Glaciers en péril en Papouasie-Nouvelle-Guinée // Glaciers at risk in Papua-New-Guinea

La série noire glaciaire continue. C’est au tour de deux glaciers de Papouasie de se diriger vers une mort certaine sous les coups de boutoir du réchauffement climatique. Les deux glaciers, situés au sommet du Puncak Jaya – ou Mont Carstensz – (4884 m) sont en train de vivre leurs dernières années d’existence. En effet, ces glaciers ont continué à reculer considérablement depuis des observations effectuées entre 2002 et 2018, et les glaciologues estiment qu’ils disparaîtront dans les prochaines années, en 2023 ou 2026 au plus tard.

La superficie couverte par la glace qui recouvre le Puncak Jaya a perdu 1,45 km2 entre 2002 et 2015. En 2018, les glaciers ne recouvraient plus qu’une surface de 0,46 km2. Les glaciers ne font pas que reculer ; ils s’amincissent aussi. Leur épaisseur  diminue de 1,05 m par an depuis 2010.

Les glaciers sont victimes de deux phénomènes qui vont de pair : d’une part l’augmentation de la température de l’air qui provoque, d’autre part, l’augmentation de la température de la roche. En effet, les roches exposées par la fonte de la glace sont noires et absorbent le rayonnement solaire, ce qui, in fine, accélère la disparition du glacier. Ce double réchauffement par le haut et par le bas entraîne la contraction progressive de la surface du glacier, ce qui se traduit par sa division en deux masses de glace.

Source : Courrier International.

————————————–

The glacial black series continues. Two glaciers in Papua are going to a certain death under the blows of global warming. The two glaciers, located at the top of Puncak Jaya – or Mount Carstensz – (4884 m) are living their last years of existence. Indeed, these glaciers have never stopped retreating since the observations made between 2002 and 2018, and glaciologists believe that they will disappear in the next few years, in 2023 or 2026 at the latest.

The area of ice ice covering Puncak Jaya lost 1.45 km2 between 2002 and 2015. In 2018, glaciers covered an area of obly ​​0.46 km2. Glaciers aren’t just retreating; they’re thinning too. Their thickness has been decreasing by 1.05 m per year since 2010.

Glaciers are victims of two phenomena that go hand in hand: on the one hand, an increase in air temperature which causes, on the other hand, an increase in the temperature of the rock. Indeed, the rocks exposed by the melting ice are black and absorb solar radiation, which, in turn, accelerates the disappearance of the glacier. This double warming from above and below leads to the progressive contraction of the glacier’s surface, which results in its division into two masses of ice.

Source: Courrier International.

Cette photo prise en 2005 montre le glacier Carstensz  en bas à droite. La dépression circulaire sur la gauche est la mine d’or de Grasberg, la plus grande du monde (Source : NASA)

Le lent refroidissement de la lave du Kilauea (Hawaii) // The slow cooling of the Kilauea lava (Hawaii)

Le HVO a publié un article très intéressant qui explique pourquoi et comment la lave émise lors de l’éruption du Kilauea en 2018 se refroidit très lentement. La réponse est facile : c’est parce que la lave bénéficie de son propre pouvoir isolant. .
Depuis la fin de l’éruption de 2018, des mesures précises ont été effectuées sur l’épaisseur des coulées, leur temps de refroidissement et la relation entre le cœur encore très chaud et visqueux des coulées et la croûte solide en surface.
Les travaux effectués par des scientifiques du HVO et publiés en 1994 ont révélé la vitesse de refroidissement des coulées pahoehoe à Kalapana. Les volcanologues ont alors découvert que la croûte qui surmonte une coulée de lave basaltique s’épaissit en fonction de la racine carrée du temps. En d’autres termes, la croûte se développe plus lentement avec le temps. En conséquence, les coulées de lave plus épaisses prendront plus de temps à se solidifier.
La lave émise par le  Kilauea a une température d’environ 1150°C. En 1917, Thomas Jaggar a publié les résultats des mesures de température du lac de lave actif dans le cratère de l’Halema’uma ’u. On y apprend que le basalte pouvait rester encore visqueux à des températures entre 750 et 850°C. Ces chiffres servent aujourd’hui de référence. Ainsi, pour les derniers calculs relatifs à la lave de 2018, la croûte a été considérée comme solide quand elle présentait une température inférieure à 850°C. Cette même croûte montrait encore de l’élasticité (état semi-solide ou malléable) entre 850 et 1070°C.
Des études antérieures effectuées par le HVO sur les lacs de lave actifs dans le cratère du Kilauea Iki fournissent des informations supplémentaires. En forant la croûte refroidie à l’intérieur du cratère, les scientifiques ont constaté que la solidification prenait des décennies. En particulier, le lac de lave qui occupait le Kilauea Iki en 1959 avec une épaisseur de 44 mètres a mis environ 35 ans à se solidifier complètement. La température en profondeur est encore supérieure à 540°C.
En utilisant des drones, le HVO a pu élaborer une carte de l’épaisseur des coulées de lave de l’éruption de 2018. Cette carte indique qu’au carrefour connu sous le nom de «Four Corners», la lave présente une épaisseur d’une quinzaine de mètres. En utilisant cette valeur et les équations relatives à l’éruption de Kalapana en 1994, on peut calculer comment se sont solidifiées les coulées de 2018.  Ainsi, au cours des 14 mois qui ont suivi la fin de l’éruption, la partie supérieure de la coulée de « Four Corners » s’est solidifiée sur 7,80 mètres, tout comme les 5,50 mètres de sa partie inférieure. En revanche, une épaisseur de 1,70 mètre au cœur de la coulée est restée encore visqueuse. On estime qu’il faudra encore environ 3 ans pour que la température de ce cœur de coulée descende à 850°C et que la lave se solidifie complètement. Cela correspond aux dernières observations faites par les services de l’équipement qui ont remarqué des roches encore très chaudes lorsque les bulldozers ont effectué une tranchée le long de la Highway 132. Les géologues du HVO ont confirmé ces observations en août, lorsque une température de 425° C a été mesurée sur le site. Des températures élevées persisteront à plusieurs dizaines de centimètres sous la surface et généreront probablement de la vapeur lorsqu’il pleuvra.
Bien que l’éruption de 2018 du Kilauea se soit achevée il y a 14 mois, il faudra des années avant que les coulées de lave se solidifient complètement avec une température inférieure à 850°C, et il faudra attendre plus d’un siècle avant que la zone de 250 mètres d’épaisseur, là où la lave est entrée dans l’océan,  se solidifie complètement.
Source: USGS, HVO.

Cet article m’intéresse particulièrement car j’ai moi-même effectué un travail d’observation sur le processus de refroidissement de la lave sur le Kilauea, pour le compte du HVO et du Parc National des volcans d’Hawaii. Vous trouverez un résumé de mes travaux sous l’entête de ce blog.

————————————————-

HVO has released a very interesting article which explains why and how lava from the Kilauea 2018 eruption is cooling very slowly. The short and simple answer is that lava insulates itself very well.

Since the end of the 2018 eruption, accurate measurements have been made on the flow field of lava thickness, cooling times, and the relative proportions of the internal molten core to the exterior solid crust.

Previous work by HVO scientists published in 1994 measured the cooling rate of pahoehoe lava at Kalapana. They found that the upper crust of a basalt lava flow grows thicker as a function of the square root of time. In other words, the lava flow crust grows more slowly with time. Therefore, thicker lava flows will take longer to become completely solid.

Lava erupts from Kilauea at a temperature of 1150°C. In 1917, Thomas Jaggar published results from the then-active Halema‘uma‘u lava lake that indicated basalt can remain molten at temperatures as low as 750–850°C. These figures are now the reference. For the current calculations, the crust has been considered solid when it is below 850°C and this crust is viscoelastic (semi-solid or malleable) at 850–1070°C.

Additional insight comes from previous HVO studies of active lava lakes in Kilauea Iki craters. By drilling into the cooled upper crusts of lava lakes within these craters, scientists documented that solidification takes decades. More specifically, the 44-metre-thick 1959 Kilauea Iki lava lake took about 35 years to fully solidify. Today, its core is still hotter than 540°C.

Using drones, HVO was able to create a lava flow thickness map of the 2018 eruption. This map indicates that at the intersection known as “Four Corners” there is a thickness of approximately 15 metres of lava. Using this value and the equations from the 1994 study of the Kalapana lava flows, one can calculate how much of the 2018 flows have solidified. Over the 14 months since the end of the eruption last year, the upper 7.8 metres and lower 5.5 metres at “Four Corners” should already be solidified crust, and the middle 1.7 metres should still be malleable.

It will take about 3 more years for the remaining 1.7 metres of malleable lava over the “Four Corners” intersection to reach 850°C and be completely solid. This matches recent observations by road-construction crews, who noticed hot rocks being exposed at a road cut along Highway 132. HVO geologists confirmed this in August, when temperatures of 425°C were measured at the newly-cut road site. Hot temperatures will remain several tens of centimetres below the surface for now and will likely generate steam when it rains.

Although Kilauea’s 2018 eruption ended 14 months ago, it will be years before the lava flows emplaced on land are entirely solidified below 850°C, and over a century before the 250-metre-thick area offshore fully solidifies.

Source: USGS, HVO.

This article is of particular interest to me because I performed an observation work on the cooling process of lava on Kilauea, on behalf of HVO and the Hawaii Volcanoes National Park. You will find an abstract of my work beneath the heading of this blog.

Refroidie et durcie en surface, une coulée de lave conserve pendant longtemps une température élevée à l’intérieur (Photo: C. Grandpey)

Mesure de l’épaisseur des coulées de lave // How to measure the thickness of lava flows

Au cours des premières années de l’éruption du Kilauea au niveau du Pu’uO’o, les scientifiques de l’Observatoire des Volcans d’Hawaii (HVO) ont mesuré l’épaisseur des coulées de lave en effectuant des relevés manuels en bordure de chaque coulée. Le volume de la coulée était ensuite calculé en multipliant sa surface par son épaisseur moyenne. Le débit éruptif était égal à ce volume divisé par la durée de l’éruption en secondes. Pendant la première année d’activité du Pu’uO’o en 1983, le débit éruptif a été estimé entre 15 et 65 mètres cubes par seconde. Cependant, cette méthode ne tenait pas compte de toutes les variations d’épaisseur des coulées à travers le champs de lave. Par exemple, de nombreuses coulées a’a, comme la coulée de lave émise par la Fracture n° 8 en 2018, abritent un chenal ou une cavité vide. En conséquence, si l’on suppose que la coulée présente une épaisseur constante, on surestime le volume de la lave ainsi que le débit éruptif.
En 1993, les scientifiques ont utilisé un radar aéroporté et survolé Kilauea à un peu moins de 8 km d’altitude. Le radar pouvait élaborer une image des coulées de lave avec une précision de 1 à 2 mètres. Il était également en mesure de fournir des milliers de points de hauteur de la surface de chaque coulée de lave, et pas seulement l’épaisseur en bordure de coulée, comme cela se faisait auparavant. Le volume d’une coulée calculé de cette manière (hauteur de la surface du sol avant la éruption soustraite de la hauteur de la lave de 1993) était légèrement supérieur à celui calculé avec la méthode classique de mesure manuelle en bordure des coulées.

Un progrès dans la mesure de l’épaisseur des coulées est intervenu avec l’arrivée du LIDAR [Light (ou Laser Imaging) Detection And Ranging], appareil qui émet un faisceau laser et en reçoit l’écho (comme le radar), ce qui permet de déterminer la distance d’un objet. Le LIDAR a été embarqué à bord d’avions ou d’hélicoptères et a envoyé des milliards d’impulsions laser en direction du sol. On a ainsi obtenu une foule de données précises (à quelques centimètres près) sur l’épaisseur des coulées de lave.
Au cours des dernières années, les géologues ont obtenu des résultats semblables en hélicoptère, en prenant des photos numériques superposées du sol, avec pour chaque cliché les coordonnées GPS de l’appareil photo. Les logiciels informatiques utilisant la “Surface-from-Motion” (SfM) technique – Surface à partir du Mouvement – peuvent identifier automatiquement les emplacements communs sur des photos adjacentes et réaliser une image 3 D des hauteurs du sol à partir de centaines de photos. Un autre avantage est que les photos peuvent être assemblées pour produire une carte haute résolution, en mosaïque de photos, de la zone observée.
Lors de l’éruption dans l’East Rift Zone du Kilauea en 2018, des appareils photo ont été embarqués sur des drones. A partir de quelque 2 800 photographies aériennes, le logiciel SfM a calculé 1,5 milliard de points communs qui ont été connectés pour créer un modèle altimétrique numérique à l’échelle du centimètre de la coulée de lave dans le district de Puna. Un modèle pré-éruptif obtenu avec le LIDAR a été soustrait du modèle réalisé avec la technique SfM du drone pour produire une carte d’épaisseur des coulées de lave. Une première version de cette carte, publiée sur le site web du HVO le 19 février 2019, est visible ci-dessous. (https://volcanoes.usgs.gov/volcanoes/kilauea/multimedia_maps.html)

En utilisant cette première ébauche de la carte, on peut obtenir une estimation approximative du volume total de lave émis au cours de l’éruption : environ 0,8 kilomètre cube. En tenant compte des cavités dans la lave et en divisant par la durée de l’éruption, on obtient un débit éruptif minimum d’environ 50 à 200 mètres cubes par seconde. Ce débit éruptif est nettement supérieur à la plupart de ceux enregistrés lors des précédentes éruptions du Kilauea.

Source: USGS / HVO.

———————————————–

During the first few years of Kilauea Volcano’s eruption at Pu’uO’o, Hawaiian Volcano Observatory (HVO) scientists measured thicknesses using hand levels at multiple locations along the edges of each lava flow. The flow volume was then calculated as the product of the flow area multiplied by the average flow thickness. The eruption rate equalled this volume divided by the duration of the eruption in seconds. For the first year of Pu’uO’o activity in 1983, calculated eruption rates were 15-65 cubic metres per second. However, this method did not rale into account all the variations of lava flow thicknesses across flows. For example, many a’a flows, like Kilauea’s fissure 8 lava flow in 2018, host an empty lava channel. If they assumed that the flow was uniformly as thick as the height of its edges, scientists would overestimate the lava flow volume as well as the eruption rate.

In 1993, scientists used an airborne radar flown over Kilauea at an altitude of just under 8 km. The radar could image a lava flow with accuracies of 1-2 metres and determine thousands of surface elevations for each lava flow, not just a few thicknesses along its edge. Flow volumes calculated this way (pre-eruption elevations of the ground surface subtracted from the 1993 elevations of a lava flow) were slightly higher than those calculated with the simpler method of measuring thicknesses along flow edges.

The next improvement in measuring flow thickness was the development and use of Light Detection and Ranging (LIDAR). Specialized equipment was flown over an area by airplane or helicopter, from which billions of laser pulses showered down to the ground. This produced details on lava flow surface elevations accurate to a few centimetres.

Over the last few years, similar results have been obtained by geologists in helicopters snapping overlapping digital photos of the ground, each tagged with the camera’s GPS coordinates. Computer software, using the “Surface-from-Motion” (SfM) technique, can automatically identify common locations in adjacent photos and assemble a 3-dimensional image of ground elevations from hundreds of photos. A bonus is that the photos can be stitched together to produce a single, high-resolution, photo mosaic map of the area.

During Kilauea’s 2018 lower East Rift Zone eruption, cameras on drones did the photography. Using about 2,800 aerial photographs, the SfM software calculated 1.5 billion common points that were connected to create a centimetre-scale digital elevation model of the Puna lava flow. A pre-eruption LIDAR digital elevation model was subtracted from the drone SfM digital elevation model of the erupted flows to produce a lava flow thickness map. A preliminary version of this map was posted on the HVO website on February 19, 2019 and can be seen here below. (https://volcanoes.usgs.gov/volcanoes/kilauea/multimedia_maps.html)

Using the preliminary map, one can calculate a rough estimate of the total volume of lava erupted and added to the land surface: about 0.8 cubic kilometres. When corrected for voids in the lava and divided by the duration of the eruption, this yields a minimum eruption rate of about 50-200 cubic metres per second. This eruption rate is significantly larger than most known Kilauea eruption rates.

Source : USGS / HVO.

Source: USGS / HVO

La Fracture n°8 a émis d’énormes quantité de lave dans l’East Rift Zone  en 2018 (Crédit photo : USGS /HVO)