Impact des coulées de lave sur les zones habitées // Impacts of lava flows on populated areas

Dans son dernier article Volcano Watch, l’Observatoire des volcans d’Hawaii (le HVO) examine les impacts des coulées de lave du Kilauea en 2018 sur les structures dans la Lower East Rift Zone (LERZ).

Crédit photo HVO

Des coulées de lave ont parcouru la Lower East Rift Zone du Kilauea en 2018 et ont dévasté une partie du District de Puna. En 2019, une équipe scientifique de l’USGS, de l’Observatoire de la Terre de Singapour et du GNS Science néo-zélandais a décidé de documenter et d’évaluer l’impact des coulées de lave sur les bâtiments et les infrastructures afin de mieux en comprendre les conséquences pour leurs habitants
Avec la permission des propriétaires, les scientifiques ont visité des propriétés en bordure de la coulée de lave; ils ont rencontré les habitants, pris des photos et noté la gravité et les types de dégâts subis par les structures. En plus des visites sur le terrain, ils ont examiné plus de 8 000 photographies prises par des scientifiques de l’USGS avant, pendant et après l’éruption. Ces photos, ainsi que l’imagerie satellite, constituent le plus grand ensemble de données sur les impacts de coulées de lave dans le monde.
Les scientifiques ont utilisé les données du HVO pour faire un état des lieux suite aux dégâts causés par les coulées de lave. Ils ont ainsi établi une classification des dégâts aux structures sur une échelle allant des dégâts mineurs aux dégâts et destructions majeurs, comme cela se fait à la suite d’autres catastrophes telles que les ouragans ou les séismes. Ce nouvel état des lieux a permis aux scientifiques de classer toutes les structures de la zone en fonction de la gravité des dégâts. La gravité varie selon la situation : absence de dégâts visibles; fonte du plastique sous l’effet de la chaleur ; corrosion du métal par les gaz; enfouissement complet de la structure sous la lave.

Source : Earth Observatory of Singapore

La classification des dégâts comprend tous les types de structures, y compris les maisons, les réservoirs d’eau ou encore les bâtiments agricoles ou industriels. En recouvrant 35,5 kilomètres carrés de terres, les coulées de lave du Kīlauea en 2018 ont détruit 1 839 structures et endommagé 90 autres. Ce sont les chiffres les plus élevés jamais enregistrés à Hawaii. Plus tard en 2021, des coulées de lave ont détruit 2 896 bâtiments à La Palma (Iles Canaries / Espagne). La lave du Nyiragongo a détruit 3 629 maisons, 12 écoles et 3 établissements de santé en République Démocratique du Congo.
La gravité des dégâts causés à chaque structure est liée à l’épaisseur de la lave. Les données ont montré que l’augmentation la coulée de lave entraîne généralement une plus grande gravité des dégâts jusqu’à une épaisseur d’environ 2 mètres, après quoi les bâtiments sont totalement détruits. Cependant, pour une épaisseur de coulée inférieure à 2 mètres, il y a une gamme de gravité des dégâts en bordure de la coulée. En particulier, les réservoirs d’eau circulaires et métalliques résistent aux coulées moins épaisses. On a déjà observé cette situation pour les structures circulaires de Chã das Caldeiras, au Cap-Vert, lors de l’éruption du volcan Fogo en 2014-2015, où des bâtiments circulaires en maçonnerie ont résisté à la destruction en bordure de coulée. 170 structures ont été détruites et 90 autres ont été endommagées au cours de cette éruption.
S’agissant du Kilauea, les scientifiques ont découvert que les structures avaient été endommagées principalement au cours des quatre premières semaines de l’éruption (qui a duré 14 semaines en 2018) au moment où les principaux chenaux de lave se sont mis en place. De nombreuses autres structures qui n’avaient pas été initialement touchées ont été détruites par des coulées de lave ultérieures qui se sont détachées ou ont débordé des principaux chenaux de lave.
On peut noter que certaines maisons ont survécu dans les kīpukas (îlots de végétation) où elles ont été épargnées ou moins sévèrement endommagées. Cependant, ces maisons ont été fortement impactées par le manque d’accès ainsi que l’absence d’alimentation en eau et en électricité. Plusieurs maisons ont également été endommagées par la vapeur et les gaz émis par des fissures des mois après la fin de l’éruption.
L’une des principales observations des scientifiques est que des dégâts ont été enregistrés jusqu’à près de 600 mètres de la coulée de lave, probablement à cause de processus secondaires tels que la propagation du feu facilitée par la végétation sèche près des chenaux de lave. Cela montre que des matériaux inflammables sur ou à proximité des propriétés peuvent causer des dégâts au-delà de la coulée de lave.
Les travaux des scientifiques susmentionnés ont été récemment publiés dans le Bulletin of Volcanology et soulignent que les dégâts causés par les coulées de lave peuvent se produire au-delà de la coulée de lave principale. Ils peuvent être causés en particulier par des coulées de lave secondaires et des débordements de chenaux, ou par des incendies de végétation. Les résultats de cette étude contribuent à l’ensemble de données déjà collectées à l’échelle mondiale sur les impacts de la lave. Ils seront utilisés pour éclairer les futures évaluations de dégâts causés par les coulées de lave à Hawaï et ailleurs sur la planète.
Source : USGS/HVO.

———————————————

In its latest Volcano Watch article, the Hawaiian Volcano Observatory (HVO) examines the impacts of Kilauea’s 2018 lava flows on the structures in the Lower East Rift Zone (LERZ).

Lava flows erupted from Kilauea’s Lower East Rift Zone in 2018 and devastated lower Puna. In 2019, a team of scientists from the USGS, the Earth Observatory of Singapore, and GNS Science in New Zealand set out to document and assess the impacts to buildings and infrastructure to advance understanding of how lava flows impact the built environment.

With the permission of their owners, the scientists visited properties along the lava flow margins to meet residents, take photographs, and note the severity and types of damage to structures. In addition to field visits, they examined more than 8,000 photographs taken by USGS scientists before, during, and after the eruption. These photographs, along with satellite imagery, make up the largest available dataset of lava flow impacts in the world.

Scientists used HVO’s data to develop the first set of damage states for lava flows. Damage states are structure damage classifications in a scale ranging from minor damage to major damage and destruction, and they are widely used to categorize buildings damaged from other hazards such as hurricanes or earthquakes. This new set of damage states allowed scientists to classify all structures in the area by damage severity. Severity ranged from no visible damage, minor melting of plastic due to heat, corrosion of metal by gases, to complete burial.

Damage classification included all types of structures, including homes, water tanks and other farming or industrial buildings. Inundating 35.5 square kilometers of land, Kīlauea’s 2018 lava flows destroyed 1,839 and damaged 90 structures in total. These are the highest recorded numbers of impacted structures from a lava flow event in Hawaii. Later in 2021, lava flows destroyed 2,896 buildings at La Palma, Spain, and destroyed 3,629 homes, 12 schools, and 3 health facilities at Nyiragongo volcano, Democratic Republic of Congo.

The damage severity at each structure was related to lava thickness. The data showed that increased lava flow thickness was generally related to higher damage severity, up to about 2 meters, after which all buildings were destroyed. However, for flow thickness less than 2 meters, there was a range of damage severity along the flow margins. Notably, circular and metal water tanks were resistant to these thinner flows. There were similar findings for the circular structures at Chã das Caldeiras, Cape Verde, during the 2014-2015 eruption of Fogo volcano, where circular masonry buildings resisted destruction along the flow margins. During these lava flows, 170 structures were destroyed and 90 structures were damaged.

On Kilauea, scientists found structures were damaged mostly within the first four weeks of the 14 week-long 2018 eruption, while the main lava channels were being emplaced. Many other structures not initially impacted were destroyed by later lava flows that broke out from or overtopped the main lava channels.

It can be noted that some homes survived in kīpukas (islands of vegetation) and were classified as not damaged at all or damaged less severely. However, these homes were greatly impacted by a lack of access and disruption of utilities. Several homes were also damaged by fissure steam and gases months after the eruption had ended.

One of the scientists’ key findings is that damage was recorded up to almost 600 meters away from the lava flow, likely from secondary processes such as fire spread facilitated by the dried vegetation downwind of the lava channels. This finding suggests that flammable materials on or near properties may cause damage beyond the lava flow.

The work by the above-mentioned scientists was recently published in the Bulletin of Volcanology and it emphasizes that damage from lava flows can occur beyond the main lava flow itself, especially from later breakout lava flows and channel overflows, or from secondary fires. Findings from this research contribute to the global empirical dataset of lava impacts, and will be used to inform future lava flow damage assessments in Hawaii and beyond.

Source: USGS / HVO.

La géodésie sur les volcans // Volcano geodesy

Plusieurs paramètres sont à prendre en compte pour analyser le comportement des volcans et tenter de prévoir les éruptions : sismicité, température et composition des gaz, déformation du sol… Ce dernier paramètre est le domaine de la géodésie qui consiste à mesurer la déformation et l’évolution de la surface de la Terre. Un article récemment publié par le Hawaiian Volcano Observatory (HVO) nous donne plus de détails sur cette technologie.
Les principales données géodésiques actuellement utilisées par les scientifiques du HVO pour mesurer la déformation de surface sur le Kilauea sont fournies par les images GNSS (système global de navigation par satellite, qui comprend le GPS), l’inclinaison du sol (tilt en anglais) et l’interférométrie radar (InSAR).

Sur le Kilauea, le réseau de surveillance géodésique comprend plus de 70 stations GNSS et 15 inclinomètres qui enregistrent et transmettent des données en continu. Ces instruments nécessitent une maintenance; de plus, ils doivent être réactualisés périodiquement en raison de leur âge et doivent être remplacés s’ils sont détruits par l’activité volcanique comme en 2018.
A l’heure actuelle à Hawaii, le travail des scientifiques se focalise sur la reconstruction et l’amélioration du réseau géodésique afin de mieux détecter les risques liés à l’activité volcanique. Une partie du travail consiste à remplacer les instruments obsolètes et à améliorer le fonctionnement des instruments de surveillance en temps quasi réel dans des zones les plus sensibles du sommet du Kilauea et des zones de rift. Le rôle de ces instruments est de pouvoir détecter rapidement les mouvements du magma.
En 2018, des coulées de lave ont détruit 3 stations GNSS dans la Lower East Rift Zone (LERZ). Trois autres stations GNSS ont été détruites lors de l’effondrement de la caldeira sommitale du Kilauea. De nouvelles stations GNSS ont été rapidement déployées à proximité pour permettre une surveillance continue pendant la crise éruptive de 2018. Ces stations déployées rapidement comprennent des antennes GNSS montées sur trépied et qui appartiennent à la configuration utilisée pour les situations temporaires d’une durée de plusieurs jours à plusieurs semaines.
Bon nombre de ces sites où des antennes ont été installées rapidement ont été supprimés après 2018. Cependant, environ 13 d’entre eux sont toujours utilisés pour la surveillance en cas d’urgence et restent sur des trépieds temporaires. Ces sites seront modernisés et de nouveaux sites seront également mis en place pour remplacer ceux détruits en 2018.
Le HVO a déployé 3 nouvelles stations GNSS à fonctionnement semi-continu suite à l’éruption du Kilauea en décembre 2020. Ces stations ont permis aux scientifiques d’avoir une vue plus complète du retour du magma vers le sommet.
De même, le HVO a déployé un équipement GNSS à réponse rapide sur 2 repères préexistants lors de l’intrusion magmatique au niveau de la caldeira sud du Kilauea en août 2021. Cela a permis aux scientifiques de suivre la migration du magma depuis la caldeira vers le sud.
Dans l’article, l’Observatoire explique que le réseau géodésique permet aux scientifiques de surveiller les déformations du sol sur les volcans, de réagir face aux éruptions et de mieux comprendre le stockage et le mouvement du magma sous terre.
Source : USGS, HVO.

———————————————–

Several parameters need to be taken into account to analyse the behaviour of volcanoes and try to predict eruptions: seismicity, gas temperature and composition, ground deformation… This last parameter is the domain of geodesy which is the study of measuring and understanding how the Earth’s surface deforms and changes. As article recently published by the Hawaiian Volcano Observatory (HVO) gives us more details about this technology.

The main geodetic datasets currently used by HVO scientists to measure surface deformation on Kilauea Volcano are GNSS (global navigation satellite system, which includes GPS), tilt, and satellite radar (InSAR) imagery.

On Kilauea, geodetic monitoring network includes over 70 GNSS stations and 15 tiltmeters that continuously record and transmit data. These instruments require routine maintenance, must be upgraded periodically due to age, and must be replaced if destroyed by volcanic activity such as in 2018.

Current upgrades focus on rebuilding and improving HVO’s geodetic network in order to better detect and respond to volcanic hazards related to Hawaiian Volcanoes. Some of the network upgrades include replacing out-of-date instruments and improving the network of near real-time monitoring instruments at critical areas on Kilauea’s summit and rift zones to support early detection of magma movement.

In 2018, lava flows destroyed 3 GNSS stations in the lower East Rift Zone. Another 3 GNSS stations were destroyed in the caldera collapses at Kilauea’s summit. New GNSS stations were rapidly deployed at nearby locations to allow for continued monitoring during the 2018 crisis. These rapidly deployed stations included GNSS antennas mounted on surveys tripods, which is a set-up used for temporary deployments that last several days to weeks.

Many of these rapidly deployed sites were removed after 2018. However, approximately 13 of them are still being used for emergency monitoring and remain on temporary tripods. These sites will be upgraded and new sites will also be installed to replace those destroyed in 2018.

HVO has deployed 3 new semi-continuous GNSS stations in response to the December 2020 Kilauea eruption. These stations gave scientists a more complete view of magma returning to the summit.

Similarly, HVO deployed rapid-response GNSS equipment at 2 pre-existing benchmarks during the Kilauea south caldera intrusion event in August 2021, allowing scientists to track the migration of magma from the south caldera to farther south.

In the article, the Observatory explains that the geodetic network ensures that scientists can monitor changes in the shape of volcanoes, respond to eruptions, and understand magma storage and movement underground.

Source: USGS, HVO.

Station géodésique GNSS sur le plancher de la caldeira du Kilauea (Crédit photo : HVO)

Exemple d’interférogramme InSAR du Kilauea pendant l’éruption de 2018 (Source: NASA / Université de Liverpool).

Hawaii : l’effondrement sommital du Kilauea en 1916 // Hawaii : Kilauea’s summit collapse in 1916

Le 23 juin 2018 à 16h32 (heure locale) après environ 17 heures de forte sismicité, une explosion accompagnée d’un impressionnant effondrement s’est produite dans le cratère de l’Halema’uma’u au sommet du Kīlauea. L’énergie libérée par l’événement était équivalente à un séisme de magnitude M 5,3.
Bien que spectaculaire, cet événement n’est pas unique. Un effondrement similaire avait déjà eu lieu entre le 5 et le 7 juin 1916. Selon les témoins, il s’agit de l’un des événements les plus spectaculaires jamais observés sur le Kilauea.
Une décennie avant l’événement de 1916, un lac de lave permanent était réapparu dans l’Halema’uma’u depuis un effondrement qui avait eu lieu en 1894. L’activité relativement stable du lac s’est poursuivie jusqu’au 5 juin 1916. Ce jour-là, le niveau du lac a chuté de 12 mètres par rapport à la veille où sa surface se trouvait à 91 mètres sous la lèvre du cratère. De 8h30 à 15h le 5 juin, le niveau de lave a encore chuté de 61 mètres.
En se retirant, la lave a laissé une profonde cavité dans l’Halemaʻumaʻu, avec autour une banquette formée par les débordements antérieurs du lac contre les parois du cratère. Au fur et à mesure que la vidange du lac de lave s’est poursuivie, des morceaux de la banquette ont commencé à basculer dans ce qui restait du lac. Ces effondrements ont généré des nuages ​​de poussière marron.
Les effondrements n’ont pas vraiment affecté la solidité des parois extérieures du cratère, de sorte que le personnel du HVO a pu observer le spectacle. On peut lire dans le bulletin hebdomadaire émis par le HVO à l’époque : « Les effondrements des parois intérieures du cratère du côté sud devenaient fréquents et spectaculaires car la banquette édifiée par les débordements récents, était rouge à l’intérieur; elle se brisait ou s’émiettait comme des morceaux de fromage à pâte dure. Parfois, cette matière s’écoulait somme du sucre d’orge. »
Ces effondrements ont finalement eu raison de la totalité de la banquette autour du lac de lave. Lorsque ces grosses masses de roche ont basculé dans le lac, sa surface a été parcourue de vagues qui ont frappé les berges sur plusieurs mètres de hauteur. Cela a également généré des mouvements de convection à l’intérieur du lac de lave.
Le niveau de la lave avait chuté de 40 mètres supplémentaires à midi le 6 juin 1916. Par la suite, les effondrements ont considérablement ralenti et le dernier nuage de poussière provoqué par un effondrement a été observé vers 11 heures le 7 juin. La lave a commencé à remplir le cratère dans les jours qui ont suivi, faisant disparaître la plupart des preuves de l’effondrement de 1916.
Les scientifiques du HVO ont tenté de comprendre ce qui avait provoqué la vidange rapide du lac de lave dans l’Halema’uma’u au début du mois de juin 1916. Les données géophysiques relatives aux décennies précédentes avaient montré qu’une dépressurisation importante au sommet était généralement associée à une intrusion ou à une éruption ailleurs sur le volcan, par exemple le long des zones de rift. L’effondrement sommital de 2018 et l’éruption dans la Lower East Rift Zone constituent un exemple de ce processus.
Le HVO ne disposait pas d’un vaste réseau de surveillance géophysique en 1916, mais un sismomètre près du sommet du Kilauea a enregistré une augmentation de la sismicité lointaine lors de l’effondrement. Une analyse tend à montrer que ces séismes se sont peut-être produits le long de l’une des zones de rift suite à la migration du magma depuis le lac de lave sommital comme cela s’est produit quelques années plus tard au moment de l’effondrement majeur de l’Halemaʻumaʻu en 1924.
Source : USGS, HVO.

——————————————

On June 23rd, 2018 at 4:32 p.m. (local time) after approximately 17 hours of elevated seismicity, an impressive collapse explosion occurred in Halema’uma’u Crater at the summit of Kīlauea. The energy released by the event was equivalent to a magnitude 5.3 earthquake.

Although spectacular, this event was not unique. A series of collapse events had already taken place place between June 5th and 7th, 1916. Observers described it as one of the most spectacular occurrences they had ever witnessed at Kīlauea.

A decade before these events, a continuous lava lake re-appeared within Halemaʻumaʻu for the first time since a collapse in 1894. Relatively steady lake activity continued until June 5th, 1916. On that day, the level of the lava lake drpeed 12 meters compared to the day before, when its surface was 91 meters below the crater rim. From 8:30 a.m. to 3 p.m. on June 5th, the lava level dropped another 61 meters.

The receding lava formed an inner pit within Halemaʻumaʻu, surrounded by a bench of earlier lake overflows against the crater walls. As draining continued, sections of this bench began to topple into the dropping lake. These collapses sent billowing clouds of brown dust into the air.

Fortunately, the collapses did not seriously affect the integrity of the outer crater walls, allowing HVO staff to observe the entire spectacle. As described in HVO’s weekly bulletin at that time: “Falls from the south inner cliffs became frequent and spectacular, as the bench matter, made of recent overflows, was red hot within, and broke or crumbled like masses of hard cheese. Sometimes this material flowed in a sugary fashion.”

These collapses eventually consumed the entirely of the bench on all sides of the lava lake. When these great masses of rock toppled into the molten lake, the lava sloshed back and forth in waves that lapped up the margins by several meters vertically. This resulted in constantly changing circulation patterns within the lava lake.

The lava level had dropped another 40 meters by midday on June 6th, 1916. However, the rate and severity of the collapses dramatically slowed, and the last substantial dust cloud from a collapse was observed around 11 a.m. on June 7th. Lava began refilling the crater in the days that followed, eventually erasing most of the evidence of the 1916 collapse.

HVO scientists tried to understand what caused the Halemaʻumaʻu lava lake to drain so quickly in early June 1916. Geophysical monitoring in previous decades had shown that significant summit depressurization was typically associated with intrusion or eruption elsewhere on the volcano, such as along the rift zones. The 2018 summit collapse and lower East Rift Zone eruption stands as an example of this process.

Though HVO did not have an extensive geophysical monitoring network in 1916, a seismometer near the summit of Kilauea recorded an increased number of distant earthquakes during the collapse. Basic analysis suggested that they may have occurred along one of the rift zones, perhaps indicating magma transport from the summit lava lake, similar to the sequence of earthquakes that accompanied the major 1924 collapse of Halemaʻumaʻu.

Source: USGS, HVO.

 

Vue – depuis le côté sud – des parois de l’Halemaʻumaʻu lors de l’effondrement du cratère du 5 juin 1916. Le lac de lave est visible en bas à gauche tandis que les parois extérieures du cratère sont en haut. Dans le cratère, on peut voir la banquette de débordement qui marque le niveau de la lave avant que le lac commence à se vidanger. Une partie importante de la banquette s’est récemment effondrée; la ligne blanche en pointillé marque son ancienne position. (Source : USGS)

Panache généré par l’effondrement de l’Halema’uma’u en 2018 (Crédit photo: HVO)

Le cratère de l’Halema’uma’u après l’éruption de 2018 (Crédit photo: HVO)

Le Kilauea (Hawaii) de 2018 à 2022 // Kilauea Volcano (Hawaii) between 2018 and 2022

Le 3 mai 2022 a marqué le 4ème anniversaire du début de l’éruption spectaculaire du Kilauea en 2018. La lave a envahi une grande partie du District de Puna, avec des coulées qui ont détruit quelque 700 structures. L’événement a également été remarquable par l’effondrement du plancher du cratère de l’Halema’uma’u au sommet du volcan. Dans un nouvel article Volcano Watch, le Hawaiian Volcano Observatory (HVO) rappelle au public les événements qui ont émaillé les 4 dernières années. Dans le même temps, les scientifiques du HVO essayent de comprendre ce que les changements récents peuvent signifier pour l’activité du Kilauea dans les prochaines années.
En 2018, Kilauea était en éruption depuis 1983, donc 35 ans, au niveau du cratère du Pu’uO’o, au coeur de l’East Rift Zone. Le cratère de l’Halemaʻumaʻu a, lui aussi, repris du service et, de 2008 à 2018, il a hébergé un lac de lave qui a attiré des touristes du monde entier; J’étais l’un d’eux en 2011.

Photo : C. Grandpey

Alors que l’équipement du HVO enregistrait des changements sur le Kilauea en 2018, le premier événement majeur s’est produit le 30 avril 2018 avec l’effondrement soudain du Pu’uO’o.

Crédit photo : HVO

Quelques jours plus tard, le 3 mai 2018, l’activité sismique a migré vers les Leilani Estates où des fissures se sont ouvertes. 24 fissures ont été observées à la fin du mois de mai, 24 fissures et des coulées de lave ont envahi une partie du District de Puna jusqu’en septembre.

Crédit photo : HVO

Le cratère sommital de l’Halema’uma’u a également subi des changements majeurs avec, en particulier, la disparition du lac de lave. Des effondrements majeurs se sont accompagnés de séismes qui ont secoué l’ensemble du sommet. Au final, les effondrements ont abaissé le fond du cratère de plus de 500 m.

Crédit photo : HVO

La fin de l’éruption de 2018 et les événements d’effondrement de la caldeira ont été suivis d’une période de calme que le Kilauea n’avait pas connue depuis plus de 35 ans. Un nouveau changement est ensuite intervenu sur le volcan.
Pour la première fois dans l’histoire, une pièce d’eau est apparue au fond de la cavité en entonnoir de Halemaʻumaʻu. Observée pour la première fois en juillet 2019, l’eau a continué à remplir lentement le cratère au cours de l’année et demie suivante et a atteint une cinquantaine de mètres de profondeur.

Crédit photo : HVO

Dans la nuit du 20 décembre 2020, l’Halema’uma’u est entrée dans une nouvelle phase éruptive qui a fait s’évaporer le lac d’eau en moins de deux heures. En moins d’une journée, le niveau de la lave a dépassé le niveau précédent de l’eau et le lac a continué à croître et à remplir le cratère jusqu’en mai 2021.

Crédit photo : HVO

Après quelques semaines de repos, l’Halemaʻumaʻu a commencé une nouvelle éruption en septembre 2021 et elle continue à ce jour.

Les deux éruptions ont rempli l’Halemaʻumaʻu avec une hauteur de plus de 320 m de lave.

Crédit photo : HVO

Une activité de lac de lave presque continue s’est produite pendant des décennies au sommet du Kilauea au 19ème siècle. Toutefois, les scientifiques savent que le comportement du volcan peut changer rapidement d’un jour à l’autre. Une question importante est de savoir ce que les récents changements laissent présager pour l’avenir. L’apparition du lac d’eau au sommet en 2019 a rappelé le risque explosif sur le Kilauea. Aujourd’hui, on peut se demander si le volcan est en train de revenir à une période d’activité prolongée au sommet, comme ce fut le cas dans les années 1800, ou si l’activité ressemblera à celle des trois décennies qui ont précédé le début de l’éruption du Pu’uO’o. Même si le Kilauea est truffé d’instruments de mesure, personne n’est en mesure de répondre à ces questions.
Source : USGS, HVO.

——————————————————

May 3rd, 2022 marked the 4th anniversary of the start of Kilauea’s dramatic 2018 eruption that destroyed much of lower Puna with lava flows that destroyed 700 structures or so. The event was also remarkable with the collapse of Halema’uma’u’s crater floor at the summit of the volcano. In a new Volcano Watch article, the Hawaiian Volcano Observatory (HVO) reminds the public of the events of the past 4 years. At the same time, HVO scientists consider what these recent changes might mean for future activity at Kilauea.

Kilauea had been erupting for 35 years (1983–2018) at Pu’uO’o on the middle East Rift Zone. The summit crater of Halemaʻumaʻu joined the action, and from 2008 to 2018 hosted a lava lake that drew people from around the world; I was among them in 2011.

While HVO equipment was recording the beginning of changes at Kilauea in 2018, the first major visible sign that something special was happening occurred on April 30th, 2018 with the sudden collapse at Pu’uO’o. (see photo above)

Just a few days later, on May 3rd, 2018, seismic activity migrated beneath Leilani Estates and fissures opened. Before May was over, 24 fissures erupted and lava flows inundated parts of lower Puna until September. (see photo above)

The summit crater of Halemaʻumaʻu also underwent major change, and its lava lake disappeared This meant that ava flows in lower Puna were draining the summit magma reservoir, Halemaʻumaʻu underwent 62 collapses (some with explosive eruptions). Each collapse was marked by earthquakes that were felt throughout the summit. In the end, the collapses lowered the crater floor by more than 500 m. (see photo above)

The end of the 2018 eruption and caldera collapse events were followed by a period of quiescence that had been unknown at Kilauea for over 35 years. It also brought a new and interesting change to the volcano.

For the first time in history, a water lake formed within the deepened pit of Halemaʻumaʻu. First noticed in July 2019, the water continued to slowly fill the crater over the next year and a half until it was about 50 m deep. (see photo above)

On the night of December 20th, 2020, the water lake boiled away within an hour or two as Halemaʻumaʻu burst into eruption again. Within less than a day the new lava lake was deeper than the water lake had been, and it continued to grow and fill in the crater until May 2021. (see photo above)

After a few weeks’ rest, Halemaʻumaʻu began a new eruption in September 2021; the eruption continues to this day. These two eruptions have filled Halemaʻumaʻu with over 320 m of lava. (see photo above)

Nearly continuous lava lake activity occurred for decades at Kilauea’s summit in the 19th century. Scientists know that the volcano has the potential to change quickly from one day to the next. An important question is to know what the recent changes portend for Kilauea’s future. The appearance of the water lake at the summit in 2019 renewed attention on Kilauea’s explosive potential. One may wonder whether the volcano is returning to a period of prolonged summit activity similar to the 1800s, or whether future activity will be more similar to that in the three decades prior to the start of the Pu’uO’o eruption. Even though measuring instruments have been set up everywhere on Kilauea, no one is able to answer these quaestions.

Source: USGS, HVO.