Hawaii: Réouverture de la Route 132 // Reopening of Highway 132

La Route132 qui avait été recouverte par la lave dans le secteur de Pahoa durant l’éruption du Kilauea en 2018 a de nouveau été ouverte à la circulation le 27 novembre 2019.
Un tronçon de 2,5 km de la partie amont de la route et un tronçon de 2,4 km de sa partie aval avaient été recouverts par une épaisse couche de lave. La route a retrouvé son aspect initial avec deux voies de circulation goudronnées. Le travail supposait l’évacuation de 120 000 mètres cubes de matériaux volcaniques. Les ouvriers ont parfois été confrontés à une température de plus de 400°C dans la partie basse de la route.
Le coût initial des travaux avait été estimé à 12 millions de dollars, mais les autorités ont finalement déboursé environ 6,5 millions de dollars.
La remise en état de la route permettra aux personnes possédant des biens dans la région de revenir dans leurs maisons et dans leurs entreprises. Elle permettra aussi des trajets plus courts et facilitera les interventions des services d’urgence.
Source: Médias hawaïens.

——————————————

Highway 132 in Pahoa, which had been cut off to travel for more than a year by lava from the 2018 Kilauea eruption reopened on November 27th, 2019.

A 2.5-km stretch of the upper portion of the highway and a 2.4-km section of the lower portion of the road were covered in lava. The road has been restored to its pre-inundation function with two paved travel lanes. The restoration work included the excavation of 120,000 cubic metres of lava rock. Construction personnel encountered hot surface temperatures of more than 400°C in the lower portion of the road .

Initial construction costs were estimated at12 million dollars. However, the final costs were reduced to approximately 6.5 million dollars.

Restoring the road will allow residents with properties in the region to return to their homes and businesses, provide shorter commute, and facilitate emergency response in the area.

Source: Hawaiian news media.

 Crédit photo: USGS / HVO

 

Eruption du Kilauea en 2018 : Le dyke de la Lower East Rift Zone

Même si l’éruption dans la Lower East Rift Zone (LERZ) du Kilauea est terminée depuis environ un an, de la vapeur s’échappe du sol dans de nouveaux endroits ou réapparaît dans d’autres. De plus, la végétation continue de mourir en raison de la chaleur et de la vapeur qui persistent dans les zones fracturées. Certains habitants redoutent la poursuite ou la réapparition d’une nouvelle activité volcanique, car ils perçoivent en permanence la chaleur, la vapeur et les odeurs dans la zone de l’éruption.

Dans un article récent, le HVO a donné des explications sur la profondeur possible du dyke à l’origine de l’éruption de 2018 dans la LERZ. En géologie, un dyke est une structure tabulaire allongée parallèle à la zone de rift. Elle est alimentée par le magma en provenance des profondeurs dans la partie centrale de la zone de rift.
Entre le 5 et le 7 mai 2018, alors que les fractures 7 à 12 s’ouvraient dans les Leilani Estates, le revêtement de la Highway 130 s’est fissuré et a commencé à s’affaisser. La zone a immédiatement été envahie par des nuages très denses de vapeur et de SO2.
Lorsque le magma pénètre dans un dyke, il fait s’écarter les roches environnantes pour atteindre la surface. Cela fait s’affaisser le sol directement au-dessus du dyke et se soulever le sol situé de part et d’autre.
Tandis que le dyke continue de se déplacer vers la surface, l’affaissement au-dessus progresse et forme une dépression linéaire avec des parois bien définies. C’est ce que les géologues appellent un graben. En 2018, la Highway 130 a connu un affaissement, mais aucun graben ne s’est formé en travers de la route.
Dès que la Highway 130 s’est affaissée et que l’on a observé une augmentation des émissions de chaleur et de gaz, les équipes du HVO sur le terrain ont dénombré 10 fractures majeures en train de s’ouvrir sur la route. L’extension maximale mesurée sur ces 10 fractures a été de 21,5 centimètres sur deux jours. Les géologues n’ont plus été en mesure de continuer à mesurer la largeur des fractures car des plaques d’acier ont été disposées sur les fractures pour maintenir la route ouverte et permettre aux véhicules de circuler.
L’affaissement de la route et l’apparition de fractures, ainsi que l’augmentation des émissions de chaleur et de gaz, signifiaient que le magma remontait vers la surface sous la Highway 130. Parallèlement, de nouvelles fractures se sont ouvertes à proximité de la route.
Même si les fractures étaient dissimulées par les plaques d’acier, les géologues du HVO ont eu recours à d’autres moyens pour déterminer ce qui se passait sous la route. L’affaissement du sol au niveau de la Highway 130 et dans les terrains environnants a fourni aux scientifiques des informations précieuses sur la localisation du magma.
Les volcanologues procèdent depuis des décennies à des calculs théoriques sur la déformation du sol autour d’un dyke. Les modélisations déjà effectuées montrent que la distance horizontale entre deux sections de sol surélevées au-dessus d’un dyke est directement liée à la profondeur du dyke sous la surface du sol.
Sur la Highway 130, le sol s’est légèrement surélevé dans la zone des fractures 3 et 8, distantes d’environ 100 mètres. Entre ces deux fractures, le sol s’est affaissé. La fracture 5 se trouvait au milieu de l’affaissement, à environ 50 mètres de la fracture 8 au nord et de la fracture 3 au sud.
En utilisant le modèle susmentionné, on peut déterminer à quelle distance le magma s’est approché de la surface là où la Highway 130 s’est fracturée et affaissée en 2018. Sur la base d’une distance de 100 mètres entre les parties surélevées de part et d’autre de la zone d’affaissement, le bord supérieur du dyke devait se situer entre 50 et 100 mètres environ sous la route.
Heureusement, la partie du dyke située sous la Highway 130 n’a pas eu assez d’énergie pour atteindre la surface. Maintenant que la partie supérieure du dyke est probablement solidifiée, le magma de 2018 situé juste sous la surface de la route et des terrains environnants restera en place sous forme de roche dans le sol.

Source : USGS / HVO.

———————————————–

Even though Kilauea Volcano’s Lower East Rift Zone (LERZ) eruption has been over for about a year, steam continues to appear in new places or reappear in old places, and vegetation continues to die because of lingering heat and steam in areas of the 2018 fissures. Some residents are concerned about continuing, or potentially new, volcanic activity because they are feeling, seeing and smelling the heat, steam and odours that remain in the area.

In a recent article, USGS HVO examined how deep the intrusive body of magma – or dike – that fed the 2018 LERZ eruption might be. Geologists define a dike as an elongated, tabular body that runs parallel to the rift zone. It is fed by magma from deeper within the rift zone core.

Between May 5th and 7th, 2018, when fissures 7 through 12 were opening in the Leilani Estates, the pavement on Highway 130 cracked and began to sag. As it did, the area was immediately engulfed in steam and SO2 gas, so much so that you could not see across the road.

As magma rises in a dike, it pushes the surrounding rock apart to reach the surface. This causes the ground directly above the dike to sink and ground on either side of the dike to lift.

As a dike continues moving toward the surface, the sagging above it can progress to form a linear depression with well-defined walls, a feature that geologists call a graben. In 2018, Highway 130 experienced sagging, but a graben did not form across the road.

As soon as Highway 130 sagged and increased heat and gas were observed, HVO field crews numbered 10 major cracks opening across the road. The total extension measured across these 10 cracks was 21.5 centimetres over two days. Geologists were later unable to continue measuring crack widths when steel plates were placed on top of them to keep the road open and allow the safe flow of traffic.

Sagging and cracks in the road, as well as increased heat and gas output, meant that magma was rising closer to the surface under Highway 130. At the same time, new fissures were opening closer to the highway.

Although steel plates concealed the growing cracks, HVO geologists had other ways to determine what was happening below the road. Sagging ground on Highway 130 and in neighbouring properties provided valuable information about where the magma was located.

Theoretical calculations of ground deformation around a dike have been known to volcanologists for decades. Previous modelling shows that the horizontal distance between two uplifted sections of ground above a dike is directly related to dike depth below the surface.

On Highway 130, the ground rose slightly in the area of cracks 3 and 8, which were about 100 metres apart. Between those two cracks, the ground sagged. Crack 5 was in the middle of the sag, about 50 metres from crack 8 to the north and crack 3 to the south.

Using the aforementioned model, one can determine how close magma came to reaching the surface where Highway 130 cracked and sagged in 2018. Based on a 100-metre distance between uplifts on either side of the down-dropped area, the upper edge of the dike must be only about 50 to 100 metres below the highway.

Thankfully, the portion of the 2018 dike below Highway 130 did not have enough energy to reach the surface. Now that the uppermost dike is probably solidified, the 2018 magma just below the surface of the highway and neighbouring properties will remain frozen in the ground as solid rock.

Source: USGS / HVO.

Le 10 mai 2018, la Highway 130 s’est fracturée, avec des émissions de vapeur, suite à l’intrusion du dyke dans la LERZ. Les deux tréteaux orange et blanc se trouvent sur des zones légèrement surélevées de la route, distantes d’environ 100 mètres. À mi-chemin entre les zones surélevées, la route est en train de s’affaisser à cause de l’intrusion magmatique en dessous. (Crédit photo: USGS)

Dykes déchaussés par l’érosion sur les berges de Crater Lake (Etats Unis) [Photo: C. Grandpey]

Hawaii: Le Kilauea Iki de nouveau accessible // Kilauea Iki again accessible

Voici un lot de consolation pour ceux qui iront à Hawaii mais ne verront pas de coulées de lave actives sur la Grande Ile. Le Parc National des Volcans d’Hawaï vient de rouvrir le sentier du Kilauea Iki (Kilauea Iki Trail) dans son intégralité. La moitié du sentier était ouverte depuis avril 2019, mais le reste de la boucle de 6,5 km était resté fermé pour effectuer des réparations

Le sentier du Kilauea Iki et de nombreuses autres zones du Parcs ont été gravement endommagés lors de l’éruption de 2018 qui a provoqué plus de 60 000 secousses sismiques au sommet du Kilauea. Grâce au soutien financier de Friends of Hawai‘i Volcanoes National Park, partenaire du parc, l’équipe d’entretien, épaulée par du personnel en provenance d’autres parcs nationaux, a réussi à réparer les portions du sentier du Kilauea Iki qui ont été endommagées, y compris celle où ont eu lieu d’importantes chutes de pierres le long de Byron Ledge.
Le Kilauea Iki Trail est l’un des sentiers les plus populaires du Parc. Il permet une randonnée sans grosses difficultés qui fait descendre à 120 mètres sous la lèvre du cratère jusqu’à son plancher. On entre alors dans un environnement unique où des nuages de vapeur sortent encore du sol. Le Kilauea Iki est tranquille ces jours-ci, mais en 1959, il hébergeait un lac de lave bouillonnant avec des fontaines de lave atteignant 600 mètres de hauteur.
Le 22 septembre 2019 marquait le premier anniversaire de la réouverture du Parc des Volcans d’Hawaii après une fermeture sans précédent de 134 jours en raison de l’éruption de 2018.
Source: National Park Service.

———————————————–

Here is a consolation prize to those who go to Hawaii but can no loger see active lava on the Big Island. The Hawaii Volcanoes National Park has reopened the Kilauea Iki Trail in its entirety. About half of the trail had been open since April 2019, but the rest of the 6.5-kilometre loop remained closed for repairs until now.

The Kilauea Iki Trail and many park areas were severely damaged during the 2018 Kilauea eruption, which included more than 60,000 earthquakes at the summit. Thanks to the financial support of the park’s nonprofit partner, the Friends of Hawai‘i Volcanoes National Park, the park’s trail crew, assisted by trail crew members from other national parks, has successfully repaired the damaged sections of the Kilauea Iki Trail including areas of significant rockfall along Byron Ledge.

One of the park’s most popular trails, the Kilauea Iki Trail is a moderately-strenuous hike that drops 120 metres from the summit of the crater to the crater floor. A walk along the crater floor transports hikers to a unique environment. Kilauea Iki looks fairly tranquil these days but, in 1959 it was a seething lava lake, with lava fountains up to 600 metres high.

September 22nd marked the one-year anniversary of the Park reopening following an unprecedented 134-day closure due to the 2018 eruption.

Source: National Park Service.

Vue du cratère du Kilauea Iki (Photo: C. Grandpey)

L’éruption de 2018 du Kilauea (Hawaii) // The 2018 eruption of Kilauea (Hawaii)

En 2018, le Kilauea a connu l’éruption la plus spectaculaire des deux derniers siècles. Elle s’est déroulée au sommet du volcan et dans la Lower East Rift Zone. L’USGS vient de mettre en ligne un document retraçant l’historique des différents événements qui ont ponctué l’éruption, sans oublier les circonstances qui l’ont précédée, que ce soit dans la zone sommitale ou sur le Pu’uO’o dans l’East Rift Zone. Vous pourrez visionner le document en cliquant sur ce lien :

https://wim.usgs.gov/geonarrative/kilauea2018/

——————————————-

In 2018, Kilauea experienced its largest Lower East Rift Zone eruption and summit collapse in at least 200 years. USGS has just released a geonarrative that provides a brief overview of the different eruptive events, without forgetting the circumstances that led up to the 2018 eruption, both in the summit area and on Pu’uO’o on the East Rift Zone. The document can be viewed by clicking on this link:.

https://wim.usgs.gov/geonarrative/kilauea2018/

L’effondrement du cratère du pu’uO’o juste avant la sortie de la lave dans la Lower East Rift Zone (Crédit photo: USGS / HVO)

Kilauea (Hawaii) : Dans le sillage de l’éruption de 2018…// Kilauea (Hawaii): In the wake of the 2018 eruption…

Aujourd’hui, pour la première fois depuis plus de trois décennies, le Kilauea n’est pas en éruption. Au sommet du volcan, l’activité sismique est faible et la majeure partie du Parc National fonctionne normalement. La lave ne coule plus et la pollution atmosphérique causée par le volcan – le célèbre vog – est à son niveau le plus bas depuis le début des années 1980.
Cependant, comme je l’écrivais dans une note précédente, le danger n’a pas totalement disparu de certaines zones à proximité des fissures éruptives de 2018. Bien que la lave ne coule plus, de la chaleur résiduelle et de petites quantités de gaz continuent de s’échapper des fissures au fur et à mesure que la roche encore très chaude en profondeur continue de se refroidir. Lorsque de nouvelles fissures s’ouvrent suite au refroidissement du magma, l’eau de pluie s’infiltre dans les zones de chaleur résiduelle et génère des panaches de vapeur ainsi que de petites quantités de gaz. À l’heure actuelle, les zones situées immédiatement à proximité et à l’ouest de la Highway 130 sont particulièrement affectées par cette chaleur et cette vapeur résiduelles. Ces zones de température élevée peuvent migrer tandis que se poursuivent le refroidissement et le mouvement des eaux souterraines.
Dans les zones où se forme la vapeur, à proximité et en amont des fissures désormais inactives, on enregistre des niveaux légèrement élevés de sulfure d’hydrogène (H2S) et de dioxyde de carbone (CO2). Ces gaz sont le plus souvent libérés par le magma en cours de refroidissement, mais ils sont aussi produits par la décomposition de matières organiques ou, dans le cas du CO2, par la végétation qui se consume lentement.
Ainsi, une partie du H2S et du CO2 est probablement générée par les températures plus élevées qui affectent les plantes dans la Lower East Rift Zone. Il est important de noter que les concentrations actuelles de H2S sont inférieures au seuil minimum de détection des instruments qui est de 0,5 partie par million (ppm). On peut généralement percevoir l’odeur d’œuf pourri du H2S à des concentrations beaucoup plus faibles, allant de 0,0005 à 0,3 ppm.
Sur la base du seuil olfactif, le niveau de nuisance du H2S à Hawaii a été fixé à 0,025 ppm. Les symptômes négatifs de l’exposition au H2S ne surviennent que lorsque les concentrations sont bien supérieures à ce niveau. Selon les services de santé, une exposition prolongée à 2-5 ppm de H2S peut provoquer des maux de tête, une irritation des yeux, des nausées ou des problèmes respiratoires chez certaines personnes asthmatiques. C’est plusieurs fois les concentrations actuellement mesurées près des sources de H2S dans la LERZ.
Les concentrations de dioxyde de carbone dans certaines zones de panaches de vapeur dans la LERZ sont supérieures à la concentration atmosphérique de base qui est de 412 ppm. L’air dans une salle de réunion avec beaucoup de monde peut souvent dépasser 1 000 ppm de CO2. En revanche, les concentrations maximales de CO2 mesurées dans la LERZ sont bien inférieures à ce niveau. Les services de santé ont établi une limite d’exposition au CO2 de 5 000 ppm en moyenne pour une journée de travail de 8 heures.
En se basant sur l’historique d’éruptions précédentes, les températures élevées et les panaches de vapeur devraient persister dans la LERZ pendant de nombreuses années. L’éruption de 1955 dans cette zone continue à générer des phénomènes externes depuis plus de 60 ans. Certaines sources de vapeur sont utilisées comme saunas naturels. Au début des années 1990, une température de 51°C avait été enregistrée dans une ancienne bouche éruptive de 1955, mais aucun gaz volcanique chargé de soufre tel que le H2S n’avait été détecté.
Les éruptions dans la LERZ en 1955 et 2018 montrent certains points communs, mais il est impossible de déterminer exactement où et pendant combien de temps la chaleur persistera et les émissions de vapeur se poursuivront. Quoi qu’il en soit, l’activité de surface liée à l’intrusion magmatique de 2018 va commencer son long et lent déclin.
Source: USGS / HVO.

————————————————-

Today, for the first time in over three decades, Kilauea is not erupting. At the summit of the volcano, earthquake activity is low, and most of the National Park is open for business. No lava is flowing anywhere on Kilauea, and volcanic air pollution on the island is the lowest it has been since the early 1980s.

However, as I put it in a previous post, there are lingering dangers in some areas near the 2018 eruptive fissures. Although lava is no longer erupting, residual heat and small amounts of gas continue to escape from ground cracks and vents as subsurface molten rock continues to cool. As small new cracks open in response to magma cooling, groundwater infiltrates areas of remaining heat, releasing steam and small amounts of gases. Currently, areas adjacent to and west of Highway 130 are particularly impacted by this residual heat and steam. These areas of elevated temperature may migrate, as cooling and groundwater movement continue.

In steaming areas near and uprift of the now inactive fissures, slightly elevated levels of hydrogen sulfide (H2S) and carbon dioxide (CO2) gases have been detected. While these gases may be released from cooling magma, they are also generated by decaying organic matter, or, in the case of CO2, from burning or smoldering vegetation.

Thus, some portion of the H2S and CO2 is likely generated from the increased temperatures affecting plants in the area. Importantly, current H2S concentrations are below the minimum detection level of volcanic gas monitoring instruments, which is 0.5 parts per million (ppm). People can usually smell the rotten egg odour of H2S at much lower concentrations, ranging from 0.0005 to 0.3 ppm.

Based on the odour threshold, Hawaii has set a nuisance level for H2S at 0.025 ppm. However, negative symptoms of H2S exposure do not occur until concentrations are well above this level. According to the health services, prolonged exposure to 2-5 ppm H2S may cause headaches, eye irritation, nausea or breathing problems in some asthmatics. This is many times the concentrations currently measured near the LERZ thermal features.

Carbon dioxide concentrations in some LERZ steaming areas are elevated above the background atmospheric concentration of 412 ppm. While the air in a crowded meeting room can frequently exceed 1,000 ppm CO2, maximum concentrations measured in the LERZ are well below this level. Health services have established an exposure limit for CO2 of 5,000 ppm averaged over an 8-hour work day.

Based on the history of previous eruptions, elevated temperatures and steam are likely to persist in the area for many years. The 1955 LERZ eruption produced thermal features that have been active for over 60 years, some of which are used as natural saunas. Even in the early 1990s, a temperature of 51°C was measured in a 1955 vent, but no volcanic sulfur gases such as H2S were detected.

The 1955 and 2018 LERZ eruptions share some similarities, but exactly where and how long heating and steaming will continue for any area is impossible to determine. Eventually, however, lingering surface activity related to the 2018 intrusion will begin its long, slow decline.

Source : USGS / HVO.

Les bouches de vapeur [steam vents] font partie des attractions touristiques du Kilauea (Photos: C. Grandpey)

Des drones sur le Kilauea (Hawaii) pendant l’éruption de 2018 // Drones on Kilauea Volcano (Hawaii) during the 2018 eruption

Cela fait des décennies que des hélicoptères et des avions véhiculent les volcanologues du HVO, ce qui leur a permis de bonnes observations visuelles et thermiques, d’entretenir les équipement sur le terrain et d’effectuer des mesures géophysiques et géochimiques. L’éruption du Kilauea en 2018 a été l’occasion d’adopter une nouvelle technologie aéroportée – les drones, aussi appelés UAS (Unmanned Aircraft Systems en américain) – pour mieux surveiller l’évolution de l’éruption.
Auparavant, l’Université d’Hawaii à Hilo avait utilisé des drones pour cartographier la coulée de lave de Pāhoa en 2014. D’autres organismes externes ont également effectué de courtes campagnes à l’aide de drones au sommet du Kilauea et sur le Pu’uO’o avec l’autorisation du Parc National des Volcans d’Hawaii*. Toutefois, avant l’éruption de 2018, l’USGS n’avait pas utilisé de drones pour surveiller une éruption à Hawaii.
La dernière éruption du Kilauea fut donc l’occasion pour l’USGS d’utiliser des drones pour la première fois. Pendant la majeure partie de l’événement, les scientifiques équipés de drones ont travaillé 24 heures sur 24, 7 jours sur 7, parfois en plusieurs équipes afin d’effectuer des mesures simultanément au sommet et sur la Lower East Rift Zone (LERZ). La fonction de base des drones lors de l’éruption de 2018 a été de fournir des images et des vidéos en continu. Cela a permis d’observer des phénomènes éruptifs inaccessibles à cause de leur dangerosité. D’un point de vue pratique, les images fournies par les drones ont également permis une meilleure connaissance de la situation et de définir les mesures à prendre en conséquence. Les drones ont permis d’identifier les secteurs où de nouvelles émissions de lave se produisaient ou étaient susceptibles de se produire. Dans un cas, un drone de l’USGS a contribué à l’évacuation d’un habitant de Puna menacé par une coulée de lave qui se rapprochait dangereusement de sa maison.
Certains drones ont été équipées de caméras thermiques. Leurs images ont été utilisées pour créer des cartes détaillées des coulées de lave. L’imagerie thermique a également été utilisée pour identifier les parties les plus chaudes et les plus actives du champ d’écoulement. Cela fut particulièrement utile lorsque les images à l’oeil nu ne permettaient pas de différencier suffisamment les coulées légèrement plus anciennes des plus récentes.
Parmi les autres applications techniques des images fournies par les drones, on notera la création de modèles numériques de hauteur de lave (DEM) et la mesure de la vitesse de la lave dans les chenaux. En utilisant des images pour déterminer la hauteur de la lave nouvellement écoulée, les nouveaux relevés DEM ont pu être comparés aux DEM précédant l’éruption pour calculer le volume de la lave émis. Au sommet du Kilauea, les DEM ont permis au HVO d’effectuer des mesures de la caldeira en phase d’effondrement et de déterminer l’ampleur de cet effondrement. Le long de la zone de rift, les vidéos réalisées au-dessus de chenaux où la lave s’écoulait rapidement ont permis de calculer la quantité et la vitesse de la lave au sortir des fissures.
Au-delà des possibilités offertes au niveau des images, l’éruption de 2018 a permis pour la première fois à l’USGS d’installer des capteurs de gaz sur des drones à Hawaii. Les fractures étaient trop dangereuses pour une approche à pied pour mesurer la chimie des gaz. En revanche, un capteur multi-gaz monté sur un drone a permis de déterminer la chimie des panaches éruptifs. De même, au sommet, en raison d’effondrements et des risques d’explosion, les mesures de gaz au sol dans la caldeira du Kilauea n’étaient pas possibles. Les mesures effectuées à l’aide de drones étaient la seule méthode fiable pour mesurer l’emplacement, la composition chimique et la quantité de gaz volcaniques émis au sommet.
Source: USGS / HVO.

* Il est bon de rappeler ici que l’utilisation de drones est formellement interdite aux touristes à l’intérieur des parcs nationaux aux Etats Unis. L’infraction à la loi entraîne une forte amende et la confiscation de l’appareil. C’est ce qui est arrivé à un visiteur de la terrasse du Jaggar Museum il ya deux ans, pour ne pas avoir tenu compte des injonctions des rangers.

——————————————–

Helicopters and other aircraft have transported HVO volcanologists for decades, giving them access for visual and thermal observations, equipment maintenance, and other geophysical and geochemical measurements. The 2018 eruption of Kīiauea presented an opportunity to adopt a new airborne technology – Unmanned Aircraft Systems (UAS or drones) – to better monitor the eruption.
Previously, the University of Hawaii at Hilo used UAS to map the 2014 Pāhoa lava flow. Other external collaborators have also previously flown short campaigns at Kilauea’s summit and at Pu’uO’o with permission of Hawaiii Volcanoes National Park. But before the 2018 eruption, the USGS itself had not employed UAS to monitor an eruption in Hawaii.
In 2018, however, UAS teams were mobilized for the Kilauea eruption response. Through most of the activity, UAS crews worked 24/7, sometimes splitting into multiple teams so that measurements could be made at both the summit and Lower East Rift Zone (LERZ) simultaneously. The most basic capability of the UAS during the 2018 eruption was simple video imaging and streaming. This allowed for documentation of eruptive features that would not otherwise have been accessible for study due to hazardous conditions. In a more practical sense, UAS imaging also offered better situational awareness for the eruption response. UAS images helped identify where new lava breakouts were happening or were likely to occur. In one instance, a USGS UAS helped with the evacuation of a Puna resident as a lava flow quickly approached.
Some of the UAS were outfitted with thermal cameras, which provided images that were used to create detailed maps of the lava flows. Thermal imagery was also used to identify the hottest, most active portions of the flow field, which was particularly useful when visible images were not able to differentiate between slightly older and slightly newer flows.
More technical applications of UAS-based imaging included the creation of digital elevation models (DEMs) and measurements of lava flow speeds within channels. By using imagery to determine the height of newly emplaced lava, the new DEMs could be compared to pre-eruption DEMs to calculate the volume of lava erupted. At Kilauea’s summit, DEMs helped HVO assess the new landscape of the collapsing caldera and determine just how much collapse was occurring. Along the rift zone, videos taken above fast-flowing lava channels helped with calculations of how much and how quickly lava was erupting from the fissures.
Beyond the UAS imaging opportunities, the 2018 eruption was the first time that the USGS mounted gas sensors on UAS in Hawaii. The fissures were too dangerous to approach on foot to measure the gas chemistry, but a multi-gas sensor mounted on a UAS helped determine the chemistry of the eruptive plumes. Likewise, at the summit, with collapse events and potential explosion hazards, ground-based gas measurements within Kilauea caldera were not possible. UAS-based measurements were the only safe method for measuring the location, chemistry, and amount of volcanic gas released at the summit.
Source: USGS / HVO.

Volcanologues de l’USGS préparant un drone (Crédit photo: USGS)

Les leçons de l’éruption du Kilauea en 2018 (Hawaii) // The lessons of the 2018 Kilauea eruption (Hawaii)

Dans une note précédente, j’ai expliqué que les volcanologues du HVO étaient en train d’acquérir de nouvelles informations suite à l’analyse de l’éruption du Kilauea dans la Lower East Rift Zone (LERZ). Un nouvel article de la série Volcano Watch nous apprend que les effondrements de la zone sommitale du volcan en 2018 sont également riches d’enseignements.
Dès le début du mois d’avril 2018, le volcan a montré les signes d’un changement dans son comportement, mais les données fournies par les instruments étaient trop vagues pour prévoir ce qui allait se passer. Elles faisaient seulement état d’une augmentation de la pression dans le système magmatique entre le sommet du Kilauea et le cône du Pu’uO’o.
Le 30 avril 2018, la lave est sortie brièvement d’une fracture sur le flanc ouest du Pu’uO’o. Le magma a ensuite pris le chemin de la LERZ, laissant derrière lui un trou béant dans le cratère du Pu’uO’o qui a émis un impressionnant panache de poussière en se vidant.
Le magma qui se trouvait sous le Pu’uO’o s’est immédiatement dirigé vers la LERZ où le sol s’est légèrement soulevé, avec des séismes qui indiquaient la trajectoire suivie par la roche en fusion vers la surface.
Le 3 mai 2018, la lave a percé la surface dans les Leilani Estates, marquant le début de la plus grande éruption dans la LERZ du Kilauea depuis plus de 200 ans.
Au cours des semaines suivantes, le lac de lave qui se trouvait au sommet, dans l’Overlook Crater de l’Halema’uma’u, s’est vidangé tandis que le magma s’écoulait dans la LERZ, comme si une soupape s’était ouverte au fond de l’Overlook Crater. Aidé par la différence d’altitude de près de 900 mètres entre le sommet et la LERZ, le lac de lave s’est vidé régulièrement et le sommet de Kilauea s’est effondré en s’affaissant. Ce processus s’est accompagné d’une forte sismicité.
La vidange du lac de lave a entraîné des éboulements quasi permanents dans l’Overlook Crater vidé de son contenu. Des explosions ont généré d’impressionnantes colonnes de cendre, avec parfois des retombées de gros blocs sur le plancher de l’Halema’uma’u.
À la fin du mois de mai, les explosions au sommet du Kilauea ont été remplacées par des effondrements épisodiques. Au total, 62 événements d’effondrement ont secoué la zone sommitale en déclenchant des séismes qui ont à plusieurs reprises atteint une magnitude de M 5.3, occasionnant des dégâts au bâtiment du HVO et au Jaggar Museum. Les routes, les réseaux d’alimentation en eau et les fondations de certaines maisons dans le village de Volcano ont également été endommagés.
Un an après, les scientifiques du HVO continuent d’analyser les données de l’éruption sommitale du Kilauea. Avant 2018, les modèles indiquaient que l’activité explosive observée au sommet était provoquée par l’interaction entre les eaux souterraines et la haute température du conduit d’alimentation situé sous la caldeira du Kilauea. En revanche, les analyses de plusieurs explosions observées en 2018 laissent supposer que les gaz magmatiques sont le moteur de ces explosions.
Au lieu de s’effondrer d’un seul coup, on s’est rendu compte en 2018 que la caldeira du Kilauea pouvait s’affaisser progressivement sur de longues périodes, avec une déflation du sommet générant une forte sismicité qui constitue un risque majeur.
Les scientifiques ont également constaté que, dans certaines conditions, le sommet de Kilauea et la LERZ peuvent être reliés étroitement. Ceci est corroboré par l’équivalence approximative entre le volume de lave émis dans la LERZ et le volume du vide laissé par l’effondrement sommital ; tous deux sont de l’ordre de 1 kilomètre cube.

Une étude menée par un groupe international de scientifiques a révélé que la vitesse de propagation des ondes sismiques au sommet du Kilauea a montré des variations mesurables avant l’activité éruptive de 2018. Cette découverte représente un paramètre intéressant dans la prévision d’une future activité éruptive.
Source: USGS / HVO.

————————————————–

In a previous post, I explained that US geologists at HVO are gaining new insights from the Kilauea eruption in the Lower Esat Rift Zone. A new Volcano Watch article indicates that they are also learning a lot from the volcano’s 2018 summit collapses.

As soon as early April 2018, the volcano showed signs that change was coming, but the data provided by the instruments were too elusive to predict what was to happen. They only tracked an increasingly pressurized magmatic system between Kilauea’s summit and the Pu’uO’o cone.

On April 30th, 2018, lava emerged briefly from a crack on the cone’s west flank before the remaining magma drained into the East Rift Zone.  The Pu’uO’o crater collapsed, leaving a bottomless, empty cavity.

The magma which was beneath Pu’uO’o immediately headed toward the Lower East Rift Zone (LERZ) where the ground heaved slightly in response, with earthquakes indicating the path followed by the molten rock as it pushed downrift and toward the surface.

On May 3rd, lava erupted within the Leilani Estates. It marked the beginning of the largest eruption on Kilauea’s LERZ in over 200 years.

Over the next weeks, the summit lava lake withdrew deeper into the volcano as magma emptied into the LERZ, as if a valve had been opened at the bottom of the Overlook Crater. Aided by the nearly 900 metre elevation difference between the summit and the LERZ, the lava lake steadily drained and Kilauea’s summit collapsed inward. This in turn prompted elevated seismicity.

Recession of the lava lake resulted in near-constant rockfalls into the now empty Overlook Crater  Explosions sent impressive columns of ash into the sky, sometimes littering the ground around Halema’uma’u with dense blocks of rock.

By late May, Kilauea summit explosions were replaced by episodic collapse events. All told, 62 collapse events rocked Kilauea’s summit, triggering several M 5.3 earthquakeswhich caused damage at the HVO building, the Jaggar Museum. Roads and water system and residential foundations in Volcano were also damaged.

A year later, HVO scientists continue to process data from the 2018 eruption at the summit of Kilauea. Prior to 2018, models indicated that explosive summit activity was driven by steam explosions produced by the interaction between groundwater and the hot conduit below Kilauea’s caldera. But data from several 2018 explosions suggest that magmatic gas is the primary driver.

Rather than necessarily occurring as one big drop, the Kilauea caldera collapse can proceed incrementally over long periods of time, with ground shaking during sustained, rapid summit deflation and episodic collapse posing a major hazard.

Under certain conditions, Kilauea’s summit and the LERZ can be extremely well-connected through the core of the rift zone. This is supported by the rough equivalence of the LERZ erupted volume and the summit collapse void, both on the order of 1 cubic kilometre.

A study led by an international group of scientists has found evidence that seismic velocity – the speed at which seismic waves travel – within Kīlauea’s summit showed measurable changes leading up the 2018 activity. This finding potentially offers another means to forecast eruptive activity.

Source : USGS / HVO.

Panache de cendre et de poussière émis par le Pu’uO’o lorsque le plancher du cratère s’est effondré après l’évacuation du magma vers la LERZ (Crédit photo : USGS / HVO)

Panache de cendre émis par l’Overlook Crater de l’Halema’uma’u pendant la vidange du lac de lave (Crédit photo : USGS / HVO)