L’éruption du Hunga Tonga-Hunga Ha’apai (Tonga) a battu des records // The Hunga Tonga-Hunga Ha’apai eruption (Tonga) broke records

L’éruption sous-marine du Hunga Tonga-Hunga Ha’apai (archipel des Tonga) le 15 janvier 2022 a battu simultanément deux records : le panache volcanique a atteint des hauteurs encore jamais observées par les satellites, et l’éruption a généré un nombre encore jamais observé d’éclairs, avec près de 590 000 impacts de foudre en trois jours.
Deux satellites météorologiques – le Geostationary Operational Environmental Satellite 17 (GOES-17) de la NOAA et le Himawari-8 de l’Agence japonaise d’exploration aérospatiale – ont observé cette éruption exceptionnelle depuis l’espace, ce qui a permis aux scientifiques de calculer jusqu’où le panache avait pénétré dans l’atmosphère.Ils ont déterminé que, à son point culminant, le panache s’est élevé à une hauteur de 58 km, ce qui signifie qu’il a percé la mésosphère, la troisième couche de l’atmosphère. Après qu’une première explosion ait généré ce panache très volumineux, une nouvelle explosion a propulsé des cendres, du gaz et de la vapeur à plus de 50 km dans le ciel. A titre de comparaison, en 1991, le mont Pinatubo (Philippines) avait généré un panache qui s’étendait sur 35 km au-dessus du volcan. Dans la stratosphère (donc sous la mésosphère), le gaz et les cendres du volcan se sont accumulés et se sont étalés pour couvrir une superficie de 157 000 kilomètres carrés.
Pour étudier la foudre, l’équipe scientifique a utilisé les données de GLD360, un réseau de détection de foudre au sol. Ces données ont révélé que, sur les quelque 590 000 coups de foudre détectés lors de l’éruption, environ 400 000 se sont produits dans les six heures qui ont suivi la puissante explosion du 15 janvier.
Avant l’éruption du Hunga Tonga-Hunga Ha’apai, le plus grand événement de foudre volcanique s’était produit en Indonésie en 2018, lorsque l’Anak Krakatau est entré en éruption et a généré environ 340 000 éclairs en une semaine. Environ 56% de la foudre produite par l’éruption des Tonga a frappé la surface de la terre ou de l’océan, et plus de 1 300 impacts ont été recensés sur l’île principale des Tonga, Tongatapu.
La foudre peut se diviser en deux catégories. Un type de foudre a été causé par une « charge sèche », dans laquelle des cendres, des roches et des particules de lave entrent en collision dans l’air et échangent des électrons chargés négativement. Le deuxième type de foudre a été causé par la « charge de glace », qui se produit lorsque le panache volcanique atteint des hauteurs où l’eau peut geler et former des particules de glace qui s’entrechoquent.
Ces deux processus conduisent à des coups de foudre en provoquant l’accumulation d’électrons sur la partie inférieure des nuages; ces particules chargées négativement jaillissent ensuite vers des régions de nuages plus élevées et chargées positivement ou vers des régions chargées positivement du sol ou de la mer en dessous.
Source : space.com.

—————————————–

The submarine eruption that occurred in the Tonga archipelago on January 15th, 2022 shattered two records simultaneously: The volcanic plume reached greater heights than any eruption ever captured in the satellite record, and the eruption generated an unparalleled number of lightning strikes, with almost 590,000 bolts over the course of three days.

Two weather satellites – NOAA’s Geostationary Operational Environmental Satellite 17 (GOES-17) and the Japan Aerospace Exploration Agency’s Himawari-8 – captured the unusual eruption from above, allowing scientists to calculate just how far the plume penetrated the atmosphere.They determined that, at its highest point, the plume rose 58 km into the air, meaning it pierced the mesosphere, the third layer of the atmosphere. After an initial blast generated this towering plume, a secondary blast sent ash, gas and steam more than 50 km into the air. As a comparison,.in 1991, Mount Pinatubo (Philippines) unleashed a plume that extended 35 km above the volcano. In the stratosphere (beneath the mesosphere), gas and ash from the volcano accumulated and spread to cover an area of 157,000 square kilometers.

To study the lightning, the scientific team used data from GLD360, a ground-based lightning detection network. These data revealed that, of the nearly 590,000 lightning strikes that took place during the eruption, about 400,000 occurred within six hours after the big blast on January 15th.

Prior to the Tonga eruption, the largest volcanic lightning event happened in Indonesia in 2018, when Anak Krakatau erupted and generated about 340,000 lightning strikes over the course of a week. About 56% of the lightning during the Tonga eruption struck the surface of the land or ocean, and more than 1,300 strikes landed on Tonga’s main island of Tongatapu.

The lightning came in two categories. One type of lightning was caused by « dry charging, » in which ash, rocks and lava particles repeatedly collide in the air and swap negatively charged electrons. The second type of lightning was caused by « ice charging, » which occurs when the volcanic plume reaches heights where water can freeze and form ice particles that slam into each other.

Both of these processes lead to lightning strikes by causing electrons to build up on the undersides of the clouds; these negatively charged particles then leap to higher, positively charged regions of the clouds or to positively charged regions of the ground or sea below.

Source : space.com.

Panache émis par l’éruption du 15 janvier 2022 (Source: Tonga Services

Un atlas mondial pour estimer le volume d’eau des glaciers // A world atlas to estimate glacier water volumes

Comme je l’ai indiqué à plusieurs reprises sur ce blog, l’évolution des glaciers de montagne est un enjeu majeur : ils servent dans de nombreux pays de réservoir d’eau potable, ont un impact économique, via le tourisme notamment, et participent à la montée du niveau des mers. Dans les pays comme le Pérou, le long de la Cordillère des Andes, ils jouent un rôle essentiel pour l’approvisionnement en eau potable, pour la production d’électricité et pour l’irrigation des cultures. Sans les glaciers, la vie deviendra impossible dans les campagnes et les populations rurales devront migrer vers les villes, Lima en particulier, dont l’alimentation en eau dépend, elle aussi des glaciers andins.

Afin de mieux connaître les réserves en eau représentées par les glaciers, des scientifiques de l’Institut des Géosciences de l’Environnement de Grenoble et du Dartmouth College (USA) ont réalisé un atlas mondial mesurant la vitesse d’écoulement et l’épaisseur de plus de 200 000 glaciers. Ils ont aussi publié un article dans la revue Nature Geoscience.

Malgré leur taille réduite (727 000 km²) face à celle cumulée des deux grandes calottes de l’Antarctique (14 millions de km²) et du Groenland (1,7 millions de km²), la fonte des glaciers de montagne a contribué à 30% de l’élévation du niveau des mers depuis les années 1960.

Même si l’impact des glaciers n’est pas décisif, leur évolution est primordiale au niveau local et leur devenir est une source de préoccupation grandissante pour les zones de montagne et les régions en aval.

Jusqu’à présent, on n’avait qu’une idée très limitée du volume de glace stocké dans les glaciers. Ceci vient notamment du fait que les glaciers sont répartis sous toutes les latitudes, dans des régions souvent difficiles d’accès. Travailler directement sur le terrain est donc très complexe. En conséquence, les mesures d’ épaisseur de la glace n’existent actuellement que sur à peine plus d’1% des glaciers à la surface de la Terre.

À cause de ce manque de données, les scientifiques ont développé des méthodes indirectes pour estimer les quantités de glace sur Terre. Ces méthodes ont d’abord été basées sur l’aire des glaciers, obtenue à partir de photos aériennes ou d’images satellites.

À partir des années 2000, des méthodes basées sur la pente en surface du glacier ont vu le jour, Au-delà de la pente, la vitesse à laquelle s’écoule le glacier constitue une information encore plus pertinente pour estimer la distribution des épaisseurs de glace. En effet, les glaciers s’écoulent sous l’effet de leur propre poids. Par conséquent, cartographier la vitesse à laquelle s’écoule le glacier est essentiel pour mieux estimer la distribution de l’épaisseur de glace et donc le volume des glaciers.

Cependant, les observations sur le terrain de ces vitesses d’écoulement sont, elles aussi, très limitées, mais les innombrables clichés fournis par les satellites ont ouvert de nouvelles perspectives pour mesurer l’écoulement de tous les glaciers de la Terre.

Pour quantifier la vitesse d’écoulement de l’ensemble des glaciers du monde, les chercheurs ont utilisé plus de 800 000 images satellites acquises entre 2017 et 2018 par les satellites Landsat-8 de la NASA et les satellites Sentinel-1 et Sentinel-2 de l’Agence spatiale européenne (ESA). Cette nouvelle génération de satellites constitue une révolution pour l’observation des glaciers, avec des images de l’ensemble des terres émergées acquises à des intervalles de temps réguliers (de 5 à 16 jours).

Plusieurs millions d’heures de calculs sur les serveurs de l’Université Grenoble Alpes ont été nécessaires pour permettre d’assembler un atlas unique de l’écoulement de plus de 200,000 glaciers autour de la Terre.

L’un des principaux apports de cet atlas est la couverture d’une très grande diversité de glaciers, allant de petits glaciers Andins jusqu’à des calottes de l’Arctique canadien ou des champs de glace en Patagonie qui couvrent plusieurs milliers de kilomètres carrés. Ces cartographies permettent ainsi de mieux connaître la manière dont s’écoulent les glaciers. Elles illustrent aussi la grande variété de comportements, avec des glaciers qui s’écoulent à quelques dizaines de mètres par an (comme certains glaciers des Alpes), et d’autres dont la vitesse d’écoulement atteint plusieurs kilomètres en une seule année (comme certains glaciers de Patagonie).

Par ailleurs, cet atlas exhaustif des vitesses d’écoulement glaciaire a permis de redessiner la cartographie de la distribution des épaisseurs de glace et donc du volume des glaciers. En effet, en combinant les informations sur la vitesse d’écoulement en surface des glaciers avec celle de la pente de surface, dans un modèle numérique simulant la manière avec laquelle la glace glisse et se déforme, les chercheurs ont proposé une nouvelle représentation de la géométrie des glaciers.

En de multiples régions, les résultats de ce travail viennent apporter des estimations significativement différentes des précédentes, avec des conséquences importantes sur la disponibilité en eau potable pour la consommation, mais aussi pour l’agriculture ou la production hydro-électrique. Ainsi, dans les Andes que je mentionnais au début de cette note, les nouvelles estimations sont plus alarmantes que précédemment, avec des stocks d’eau glaciaire près d’un quart plus faibles, augmentant ainsi la pression sur les ressources en eau dans ces régions.

Au-delà d’un nouvel inventaire du volume des glaciers, cette étude est cruciale pour mieux simuler leur évolution future et, en particulier, identifier quels sont les secteurs où les glaciers vont disparaître et ceux où ils devraient persister.

Source: The Conversation.

 ———————————————

As I have indicated several times on this blog, the evolution of mountain glaciers is a major issue: in many countries: they serve as reservoirs of drinking water, have an economic impact through tourism and participate in sea level rise. In countries like Peru, along the Andes, they play an essential role in the supply of drinking water, the production of electricity and the irrigation of crops. Without glaciers, life will become impossible in the countryside and rural populations will have to migrate to cities, Lima in particular, whose water supply also depends on Andean glaciers.
In order to better understand the water reserves represented by glaciers, scientists from the Institute of Environmental Geosciences in Grenoble and Dartmouth College (USA) have produced a world atlas measuring the flow speeds and thicknesses of more of 200,000 glaciers. They also published an article in the journal Nature Geoscience.
Despite their reduced size (727,000 km²) compared to that of the two large ice caps of Antarctica (14 million km²) and Greenland (1.7 million km²), the melting of mountain glaciers has contributed 30% sea level rise since the 1960s.
Even if the impact of glaciers is not decisive, their evolution is essential at the local level and their future is a source of growing concern for mountain areas and downslope regions.
Until now, we had only a very limited idea of the volumes of ice stored in glaciers. This is due in particular to the fact that glaciers are distributed at all latitudes, in regions that are often difficult to access. Working directly in the field is therefore very complex. As a result, ice thickness measurements currently exist on just over 1% of glaciers on the Earth’s surface.
Because of this lack of data, scientists have developed indirect methods to estimate the amounts of ice on Earth. These methods were first based on the area of glaciers, obtained from aerial photos or satellite images.
From the 2000s, methods based on the surface slope of the glacier have emerged. Beyond the slope, the speed at which the glacier is flowing provides even more relevant information for estimating the distribution of the thickness of glacier. ice. Indeed, glaciers flow under the effect of their own weight. Therefore, mapping the speed at which the glacier is flowing is essential to better estimate the distribution of ice thickness and therefore the volume of glaciers.
However, field observations of these flow velocities are also very limited, but the countless images provided by satellites have opened up new possibilities for measuring the flow of all the Earth’s glaciers.
To quantify the flow velocity of all of the world’s glaciers, the researchers used more than 800,000 satellite images acquired between 2017 and 2018 by NASA’s Landsat-8 satellites and the Sentinel-1 and Sentinel-2 satellites of the European Space Agency (ESA). This new generation of satellites constitutes a revolution for the observation of glaciers, with images of all emerged land acquired at regular time intervals (from 5 to 16 days).
Several million hours of calculations on the servers of the University of Grenoble Alpes were needed to assemble a unique atlas of the flow of more than 200,000 glaciers around the Earth.
One of the main contributions of this atlas is the coverage of a very great diversity of glaciers, ranging from small Andean glaciers to ice caps in the Canadian Arctic or ice fields in Patagonia which cover several thousand square kilometers. . These maps thus make it possible to better understand the way in which glaciers flow. They also illustrate the wide variety of behaviours, with glaciers flowing at a few tens of meters per year (like some glaciers in the Alps), and others whose flow speeds reach several kilometers in a single year (like some Patagonian glaciers).
In addition, this exhaustive atlas of ice flow velocities has made it possible to re-estimate the mapping of the distribution of ice thickness and therefore the volume of glaciers. Indeed, by combining information on the surface flow velocity of glaciers with that of the surface slope, in a digital model simulating the way in which the ice slides and deforms, the researchers have proposed a new representation of the glacier geometry.

In many regions, the results of this work provide estimates that are significantly different from previous ones, with major consequences on the availability of drinking water for consumption, but also for agriculture or hydroelectric production. Thus, in the Andes that I mentioned at the beginning of this post, the new estimates are more alarming than previously, with glacial water stocks almost a quarter lower, thus increasing the pressure on water resources in these regions. .
Beyond a new inventory of the volume of glaciers, this study is crucial to better simulate the future evolution of glaciers and, in particular, to identify the regions where the glaciers will disappear and those where they are likely to persist.
Source: The Conversation.

La fonte des glaciers alpins, comme ici le glacier Aletsch en Suisse, risque de poser des problèmes d’alimentation en eau dans les vallées (Photo: C. Grandpey)

Utilisation des satellites en volcanologie // Use of satellites in volcanology

L’Observatoire des Volcans d’Hawaii, le HVO, a publié un article très intéressant sur les différents types de satellites utilisés en volcanologie.
On apprend que de nombreux satellites d’imagerie sont en orbite polaire, ce qui les maintient près de la surface de la Terre sur une orbite basse. Ils réalisent des images de la Terre en bandes étroites et séquentielles en même temps que le satellite voyage d’un pôle à l’autre.
A côté des satellites en orbite polaire, il y a les satellites géostationnaires comme GOES (un acronyme pour Geostationary Operational Environmental Satellite) qui ont des orbites différentes car ils se situent au-dessus d’un seul point de la Terre. C’est pour cela qu’ils se trouvent à une plus grande distance de la Terre que les satellites à orbite polaire, mais avec l’avantage que le GOES peut « voir » tout un côté de la planète.
Les États-Unis utilisent deux satellites GOES pour couvrir l’ensemble du pays. GOES-16 (également appelé GOES-Est) survole la longitude 75° Ouest (près de la côte Est); il observe le continent et une grande partie de l’Océan Atlantique. GOES-17 (GOES-West) se situe au-dessus de 137° de longitude ouest (à mi-chemin entre Hawaï et le continent) et offre une vue de l’ouest des États-Unis et une grande partie de l’Océan Pacifique.
La mission première des satellites GOES n’est pas de détecter l’activité volcanique ou les feux de forêt, mais de surveiller en permanence la météo. La vue large qu’ils proposent permet aux scientifiques de suivre les systèmes météorologiques à mesure qu’ils évoluent et migrent, ce qui fournit des données essentielles pour les prévisions.
La surveillance météorologique utilise les longueurs d’onde de la lumière visible et infrarouge pour analyser l’atmosphère. Heureusement, les canaux infrarouges du satellite peuvent également capter des anomalies thermiques au sol, tels que ceux des incendies et des éruptions.
La nature géostationnaire de GOES-17 lui permet de réaliser rapidement des images des zones (toutes les 5 à 15 minutes) en fournissant au bon moment une vue de ce qui se passe de ce côté de la planète. Le satellite dispose également d’un mode pour réaliser des images de zones plus petites de la surface de la Terre à des intervalles encore plus brefs (toutes les 30 secondes), sur demande dans des cas particuliers, comme lors d’une éruption volcanique ou de grands incendies. Les satellites en orbite polaire, en revanche, ne peuvent couvrir un point donné de la Terre que deux fois par jour.
L’inconvénient de l’orbite géostationnaire lointaine de GOES est la résolution des images qui est généralement inférieure à celle des satellites en orbite polaire. Les canaux infrarouges de GOES-17 ont une résolution de 2 km, ce qui représente une amélioration par rapport à son prédécesseur, GOES-15, qui avait une résolution de 4 km.
La résolution inférieure signifie que les images GOES ne sont pas idéales pour déterminer le contour précis d’une coulée de lave ou localiser l’emplacement exact d’une bouche éruptive. Cependant, la fréquence élevée d’images proposée par GOES est parfaite pour détecter le début d’une nouvelle activité volcanique en surface, tout en donnant une idée de l’endroit où se situe cette activité.
D’une certaine manière, le satellite GOES joue un rôle de sonnette d’alarme et vient en complément d’autres outils de surveillance utilisés par les observatoires volcaniques pour détecter les éruptions. Alors que les réseaux sismiques et de déformation du sol sont sensibles aux changements sous la surface de la Terre, le satellite GOES est un outil très utile pour repérer de nouvelles laves au moment où elles atteignent la surface.
Le satellite GOES joue un rôle de sentinelle de haute technologie qui maintient une surveillance permanente de l’activité éruptive, non seulement à Hawaï, mais à travers tous les États-Unis.
Les images et les données brutes fournies par GOES sont accessibles en ligne, quelques minutes seulement après leur acquisition. Une interface en ligne est fournie par la NOAA :

https://www.star.nesdis.noaa.gov/GOES/index.php.

Source : USGS/HVO.

——————————————–

The Hawaiian Volcano Observatory (HVO) has published a very interesting article about the different types of satellites used in volcanology.

The reader is informed that many imaging satellites are polar orbiting, staying closer to Earth’s surface in a low orbit. They image the Earth in narrow, sequential strips as the satellite traverses from pole to pole.

Geostationary satellites like GOES (an acronym which goes for Geostationary Operational Environmental Satellite), however, have orbits that hover over a single spot on the Earth. This requires being much farther from Earth than polar orbits, but it has the benefit that the satellite can “see” the entire side of the planet in one view.

The United States uses two GOES satellites to cover the whole country. GOES-16 (also called GOES-East) hovers over longitude 75° West (near the east coast), viewing the mainland and much of the Atlantic Ocean. GOES-17 (GOES-West) is over longitude 137° West (close to halfway between Hawaii and the mainland) and views the western U.S. and much of the Pacific Ocean.

The primary mission of GOES satellites is not to detect volcanic activity or forest fires, but to keep a constant watch over the weather. The broad view allows scientists to track weather systems as they evolve and migrate, providing critical data for forecasts.

Weather monitoring uses wavelengths of visible and infrared light to characterize the atmosphere. Fortunately, the satellite infrared channels can also pick up hot thermal signals on the ground, such as those from fires and eruptions.

The geostationary nature of GOES-17 allows it to image areas rapidly—every 5–15 minutes —providing a timely view of what is happening on this side of the planet. The satellite also has a mode to image smaller areas of Earth’s surface at even higher rates (every 30 seconds), by request in special cases, such as during a volcanic eruption or large fires. Polar-orbiting satellites, on the other hand, might only cover a given spot on the Earth twice a day.

The drawback of the distant geostationary orbit of GOES, however, is that the resolution of the images is generally lower than that of polar-orbiting satellites. The infrared channels on GOES-17 have a resolution of 2 km, an improvement over its predecessor, GOES-15, which had a resolution of 4 km.

The lower resolution means that GOES images are not adequate to map out the precise outline of a lava flow, or locate the exact location of a vent. However, the high image frequency provided by GOES is ideal for detecting the onset of new volcanic activity on the surface, while giving a general idea of where that activity is located.

In some way, the GOES satellite is used as a warning bell which comes as a complement to other monitoring tools used by volcano observatories to detect eruptions. While seismic and ground-deformation networks are sensitive to changes below the surface, the GOES satellite is a tool for spotting new lava reaching the surface.

The GOES satellite acts as a high-tech sentinel, maintaining an unwavering watch for eruptive activity, not only in Hawaii, but across the U.S.

GOES images and raw data are all publicly available online, just minutes after acquisition. One online interface is provided by NOAA:

https://www.star.nesdis.noaa.gov/GOES/index.php.

Source : USGS / HVO.

Image infrarouge GOES de l’île d’Hawaï du 31 juillet 2021. La zone avec les couleurs plus chaudes dans la partie nord de l’île correspond à un incendie de végétation.

Nyiragongo (RDC) : quelques réflexions personnelles

Il n’y a toujours pas, à ma connaissance, confirmation de la vidange du lac de lave du Nyiragongo. Les retombées de cendres observées dans la région de Goma plaident toutefois en faveur de cette hypothèse.

 Je m’en tiens donc à la déclaration du directeur de l’Observatoire : « Il n’a pas été possible de voir à l’intérieur du cratère du volcan à cause du brouillard. Ce qui aurait permis de dégager deux hypothèses: la lave dans le cratère signifierait que les tremblements de terre équivaudraient à une nouvelle activité. Dans le cas contraire, ces tremblements voudraient dire que la terre est en train de reconstituer son équilibre. »

Le processus éruptif le plus fréquent du Nyiragongo est connu et assez facile à comprendre. On remarquera que lorsque la lave perce les flancs du volcan, les coulées démarrent généralement à basse altitude, avec une pente plus faible que vers le sommet. L’importante vitesse d’écoulement de la lave est avant tout due à un taux d’épanchement extrêmement élevé provoqué par la pression de la colonne magmatique à l’intérieur du volcan. Le volcan éclate un peu comme un fruit mûr.

En conséquence, il me paraît essentiel de donner la priorité au contrôle des zones de fractures qui entaillent les flancs du Nyiragongo. Observer le lac de lave depuis la lèvre du cratère, descendre sur les plateformes à l’intérieur, prélever de la lave dont la composition est largement connue, n’est pas inutile mais ne renseigne guère sur le comportement à venir du volcan. Il faudrait un séjour prolongé (plusieurs semaines ou plusieurs mois) ou – encore mieux – la présence de webcams pour bien analyser le comportement du lac de lave. Un bivouac de quelques jours n’est pas suffisant.

Comme je l’ai écrit précédemment, c’est la pression interne exercée par la colonne magmatique sur les parois du volcan qui détermine le déclenchement des éruptions. Pour mieux appréhender la réaction des flancs du volcan à cette pression, il serait intéressant de multiplier les instruments de mesures et autres capteurs. Les satellites sont aujourd’hui parfaitement en mesure de contrôler les déformations des flancs d’un volcan à partir des capteurs installés sur ses flancs. Cela suppose d’une part que l’Observatoire soit opérationnel, mais aussi  que les instruments ne soient pas vandalisés par les voyous qui traînent dans la région.

Le Nyiragongo est un volcan qui montre parfaitement à quel point prévision et prévention volcaniques se rejoignent.

Source : Wikipedia