comprends la peine, mais la  divulgation des résultats des « analyses complémentaires » qui ont été réalisées serait utiles pour tout le monde, éliminerait les questions inutiles, et éviterait peut-être que de nouveaux drames se produisent. (Je n’irai pas jusqu’à dire qu’il faut interdire l’accès de l’Enclos en cas d’orage !) Comme me disait un ami, « une chose est certaine ; s’ils sont morts, c’est qu’ils ont commis une erreur. » Reste à savoir de quelle erreur il s’agit.

S’agissant de l’accès à l’Enclos,vous pourrez lire – ou relire – ma note du 18 mai 2021:

Eruption en Islande vs. Eruption à la Réunion !

 

Les éclairs volcaniques du Sakurajima (Japon) // Lightning of Sakurajima volcano (Japan)

drapeau-francaisDes chercheurs du département des Sciences de la Terre et de l’Environnement à l’Université de Munich ont développé des techniques pour observer et analyser les éclairs pendant les éruptions du Sakurajima. Ils ont récemment publié une étude dans Geophysical Research Letters intitulée «Observation multiparamétrique de la foudre volcanique sur le volcan Sakurajima au Japon ». Les chercheurs ont utilisé des caméras haute vitesse et des données magnétotelluriques afin de percevoir des processus éruptifs qui sont invisibles et trop rapides pour l’oeil humain. Alors qu’une caméra vidéo banale peut capturer des séquences d’images 30 fois par seconde, les caméras haute résolution et haute vitesse utilisées par les chercheurs capturent les images 100 fois plus rapidement.
Grâce à l’utilisation de ces caméras haute vitesse, les chercheurs ont appris que les éclairs se propagent en séries saccadées, un processus qui est également observé pendant les orages classiques. Cela correspond à la mise en court-circuit de régions chargées qui étaient séparées, soit à l’intérieur d’un nuage, soit entre le nuage et le sol.

Les éclairs détectés sur le Sakurajima sont généralement de petite taille et mesurent entre 9 et 180 mètres, c’est-à-dire deux ou fois moins que ceux qui apparaissent pendant les orages classiques.
La caméra haute vitesse permet de cartographier la répartition des éclairs au fil du temps, mais ces informations deviennent beaucoup plus intéressantes quand elles sont complétées par la surveillance magnétotelluriques (MT) qui détecte également les éclairs qui apparaissent dans la partie centrale plus opaque de la colonne éruptive.
Les observations MT échantillonnent simultanément les variations des champs électrique et magnétique depuis plusieurs kilomètres de distance et à l’incroyable fréquence de 65 000 fois par seconde. Les plus infimes fluctuations du champ magnétique sont enregistrées et ont révélé que les éclairs du Sakurajima véhiculent un courant pouvant atteindre 1000 ampères. En utilisant la technologie MT, les chercheurs peuvent aussi compter le nombre d’éclairs, déterminer le sens du courant pour chaque éclair et observer si la foudre reste concentrée dans le nuage de cendre ou si elle atteint le sol.
Si la compréhension scientifique de la foudre a atteint un bon niveau pendant les orages classiques, elle n’est encore qu’à l’état embryonnaire sur les volcans. Sur la base d’études cartographiques conduites en Alaska, on peut dire que la foudre volcanique se répartit en plusieurs catégories en fonction de son emplacement : foudre au niveau de la bouche éruptive, foudre à proximité de la bouche éruptive et foudre à l’intérieur du panache éruptif. La foudre au niveau du cratère du Sakurajima comprend des éclairs de plusieurs dizaines ou centaines de mètres de longueur à proximité de la bouche éruptive. A cet endroit, de petites particules de cendre sont projetées et sont préférentiellement chargées, c’est-à-dire que les plus grosses deviennent légèrement plus positives. Ensuite, comme le tri de la taille des particules s’effectue selon la résistance de l’air dans le nuage de cendre, elles deviennent physiquement séparées. Lorsque la cendre est projetée dans les airs, les particules de plus petite taille ont tendance à ralentir plus rapidement. C’est alors que se produit la séparation des charges, que ce soit par fracturation lorsque le matériau pyroclastique est violemment projeté pendant l’éruption; ou quand s’effectue un transfert de charge par frottement. Ce second mécanisme est semblable à l’électricité statique qui s’accumule lorsque l’on frotte une règle sur la manche d’un vêtement.
De nombreuses études ont montré que les colonnes éruptives se chargent statiquement à cause de la séparation des particules de cendre dans un panache. C’est un point important, parce que la présence de la foudre à proximité d’une bouche éruptive est directement liée à la quantité de matière fine produite par l’éruption. Ces découvertes laissent penser que nous pourrons bientôt utiliser la détection de la foudre pour mesurer la quantité de cendre émise lors des éruptions. La détection de la foudre offre la possibilité de quantifier les émissions de cendre pendant les intempéries et durant la nuit. Les détecteurs peuvent être installés à des dizaines de kilomètres d’une bouche éruptive et le nuage de cendre n’empêche pas les capteurs MT de « discerner » la foudre. Cette détection est essentielle car les nuages de cendre volcanique représentent l’un des principaux problèmes posés par les éruptions. Même diluées, les cendres ingérées par un moteur d’avion peuvent entraîner son arrêt et provoquer une catastrophe.
Compte tenu de l’impact économique des éruptions accompagnées de panaches de cendre, la prochaine génération de suivi des éruptions se concentrera sur la quantification des cendres et les détecteurs d’éclairs feront probablement partie des équipements prioritaires. Le Sakurajima aura largement contribué au développement de ces outils.
Source: Science en direct: http://www.livescience.com/

————————————

drapeau-anglaisResearchers from the Department of Earth and Environmental Sciences at the University of Munich have been developing techniques to observe Sakurajima’s eruption lightning events. They recently published a study in Geophysical Research Letters entitled “Multiparametric observation of volcanic lightning: Sakurajima volcano, Japan”. In this study, the researchers use high-speed cameras and magnetotelluric data to perceive the eruptive processes that are invisible and too fast for a human observer to track. While a commonplace video camera might capture image sequences 30 times each second, the high-resolution, high-speed cameras that the researchers use capture images 100 times more rapidly.

With the use of high-speed cameras, researchers have learned that lightning sparks propagate in a series of jerky advances that correspond to the short circuiting of charged regions that have been separated either within a cloud, or between the cloud and ground.

The sparks that are detected during volcanic lightning episodes at Sakurajima are generally small and measure between 9 and 180 metres, namely one or two orders of magnitude shorter than the lightning that appears during electrical storms.

The high-speed camera maps the distribution of sparks over time, but this information becomes much more valuable when it is complemented by magnetotelluric (MT) monitoring, which also detects sparks occurring within the opaque, center portion of the eruption column.

MT observations sample both electric- and magnetic-field variations from many kilometres away and at an incredible 65,000 times per second. Tiny magnetic-field fluctuations are well-recorded, and have revealed that Sakurajima volcano lightning carries up to 1,000 amperes of current. Using the MT technique, the researchers can also count flashes, determine the direction of current flow for each flash and assess whether the lightning remains within the ash cloud or reaches the ground.

Although scientists’ understanding of thunderstorm lightning is mature, they are only starting to build an understanding of volcano lightning. Based upon volcano lightning « mapping » studies conducted in Alaska, volcano lightning may be broadly grouped into categories that are described as « vent discharges, » « near-vent lightning » or « plume lightning » depending upon where they are located within an eruption column.

The vent discharges at Sakurajima include sparks tens- to hundreds-of-meters long that occur near the mouth of the volcano. Here, small particles of ash erupt and are preferentially charged — that is, the larger particles becoming slightly more positive. And then, as particle sizes are sorted by air resistance within the ash cloud, they become physically separated. When the ash explodes upward, the smaller-size particles tend to slow down more quickly. This is when charge separation may occur, either due to fractocharging when the pyroclastic material is violently ripped apart during eruption; or due to tribocharging, which is charge transfer through rubbing. This second mechanism is akin to the familiar static electricity that builds up when you rub a ruler on your arm.

A wealth of volcano research has shown that eruption columns become statically charged due to ash separating in a plume. This is important, because near-vent volcanic lightning is directly related to how much fine material is erupted. These discoveries suggest that soon we might be able to use lightning detection as a measure of how much ash is ejected during eruptions. Lightning detection offers a means to potentially quantify ash discharges during inclement weather and at nighttime. Detectors can be located at safe distances, tens of kilometres from the vent, and the cloud does not impede the ability of MT sensors to « see » lightning. Such detections are critical, as volcanic ash clouds are one of the principal hazards posed by eruptions. Even dilute amounts of ash that are ingested by a jet turbine can incapacitate the engine, causing it to fail catastrophically.

Given the economic impact of ashy eruptions, the next generation of eruption monitoring will focus on ash quantification and will likely use lightning ash detectors as a primary instrument. Sakurajima is facilitating the development of this tool.

Source : Live Science : http://www.livescience.com/

Rinjani_1994

Production d’éclairs sur le Rinjani (Indonésie) en 1994

(Crédit photo: Wikipedia)