Nyiragongo (RDC) : quelques réflexions personnelles

Il n’y a toujours pas, à ma connaissance, confirmation de la vidange du lac de lave du Nyiragongo. Les retombées de cendres observées dans la région de Goma plaident toutefois en faveur de cette hypothèse.

 Je m’en tiens donc à la déclaration du directeur de l’Observatoire : « Il n’a pas été possible de voir à l’intérieur du cratère du volcan à cause du brouillard. Ce qui aurait permis de dégager deux hypothèses: la lave dans le cratère signifierait que les tremblements de terre équivaudraient à une nouvelle activité. Dans le cas contraire, ces tremblements voudraient dire que la terre est en train de reconstituer son équilibre. »

Le processus éruptif le plus fréquent du Nyiragongo est connu et assez facile à comprendre. On remarquera que lorsque la lave perce les flancs du volcan, les coulées démarrent généralement à basse altitude, avec une pente plus faible que vers le sommet. L’importante vitesse d’écoulement de la lave est avant tout due à un taux d’épanchement extrêmement élevé provoqué par la pression de la colonne magmatique à l’intérieur du volcan. Le volcan éclate un peu comme un fruit mûr.

En conséquence, il me paraît essentiel de donner la priorité au contrôle des zones de fractures qui entaillent les flancs du Nyiragongo. Observer le lac de lave depuis la lèvre du cratère, descendre sur les plateformes à l’intérieur, prélever de la lave dont la composition est largement connue, n’est pas inutile mais ne renseigne guère sur le comportement à venir du volcan. Il faudrait un séjour prolongé (plusieurs semaines ou plusieurs mois) ou – encore mieux – la présence de webcams pour bien analyser le comportement du lac de lave. Un bivouac de quelques jours n’est pas suffisant.

Comme je l’ai écrit précédemment, c’est la pression interne exercée par la colonne magmatique sur les parois du volcan qui détermine le déclenchement des éruptions. Pour mieux appréhender la réaction des flancs du volcan à cette pression, il serait intéressant de multiplier les instruments de mesures et autres capteurs. Les satellites sont aujourd’hui parfaitement en mesure de contrôler les déformations des flancs d’un volcan à partir des capteurs installés sur ses flancs. Cela suppose d’une part que l’Observatoire soit opérationnel, mais aussi  que les instruments ne soient pas vandalisés par les voyous qui traînent dans la région.

Le Nyiragongo est un volcan qui montre parfaitement à quel point prévision et prévention volcaniques se rejoignent.

Source : Wikipedia

Le rétrécissement de la stratosphère// The shrinking of the stratosphere

J’ai insisté à maintes reprises sur les conséquences des concentrations très élevées de CO2 dans l’atmosphère sur le climat de notre planète et sur les dangers du réchauffement climatique.

Un article publié dans The Guardian nous apprend maintenant que les énormes concentrations de gaz à effet de serre dans l’atmosphère réduisent la stratosphère. C’est la conclusion d’une étude publiée récemment dans la revue Environmental Research Letters. Des chercheurs ont découvert que l’épaisseur de la stratosphère s’est réduite de 400 mètres depuis les années 1980 et qu’elle s’amincira à nouveau d’un millier de mètres d’ici 2080 si les émissions de gaz à effet de serre ne sont pas réduites.

Les conséquences peuvent être particulièrement graves car l’amincissement de la stratosphère peut affecter la trajectoire et le bon fonctionnement des satellites, leur durée de vie orbitale, la propagation des ondes radio ainsi que le système de navigation GPS et les communications radio.

L’étude ne fait que confirmer l’impact des activités humaines sur la planète. Dans une note précédente, j’ai expliqué que le réchauffement climatique avait fait se déplacer l’axe de la Terre car la fonte des glaciers et de la banquise redistribuait les masses autour du globe.

La stratosphère présente une épaisseur d’environ 20 km à 60 km au-dessus de la surface de la Terre (voir image ci-dessous). En dessous de la stratosphère se trouve la troposphère dans laquelle nous vivons ; c’est aussi l’endroit où le dioxyde de carbone réchauffe et dilate l’air ambiant, ce qui repousse la limite inférieure de la stratosphère. De plus, lorsque le CO2 pénètre dans la stratosphère, il y refroidit l’air qui a tendance à se contracter.

Le rétrécissement de la stratosphère est un signal d’alerte climatique et montre l’influence des activités humaines à l’échelle planétaire. C’est la preuve que nous pourrissons l’atmosphère jusqu’à 60 kilomètres d’altitude! Les scientifiques savaient déjà que la troposphère augmentait en hauteur parallèlement à l’augmentation des émissions de carbone et ils avaient émis l’hypothèse que l’épaisseur de la stratosphère diminuait. La nouvelle étude est la première à le démontrer et donne la preuve qu’elle se contracte dans le monde entier depuis au moins les années 1980, époque des premières données satellitaires.

La couche d’ozone qui absorbe les rayons UV du soleil se trouve dans la stratosphère et les chercheurs pensaient que les pertes d’ozone au cours des dernières décennies pouvaient être à l’origine du rétrécissement. En effet, moins d’ozone signifie moins de réchauffement de la stratosphère. Cependant, la nouvelle étude montre que c’est bien l’augmentation du CO2 qui est à l’origine de la contraction régulière de la stratosphère, et que ce n’est pas l’ozone, qui a commencé à rebondir après le traité de Montréal de 1989 interdisant les CFC.

L’étude est parvenue cette conclusion inquiétante en utilisant les observations satellitaires depuis les années 1980 et en les complétant avec de multiples modèles climatiques qui incluent les interactions chimiques complexes qui se produisent dans l’atmosphère.

Source: The Guardian.

————————————————

I have insisted many times on the consequences of the very high CO2 concentrations on the world’s climate and the dangers of the current climate change for our lives.

An article published in The Guardian informs us that the enormous concentrations of greenhouse gases are shrinking the stratosphere. This is the conclusion of a recent study published in the journal Environmental Research Letters

The researchers have observed that the thickness of the atmospheric layer has contracted by 400 metres since the 1980s and will thin by about another kilometre by 2080 if the emissions of the gases are not reduced. The consequences can be very serious as the thinning of the stratosphere has the potential to affect satellite trajectories and operations, orbital life-times, the propagation of radio waves as well as the GPS navigation system and radio communications.

The study only confirms the profound impact of humans on the planet. In a previous post; I exlained that the climate crisis had shifted the Earth’s axis as the massive melting of glaciers redistributes weight around the globe.

The stratosphere extends from about 20 km to 60 km above the Earth’s surface (see image below). Below is the troposphere, in which humans live, and it is the place where carbon dioxide heats and expands the air. This pushes up the lower boundary of the stratosphere. This is not all! When CO2 enters the stratosphere it actually cools the air, causing it to contract.

The shrinking stratosphere is a warning of the climate emergency and the planetary-scale influence that humanity now exerts. This proves we are messing with the atmosphere up to 60 kilometres!

Scientists already knew the troposphere was growing in height as carbon emissions rose and had hypothesised that the stratosphere was shrinking. The new study is the first to demonstrate this and shows it has been contracting around the globe since at least the 1980s, when satellite data was first gathered.

The ozone layer that absorbs UV rays from the sun is in the stratosphere and researchers had thought ozone losses in recent decades could be to blame for the shrinking. Less ozone means less heating in the stratosphere. However, the new study shows it is the rise of CO2 that is behind the steady contraction of the stratosphere, not ozone levels, which started to rebound after the 1989 Montreal treaty banned CFCs.

The study reached its conclusions using the small set of satellite observations taken since the 1980s in combination with multiple climate models, which included the complex chemical interactions that occur in the atmosphere.

Source: The Guardian.

Source : The Guardian

Les glaciers continuent de fondre et de reculer // Glaciers keep melting and retreating

Ce n’est pas vraiment une surprise. Une nouvelle étude publiée dans la revue Nature confirme que la quasi-totalité des glaciers perdent de la masse depuis 2000. La fonte a quasiment doublé sur les 20 dernières années, selon des mesures satellitaires particulièrement précises.

En utilisant 20 années de données satellitaires récemment déclassifiées, une équipe de recherche internationale a calculé que les glaciers avaient perdu 267 milliards de tonnes de glace par an sur la période 2000-2019. Les scientifiques ont analysé 220 000 glaciers à travers le monde, sans prendre en compte les immenses calottes glaciaires de l’Antarctique et du Groenland. Seuls les glaciers situés à la périphérie des calottes ont été recensés. Le phénomène s’est accéléré entre 2015 et 2019 avec 298 milliards de tonnes perdues chaque année en moyenne.

La moitié de la perte glaciaire mondiale provient de l’Alaska et du Canada. Lors de mes conférences, j’insiste sur la fonte et le recul rapides du glacier Athabasca au Canada. Les taux de fonte de l’Alaska sont parmi les plus élevés de la planète avec une perte annuelle moyenne de 67 milliards de tonnes par an depuis 2000. Le glacier Columbia recule d’environ 35 mètres par an. On s’en rend compte en comparant les images satellites des dernières décennies (voir ci-dessous).

Presque tous les glaciers du monde fondent, même ceux du Tibet qui étaient stables jusqu’à présent. À l’exception de quelques-uns en Islande et en Scandinavie, alimentés par des précipitations accrues, les taux de fonte se sont accélérés quasiment partout sur le globe.

Cette fonte presque uniforme reflète l’augmentation globale de la température. Selon les auteurs de l’étude, le lien avec la combustion du charbon, du pétrole et du gaz ne fait aucun doute. Le stade de la simple alerte est largement dépassé. On a dépassé le point de non-retour dans de nombreuses régions où certains glaciers plus petits disparaissent entièrement.

L’étude est la première à utiliser l’imagerie satellite 3D pour examiner tous les glaciers de la Terre non connectés aux calottes glaciaires.

La difficulté de l’étude des glaciers provient d’une part du très faible nombre de mesures in situ. D’autre part, les relevés gravimétriques – très utiles pour mesurer l’évolution des calottes de glace de l’Antarctique et du Groenland – n’ont pas une résolution suffisamment fine pour étudier dans le détail les 220 000 glaciers analysés par l’étude parue dans Nature.

Les scientifiques ont analysé près de 500 000 images satellites prises depuis 2000 par le satellite Terra de la NASA. Les clichés permettent de construire des cartes 3D de la surface de la Terre. Le travail a été rendu possible par le recours à un super calculateur qui a construit des modèles numériques d’élévation basés sur plus de 440 000 images satellites. La précision des résultats atteint un niveau inégalé à ce jour.

La plus grande menace de la fonte des glaciers est l’élévation du niveau de la mer. Les océans du monde subissent déjà l’expansion thermique et la fonte des calottes glaciaires au Groenland et en Antarctique. Selon l’étude, les glaciers sont responsables de 21% de l’élévation du niveau de la mer sur la période 2000-2019. Les calottes glaciaires constituent des menaces plus importantes sur le long terme.

Ces résultats de l’étude concernant les glaciers sont conformes à ceux d’une autre étude parue en 2020, mais celle de 2021 offre une précision supérieure. La première mission GRACE lancée en 2002 a permis de mesurer les changements du champ de gravité terrestre causés par les mouvements de masse sur la planète. Les résultats de la mission GRACE donnent une perte de 200 milliards de tonnes pour les glaciers de montagne sur la période 2002-2016. GRACE montre une accélération spectaculaire pour le Groenland sur la période 2010-2018 avec une perte de 286 milliards de tonnes. La mission arrive à la même accélération spectaculaire en Antarctique avec une perte de 252 milliards de tonnes par an sur 2009-2017.

Source : global-climat.

—————————————–

It’s not much of a surprise. A new study published in the journal Nature confirms that almost all glaciers have lost mass since 2000. Melting has almost doubled over the past 20 years, according to vert accurate satellite measurements. Using 20 years of recently declassified satellite data, an international research team has calculated that glaciers lost 267 billion tonnes of ice per year over the period 2000-2019. Scientists have analyzed 220,000 glaciers around the world, ignoring the huge ice sheets of Antarctica and Greenland. Only the glaciers located on the periphery of the ice sheets have been identified. The phenomenon accelerated between 2015 and 2019 with 298 billion tonnes lost each year on average.

Half of the world’s ice loss comes from Alaska and Canada. In my lectures, I emphasize the rapid melting and retreating of the Athabasca Glacier in Canada. Alaska’s melt rates are among the highest on the planet with an average annual loss of 67 billion tonnes per year since 2000. The Columbia Glacier is retreating by about 35 metres per year. This can be seen by comparing satellite images from the last decades (see below).

Almost all of the world’s glaciers are melting, even those in Tibet which have been stable until now. With the exception of a few in Iceland and Scandinavia, supplied by increased precipitation, melt rates have accelerated almost everywhere in the world. This almost uniform melting reflects the overall increase in temperature. According to the study’s authors, the link to the combustion of coal, oil and gas is clear. The stage of the simple alert is largely past. The point of no return has been passed in many areas where some smaller glaciers are disappearing entirely. The study is the first to use 3D satellite imagery to examine all of Earth’s glaciers not connected to ice caps.

The difficulty in studying glaciers stems on the one hand from the very low number of in situ measurements. On the other hand, gravity readings – very useful for measuring the evolution of the Antarctic and Greenland ice caps – do not have a sufficient resolution to study in detail the 220,000 glaciers analyzed in the study published in Nature. Scientists have analyzed nearly 500,000 satellite images taken since 2000 by NASA’s Terra satellite. The images allow the construction of 3D maps of the surface of the Earth. The work was made possible by the use of a supercomputer that built digital elevation models based on more than 440,000 satellite images. The accuracy of the results reaches a level unmatched to date.

The greatest threat from melting glaciers is rising sea levels. The world’s oceans are already experiencing thermal expansion and melting ice caps in Greenland and Antarctica. According to the study, glaciers are responsible for 21% of sea level rise over the period 2000-2019. Ice caps are a bigger threat in the long term.

These results from the glacier study are consistent with another study released in 2020, but the 2021 study offers greater accuracy. The first GRACE mission launched in 2002 made it possible to measure the changes in the Earth’s gravity field caused by mass movements on the planet. The results of the GRACE mission show a loss of 200 billion tonnes for mountain glaciers over the period 2002-2016. GRACE shows a spectacular acceleration for Greenland over the period 2010-2018 with a loss of 286 billion tonnes. It underlines the same spectacular acceleration in Antarctica with a loss of 252 billion tonnes per year over 2009-2017.

Source: global-climat.

Source : NASA

Photo : C. Grandpey

 

Source : NASA

Photo : C. Grandpey

Source : NASA

Source : Copernicus Sentinel-2, ESA

D’autres informations dans mon livre « Glaciers en péril » :

Prévision éruptive par les variations thermiques d’un volcan // Eruptive prediction through the thermal fluctuations of a volcano

On peut lire sur le site web The Watchers un article intéressant sur une nouvelle méthode imaginée par des scientifiques du Jet Propulsion Laboratory (JPL) de la NASA et de l’Université de l’Alaska (UA) et qui pourrait être utilisée pour essayer de prévoir les éruptions volcaniques.

Les volcanologues s’appuient en général sur des signes avant-coureurs tels que l’augmentation de l’activité sismique, des changements dans les émissions gazeuses et la déformation du sol pour dire qu’un volcan est susceptible d’entrer en éruption. Cependant, la prévision éruptive est difficile car chaque volcan possède un comportement qui lui est propre. La situation est d’autant plus complexe qu’un petit nombre de volcans actifs dans le monde possèdent des systèmes de surveillance dignes de ce nom.

À l’aide de données satellitaires, les scientifiques du JPL et de l’UA ont proposé une nouvelle méthode qui pourrait rendre la prévision volcanique plus fiable. Elle se base sur une augmentation subtile mais significative des émissions de chaleur autour d’un volcan dans les années qui précèdent une éruption. Cela permet de constater qu’un volcan s’est réveillé, souvent bien avant l’apparition des autres signes mentionnés ci-dessus.

L’équipe scientifique a analysé plus de 16 années de données sur le rayonnement thermique capté par les instruments MODIS (Moderate Resolution Imaging Spectroradiometer) à bord des satellites Terra et Aqua de la NASA sur plusieurs types de volcans qui sont entrés en éruption au cours des 20 dernières années. En dépit du fait que l’on a affaire à différents types de volcans, les résultats sont identiques. Dans les années précédant une éruption, la température de surface émise par la majorité des volcans a augmenté de 1°C par rapport à son état normal. Elle a ensuite diminué après chaque éruption.

Les scientifiques pensent que cette hausse de température peut résulter de l’interaction entre les systèmes hydrothermaux et les réservoirs magmatiques. Lors de l’ascension du magma à l’intérieur de l’édifice volcanique, les gaz se diffusent à la surface et peuvent dégager de la chaleur. De même, ce dégazage peut favoriser la remontée des eaux souterraines et la circulation hydrothermale, ce qui peut faire s’élever la température du sol.

Cette approche pourrait fournir de nouvelles informations sur le comportement des volcans, en particulier si on l’associe à des informations provenant d’autres satellites et  d’autres modèles. Les chercheurs ont découvert que les données thermiques se superposaient aux données semblables de déformation, mais avec un certain décalage dans le temps.

Bien que cette nouvelle méthode de prévision éruptive ne réponde pas à toutes les questions, elle ouvre la porte à de nouvelles approches de télédétection, en particulier pour les volcans isolés ou éloignés, souvent dépourvus de systèmes locaux de surveillance. .

Il faut noter que les mesures InSAR de déformation de la surface du sol permettent également aux observatoires volcanologiques du monde entier d’identifier les volcans les plus susceptibles d’entrer en éruption, ainsi que ceux qui devraient être instrumentés pour des observations plus approfondies.

Référence: « Large-scale thermal unrest of volcanoes for years prior to eruption » – Girona, T., et al. – Nature Geoscience.

————————————————-

One can read on the website The Watchers an interesting article about a new method that could be used to try and predict volcanic eruptions.

Scientists at NASA’s Jet Propulsion Laboratory (JPL) and the University of Alaska (UA) have developed a new method that may lead to earlier predictions of volcanic eruptions.

Up to now, volcanologists have referred to warning signs such as an increase in seismic activity, changes in gas emissions, and sudden ground deformation to say that a volcano was likely to erupt in the future. However, forecasting eruptions is difficult because each volcano displays its own behaviour. The situation is all the more complex as a small number of the world’s active volcanoes have monitoring systems in place.

Using satellite data, scientists at JPL and UA came up with a new method that might make volcanic prediction more reliable. It is is based on a subtle but significant increase in heat emissions over large areas of a volcano in the years leading up to its eruption. It allows to see that a volcano has reawakened, often well before any of the other signs have appeared.

The scientific team studied more than 16 years of radiant heat data from the Moderate Resolution Imaging Spectroradiometers (MODIS) instruments aboard NASA’s Terra and Aqua satellites for several types of volcanoes that erupted in the last 20 years. Despite the differences among the volcanoes, the results were the same. In the years leading up to an eruption, the radiant surface temperature over the majority of the volcanoes increased by 1°C from its normal state. Then, it decreased after each eruption.

Scientists believe that the thermal increase may result from the interaction between hydrothermal systems and magma reservoirs. When magma rises through a volcano, the gases diffuse to the surface and can give off heat. Similarly, this degassing can promote the up-flow of underground water and hydrothermal circulation, which can heat up soil temperature.

The new method may provide more insight into volcano behaviour, especially when combined with information from other satellites and models. The researchers found that the thermal time series very much mimicked the deformation time series but with some time separation.

Although the research does not answer all of the questions, it opens the door to new remote sensing approaches, especially for distant volcanoes which are devoid of local monitoring systems.

The InSAR ground-surface deformation measurements also help allow volcano observatories around the world to identify which volcanoes are most probably to erupt, as well as which should be instrumented for closer observations.

Reference : « Large-scale thermal unrest of volcanoes for years prior to eruption » – Girona, T., et al. – Nature Geoscience.

Image thermique du Parc National de Yellowstone (délimité en rouge). A gauche l’image du Parc en couleurs réelles. A droite l’image thermique avec les températures les plus élevées en blanc. (Source :  Goddard Space Flight Center de la NASA).

Yellowstone ne sera pas forcément le volcan le plus facile pour la détection des variations thermiques.

L’aide des satellites dans la prévision éruptive // The help of satellites in eruptive prediction

Lorsque le Mont Ontake au Japon est entré en éruption sans prévenir en 2014 et a tué plus de 60 personnes, les volcanologues japonais ont réalisé que la surveillance du volcan était loin d’être parfaite.

Un article publié sur le site Internet «Wired» explique que des techniques modernes de surveillance volcanique sont apparues ces dernières années. Par exemple, les satellites sont susceptibles de participer à la prévision éruptive. La chaleur est un important paramètre à prendre en compte. Au lieu de mesurer la température en des endroits précis avec des thermomètres, les satellites permettent une approche thermique plus globale. C’est la raison pour laquelle une équipe scientifique du Jet Propulsion Laboratory (JPL) de Pasadena (Californie) s’est tournée vers les données de rayonnement thermique fournies par les satellites Terra et Aqua de la NASA. En survolant les zones potentiellement actives deux fois par jour, ces deux satellites fournissent des mesures précises intégrées sur des pixels de 1 kilomètre au carré.

Cinq volcans ont connu des éruptions importantes depuis 2002: Ontake au Japon, Ruapehu en Nouvelle-Zélande, Calbuco au Chili, Redoubt en Alaska et Fogo au Cap-Vert. Des hausses de température avaient été observées au cours des deux à quatre ans précédant chaque éruption, y compris l’éruption surprise de l’Ontake en 2014. La température n’avait augmenté que de 1 degré Celsius ou moins avant chaque événement, mais il s’agissait de tendances statistiquement significatives et pas seulement de bruit de fond.

Selon les chercheurs, la hausse de température observée par les satellites peut s’expliquer par la combinaison de deux processus. D’une part, le magma pendant son ascension vers la surface peut stimuler la circulation hydrothermale, ce qui génère une migration de la chaleur vers la surface. D’autre part, cet apport d’humidité peut émettre un rayonnement thermique facilement capté par les satellites. Ces variations subtiles sont facilement détectables dans les données satellitaires.

Source: Wired.

S’agissant des satellites, il faut ajouter que les paramètres InSAR sont d’une grande aide pour mesurer la déformation de surface, comme on l’a vu récemment sur la Péninsule de Reykjanes en Islande.

Cependant, ne considérer que la chaleur de surface d’un volcan comme le fait l’article ci-dessus n’est pas suffisant pour tenter de prévoir une éruption. Le regretté Maurice Krafft comparait un volcan sur le point d’entrer en éruption avec une personne malade ou blessée: la fièvre monte; la personne a des frissons, une mauvaise haleine et la zone autour de la blessure enfle. C’est la même chose pour un volcan. Il est très utile de mesurer la température, mais la sismicité, les émissions de gaz et l’inflation doivent également être prises en compte. Le seul paramètre thermique n’est pas suffisant.

———————————————-

When Japan’s Mount Ontake erupted in 2014 without warning, killing more than 60 people, Japanese volcanologists realised that the monitoring of the volcano was far from perfect.

An article published on the website “Wired” explains that modern techniques for volcano surveillance have appared these last years. For instance, satellites could provide an entirely new way to warn of eruptions.

Heat is a relevant parameter for volcanic activity. Instead of measuring it at individual spots with thermometers, satellites allow to get a more global thermal view. This is the reason why a scientificteam at the Jet Propulsion Laboratory (JPL) in Pasadena (California) turned to thermal radiation data from NASA’s Terra and Aqua satellites. Combined, these two provide twice-daily passes with global coverage, and each measurement is integrated over a 1 kilometre by 1 kilometre pixel.

Five volcanoes have had significant eruptions since 2002 : Ontake in Japan, Ruapehu in New Zealand, Calbuco in Chile, Redoubt in Alaska, and Fogo in Cape Verde.

Increasing temperature trends were observed over the two- to four-year periods preceding each eruption—including Ontake’s surprise 2014 eruption. Temperatures only increased by 1 degree Celsius or less in the lead-up to each event, but these were statistically significant trends and not just noise. The peak temperatures in each record were associated with an eruption.

The researchers say this might represent a combination of two processes. First, magma progressing closer to the surface could stimulate hydrothermal circulation, carrying heat to warm the surface from below. Second, if this pushes more moisture into the soil layer, the ground could emit thermal radiation more efficiently and so appear “brighter” to the satellites. Either way, these subtle changes seem easily detectable in the satellite data.

Source : Wired.

As far as satellites are concerned, id should be addes that InSAR parameters are of a great help to measure surface deformation, as could recently be seen on the Reykjanes Peninsula in Iceland.

However, considering only the surface heat of a volcano is not a sufficient parameter to try and predict an eruption. The late Maurice Krafft compared a volcano about to erupt with an ill or injured person: the fever goes up; the person has shivers, bad breath and the area around the injury inflates. It is the same with a volcano. It is very useful to measure the temperature, but seismicity, gas emissions and inflation should also be taken into account. The sole heat parameter is far from sufficient.

Image InSaR fournie le 1er mars 2021 par le satellite Sentinel-1. L’image montrait alors une intensification des déformations dans la zone la plus active d’un point de vue sismique.

De la chaleur de l’Australie à la froideur des pôles // From Australian heat to polar cold

L’été n’a pas encore commencé dans l’hémisphère sud et Sydney (Australie) a déjà connu la nuit de novembre la plus chaude de tous les temps. La ville a enregistré une température nocturne minimale de 25,4°C, puis le mercure a atteint 40°C pendant la journée du 29 novembre 2020. Le précédent record nocturne était de 24,8°C en 1967.

Des dizaines d’incendies de végétation se sont déclenchés en Nouvelle-Galles du Sud et un temps encore plus chaud est prévu dans les prochains jours.

Il est fort probable que novembre 2020 sera l’un des mois de novembre les plus chauds  jamais enregistrés.

Des images de presse montrent d’énormes foules en train d’affluer vers la plage de Sidney, avec un risque évident de contamination par Covid-19. Les services sanitaires de Nouvelle-Galles du Sud ont rappelé aux gens de respecter les règles de distanciation sociale.

Source: BBC News.

°°°°°°°°°°°°°°°°

Alors que l’Australie transpire, les scientifiques sont inquiets car il risque fort d’y avoir un vide de plusieurs années dans les mesures de l’épaisseur de la glace à la fois dans l’Arctique et en Antarctique. En effet, les deux seuls satellites dédiés à l’observation des pôles sont pratiquement en fin de vie et leur remplacement n’est pas prévu dans l’immédiat. Les chercheurs ont fait part de leurs préoccupations à la Commission Européenne et à l’Agence Spatiale Européenne.

L’enjeu est la durée restante de deux missions : la mission européenne CryoSat-2 et son homologue américaines IceSat-2. Ces engins spatiaux ont à leur bord des altimètres qui mesurent la forme et l’élévation des surfaces de glace. Ces dernières années, ils ont joué un rôle essentiel pour mesurer la perte de volume de glace de mer et  la diminution de la masse des glaciers.

Ces satellites sont uniques par leurs orbites. Ils se trouvent à 88 degrés nord et sud par rapport à l’équateur, ce qui signifie qu’ils sont capables d’observer l’ensemble des régions arctiques et antarctiques, à l’exception d’un petit cercle d’environ 430 km de diamètre au niveau des pôles.

CryoSat-2 est déjà bien au-delà de sa durée de vie. Il a été lancé en 2010 avec l’espoir qu’il fonctionnerait pendant au moins 3 années et demie. Les ingénieurs pensent pouvoir le faire fonctionner jusqu’en 2024 peut-être, mais l’usure de la batterie et une fuite de carburant laissent supposer qu’il ne durera pas aussi longtemps.

IceSat-2 a été lancé en 2018 avec une durée de vie de trois ans, mais e espérant qu’il sera opérationnel pendant une dizaine d’années.

Si les deux satellites ne sont pas remplacés rapidement, il y aura un vide de deux à cinq ans dans la mesure altimétrique satellitaire au niveau des pôles. En conséquence, cette absence de mesures empêchera les scientifiques d’évaluer et améliorer les projections des modèles climatiques.

La seule solution de remplacement actuellement envisagée est la mission CE / ESA qui a pour nom de code Cristal. On sera dans la même situation qu’avec Cryosat, mais avec une capacité de mesure beaucoup plus grande grâce à un altimètre radar bi-fréquence. Le problème est que l’engin spatial ne sera pas lancé avant 2027-2028, peut-être même plus tard en raison d’un retard dans le financement.

Une solution pourrait se trouver en Europe avec l’équivalent du projet IceBridge de la NASA. Il s’agissait d’une plate-forme aéroportée que l’agence américaine a exploitée au cours des huit années écoulées, entre la fin de la première mission IceSat en 2010 et le lancement d’IceSat-2 en 2018. Un avion a fait voyager un altimètre laser au-dessus de l’Arctique et de l’Antarctique pour recueillir des ensembles de données susceptibles d’être utilisés pour établir un lien entre les deux missions IceSat.

De nombreux chercheurs pensent qu’un projet « CryoBridge » européen serait la meilleure solution dans le court terme pour combler le vide entre CryoSat-2 et Cristal.

Source: BBC News.

————————————————-

Summer has not yet started in the Southern Hemisphere and Sydney (Australia) has already reported its hottest November night on record. The city recorded a minimum night temperature of 25.4°C and then hit 40°C during the daytime on November29th, 2020. The previous overnight record was 24.8C in 1967.

Dozens of bush fires are already burning in New South Wales with hotter weather predicted in the next few days.

It is quite likely it will be one of our hottest Novembers on record..

Newspaper images from Sydney show huge crowds of people flocking to the beach with the obvious risk of Covid-19 contamination. The New South Wales health department has reminded people to keep to social-distancing regulations.

Source : BBC News.

°°°°°°°°°°°°°°°°

While Australia is sweating, scientists are worried and warning that there is going to be a gap of several years in their ability to measure the thickness of ice in both Artic and Antarctica. Indeed, the only two satellites dedicated to observing the poles are almost certain to die before they are replaced. The researchers have raised their concerns with the European Commission and the European Space Agency.

At issue is the longevity of the European CryoSat-2 and American IceSat-2 missions.

These spacecraft carry altimeters that gauge the shape and elevation of ice surfaces. In the past years, they have been essential in recording the loss of sea-ice volume and the declining mass of glaciers.

What’s unique about the satellites is their orbits around the Earth. They fly to 88 degrees North and South from the equator, which means they see the entire Arctic and Antarctic regions, bar a small circle about 430 km in diameter at the poles.

CryoSat-2 is already way beyond its design life. It was put in space in 2010 with the expectation it would work for at least 3.5 years. Engineers think they can keep it operating until perhaps 2024, but battery degradation and a fuel leak suggest not for much longer.

IceSat-2 was launched in 2018 with a design life of three years, but with the hope it can operate productively over ten years or so

If both satellites are not replaced rapidly, there will be a gap of between two and five years in polar satellite altimetry capability. This, in turn, will degrade the scientists’capacity to assess and improve climate model projections.

The only satellite replacement currently in prospect is the EC/Esa mission codenamed Cristal. It will be like Cryosat, although with much greater capability thanks to a dual-frequency radar altimeter.  The problem is that that the spacecraft won’t launch until 2027/28, maybe even later because of a delay in the funding.

A solution might lie in Europe with a version of Nasa’s IceBridge project. This was an airborne platform that the US agency operated in the eight years between the end of the very first IceSat mission in 2010 and the launch of IceSat-2 in 2018. An aeroplane flew a laser altimeter over the Arctic and the Antarctic to gather some limited data-sets that could eventually be used to tie the two IceSat missions together.

Many researchers think a European « CryoBridge » is the most affordable and near-term option to mitigate the empty years between CryoSat-2 and Cristal.

Source: BBC News.

IceSat-2 et CryoSat-2  (Source : NASA)