Un atlas mondial pour estimer le volume d’eau des glaciers // A world atlas to estimate glacier water volumes

Comme je l’ai indiqué à plusieurs reprises sur ce blog, l’évolution des glaciers de montagne est un enjeu majeur : ils servent dans de nombreux pays de réservoir d’eau potable, ont un impact économique, via le tourisme notamment, et participent à la montée du niveau des mers. Dans les pays comme le Pérou, le long de la Cordillère des Andes, ils jouent un rôle essentiel pour l’approvisionnement en eau potable, pour la production d’électricité et pour l’irrigation des cultures. Sans les glaciers, la vie deviendra impossible dans les campagnes et les populations rurales devront migrer vers les villes, Lima en particulier, dont l’alimentation en eau dépend, elle aussi des glaciers andins.

Afin de mieux connaître les réserves en eau représentées par les glaciers, des scientifiques de l’Institut des Géosciences de l’Environnement de Grenoble et du Dartmouth College (USA) ont réalisé un atlas mondial mesurant la vitesse d’écoulement et l’épaisseur de plus de 200 000 glaciers. Ils ont aussi publié un article dans la revue Nature Geoscience.

Malgré leur taille réduite (727 000 km²) face à celle cumulée des deux grandes calottes de l’Antarctique (14 millions de km²) et du Groenland (1,7 millions de km²), la fonte des glaciers de montagne a contribué à 30% de l’élévation du niveau des mers depuis les années 1960.

Même si l’impact des glaciers n’est pas décisif, leur évolution est primordiale au niveau local et leur devenir est une source de préoccupation grandissante pour les zones de montagne et les régions en aval.

Jusqu’à présent, on n’avait qu’une idée très limitée du volume de glace stocké dans les glaciers. Ceci vient notamment du fait que les glaciers sont répartis sous toutes les latitudes, dans des régions souvent difficiles d’accès. Travailler directement sur le terrain est donc très complexe. En conséquence, les mesures d’ épaisseur de la glace n’existent actuellement que sur à peine plus d’1% des glaciers à la surface de la Terre.

À cause de ce manque de données, les scientifiques ont développé des méthodes indirectes pour estimer les quantités de glace sur Terre. Ces méthodes ont d’abord été basées sur l’aire des glaciers, obtenue à partir de photos aériennes ou d’images satellites.

À partir des années 2000, des méthodes basées sur la pente en surface du glacier ont vu le jour, Au-delà de la pente, la vitesse à laquelle s’écoule le glacier constitue une information encore plus pertinente pour estimer la distribution des épaisseurs de glace. En effet, les glaciers s’écoulent sous l’effet de leur propre poids. Par conséquent, cartographier la vitesse à laquelle s’écoule le glacier est essentiel pour mieux estimer la distribution de l’épaisseur de glace et donc le volume des glaciers.

Cependant, les observations sur le terrain de ces vitesses d’écoulement sont, elles aussi, très limitées, mais les innombrables clichés fournis par les satellites ont ouvert de nouvelles perspectives pour mesurer l’écoulement de tous les glaciers de la Terre.

Pour quantifier la vitesse d’écoulement de l’ensemble des glaciers du monde, les chercheurs ont utilisé plus de 800 000 images satellites acquises entre 2017 et 2018 par les satellites Landsat-8 de la NASA et les satellites Sentinel-1 et Sentinel-2 de l’Agence spatiale européenne (ESA). Cette nouvelle génération de satellites constitue une révolution pour l’observation des glaciers, avec des images de l’ensemble des terres émergées acquises à des intervalles de temps réguliers (de 5 à 16 jours).

Plusieurs millions d’heures de calculs sur les serveurs de l’Université Grenoble Alpes ont été nécessaires pour permettre d’assembler un atlas unique de l’écoulement de plus de 200,000 glaciers autour de la Terre.

L’un des principaux apports de cet atlas est la couverture d’une très grande diversité de glaciers, allant de petits glaciers Andins jusqu’à des calottes de l’Arctique canadien ou des champs de glace en Patagonie qui couvrent plusieurs milliers de kilomètres carrés. Ces cartographies permettent ainsi de mieux connaître la manière dont s’écoulent les glaciers. Elles illustrent aussi la grande variété de comportements, avec des glaciers qui s’écoulent à quelques dizaines de mètres par an (comme certains glaciers des Alpes), et d’autres dont la vitesse d’écoulement atteint plusieurs kilomètres en une seule année (comme certains glaciers de Patagonie).

Par ailleurs, cet atlas exhaustif des vitesses d’écoulement glaciaire a permis de redessiner la cartographie de la distribution des épaisseurs de glace et donc du volume des glaciers. En effet, en combinant les informations sur la vitesse d’écoulement en surface des glaciers avec celle de la pente de surface, dans un modèle numérique simulant la manière avec laquelle la glace glisse et se déforme, les chercheurs ont proposé une nouvelle représentation de la géométrie des glaciers.

En de multiples régions, les résultats de ce travail viennent apporter des estimations significativement différentes des précédentes, avec des conséquences importantes sur la disponibilité en eau potable pour la consommation, mais aussi pour l’agriculture ou la production hydro-électrique. Ainsi, dans les Andes que je mentionnais au début de cette note, les nouvelles estimations sont plus alarmantes que précédemment, avec des stocks d’eau glaciaire près d’un quart plus faibles, augmentant ainsi la pression sur les ressources en eau dans ces régions.

Au-delà d’un nouvel inventaire du volume des glaciers, cette étude est cruciale pour mieux simuler leur évolution future et, en particulier, identifier quels sont les secteurs où les glaciers vont disparaître et ceux où ils devraient persister.

Source: The Conversation.

 ———————————————

As I have indicated several times on this blog, the evolution of mountain glaciers is a major issue: in many countries: they serve as reservoirs of drinking water, have an economic impact through tourism and participate in sea level rise. In countries like Peru, along the Andes, they play an essential role in the supply of drinking water, the production of electricity and the irrigation of crops. Without glaciers, life will become impossible in the countryside and rural populations will have to migrate to cities, Lima in particular, whose water supply also depends on Andean glaciers.
In order to better understand the water reserves represented by glaciers, scientists from the Institute of Environmental Geosciences in Grenoble and Dartmouth College (USA) have produced a world atlas measuring the flow speeds and thicknesses of more of 200,000 glaciers. They also published an article in the journal Nature Geoscience.
Despite their reduced size (727,000 km²) compared to that of the two large ice caps of Antarctica (14 million km²) and Greenland (1.7 million km²), the melting of mountain glaciers has contributed 30% sea level rise since the 1960s.
Even if the impact of glaciers is not decisive, their evolution is essential at the local level and their future is a source of growing concern for mountain areas and downslope regions.
Until now, we had only a very limited idea of the volumes of ice stored in glaciers. This is due in particular to the fact that glaciers are distributed at all latitudes, in regions that are often difficult to access. Working directly in the field is therefore very complex. As a result, ice thickness measurements currently exist on just over 1% of glaciers on the Earth’s surface.
Because of this lack of data, scientists have developed indirect methods to estimate the amounts of ice on Earth. These methods were first based on the area of glaciers, obtained from aerial photos or satellite images.
From the 2000s, methods based on the surface slope of the glacier have emerged. Beyond the slope, the speed at which the glacier is flowing provides even more relevant information for estimating the distribution of the thickness of glacier. ice. Indeed, glaciers flow under the effect of their own weight. Therefore, mapping the speed at which the glacier is flowing is essential to better estimate the distribution of ice thickness and therefore the volume of glaciers.
However, field observations of these flow velocities are also very limited, but the countless images provided by satellites have opened up new possibilities for measuring the flow of all the Earth’s glaciers.
To quantify the flow velocity of all of the world’s glaciers, the researchers used more than 800,000 satellite images acquired between 2017 and 2018 by NASA’s Landsat-8 satellites and the Sentinel-1 and Sentinel-2 satellites of the European Space Agency (ESA). This new generation of satellites constitutes a revolution for the observation of glaciers, with images of all emerged land acquired at regular time intervals (from 5 to 16 days).
Several million hours of calculations on the servers of the University of Grenoble Alpes were needed to assemble a unique atlas of the flow of more than 200,000 glaciers around the Earth.
One of the main contributions of this atlas is the coverage of a very great diversity of glaciers, ranging from small Andean glaciers to ice caps in the Canadian Arctic or ice fields in Patagonia which cover several thousand square kilometers. . These maps thus make it possible to better understand the way in which glaciers flow. They also illustrate the wide variety of behaviours, with glaciers flowing at a few tens of meters per year (like some glaciers in the Alps), and others whose flow speeds reach several kilometers in a single year (like some Patagonian glaciers).
In addition, this exhaustive atlas of ice flow velocities has made it possible to re-estimate the mapping of the distribution of ice thickness and therefore the volume of glaciers. Indeed, by combining information on the surface flow velocity of glaciers with that of the surface slope, in a digital model simulating the way in which the ice slides and deforms, the researchers have proposed a new representation of the glacier geometry.

In many regions, the results of this work provide estimates that are significantly different from previous ones, with major consequences on the availability of drinking water for consumption, but also for agriculture or hydroelectric production. Thus, in the Andes that I mentioned at the beginning of this post, the new estimates are more alarming than previously, with glacial water stocks almost a quarter lower, thus increasing the pressure on water resources in these regions. .
Beyond a new inventory of the volume of glaciers, this study is crucial to better simulate the future evolution of glaciers and, in particular, to identify the regions where the glaciers will disappear and those where they are likely to persist.
Source: The Conversation.

La fonte des glaciers alpins, comme ici le glacier Aletsch en Suisse, risque de poser des problèmes d’alimentation en eau dans les vallées (Photo: C. Grandpey)

Glaciers en péril en Papouasie-Nouvelle-Guinée // Glaciers at risk in Papua-New-Guinea

La série noire glaciaire continue. C’est au tour de deux glaciers de Papouasie de se diriger vers une mort certaine sous les coups de boutoir du réchauffement climatique. Les deux glaciers, situés au sommet du Puncak Jaya – ou Mont Carstensz – (4884 m) sont en train de vivre leurs dernières années d’existence. En effet, ces glaciers ont continué à reculer considérablement depuis des observations effectuées entre 2002 et 2018, et les glaciologues estiment qu’ils disparaîtront dans les prochaines années, en 2023 ou 2026 au plus tard.

La superficie couverte par la glace qui recouvre le Puncak Jaya a perdu 1,45 km2 entre 2002 et 2015. En 2018, les glaciers ne recouvraient plus qu’une surface de 0,46 km2. Les glaciers ne font pas que reculer ; ils s’amincissent aussi. Leur épaisseur  diminue de 1,05 m par an depuis 2010.

Les glaciers sont victimes de deux phénomènes qui vont de pair : d’une part l’augmentation de la température de l’air qui provoque, d’autre part, l’augmentation de la température de la roche. En effet, les roches exposées par la fonte de la glace sont noires et absorbent le rayonnement solaire, ce qui, in fine, accélère la disparition du glacier. Ce double réchauffement par le haut et par le bas entraîne la contraction progressive de la surface du glacier, ce qui se traduit par sa division en deux masses de glace.

Source : Courrier International.

————————————–

The glacial black series continues. Two glaciers in Papua are going to a certain death under the blows of global warming. The two glaciers, located at the top of Puncak Jaya – or Mount Carstensz – (4884 m) are living their last years of existence. Indeed, these glaciers have never stopped retreating since the observations made between 2002 and 2018, and glaciologists believe that they will disappear in the next few years, in 2023 or 2026 at the latest.

The area of ice ice covering Puncak Jaya lost 1.45 km2 between 2002 and 2015. In 2018, glaciers covered an area of obly ​​0.46 km2. Glaciers aren’t just retreating; they’re thinning too. Their thickness has been decreasing by 1.05 m per year since 2010.

Glaciers are victims of two phenomena that go hand in hand: on the one hand, an increase in air temperature which causes, on the other hand, an increase in the temperature of the rock. Indeed, the rocks exposed by the melting ice are black and absorb solar radiation, which, in turn, accelerates the disappearance of the glacier. This double warming from above and below leads to the progressive contraction of the glacier’s surface, which results in its division into two masses of ice.

Source: Courrier International.

Cette photo prise en 2005 montre le glacier Carstensz  en bas à droite. La dépression circulaire sur la gauche est la mine d’or de Grasberg, la plus grande du monde (Source : NASA)

Le lent refroidissement de la lave du Kilauea (Hawaii) // The slow cooling of the Kilauea lava (Hawaii)

Le HVO a publié un article très intéressant qui explique pourquoi et comment la lave émise lors de l’éruption du Kilauea en 2018 se refroidit très lentement. La réponse est facile : c’est parce que la lave bénéficie de son propre pouvoir isolant. .
Depuis la fin de l’éruption de 2018, des mesures précises ont été effectuées sur l’épaisseur des coulées, leur temps de refroidissement et la relation entre le cœur encore très chaud et visqueux des coulées et la croûte solide en surface.
Les travaux effectués par des scientifiques du HVO et publiés en 1994 ont révélé la vitesse de refroidissement des coulées pahoehoe à Kalapana. Les volcanologues ont alors découvert que la croûte qui surmonte une coulée de lave basaltique s’épaissit en fonction de la racine carrée du temps. En d’autres termes, la croûte se développe plus lentement avec le temps. En conséquence, les coulées de lave plus épaisses prendront plus de temps à se solidifier.
La lave émise par le  Kilauea a une température d’environ 1150°C. En 1917, Thomas Jaggar a publié les résultats des mesures de température du lac de lave actif dans le cratère de l’Halema’uma ’u. On y apprend que le basalte pouvait rester encore visqueux à des températures entre 750 et 850°C. Ces chiffres servent aujourd’hui de référence. Ainsi, pour les derniers calculs relatifs à la lave de 2018, la croûte a été considérée comme solide quand elle présentait une température inférieure à 850°C. Cette même croûte montrait encore de l’élasticité (état semi-solide ou malléable) entre 850 et 1070°C.
Des études antérieures effectuées par le HVO sur les lacs de lave actifs dans le cratère du Kilauea Iki fournissent des informations supplémentaires. En forant la croûte refroidie à l’intérieur du cratère, les scientifiques ont constaté que la solidification prenait des décennies. En particulier, le lac de lave qui occupait le Kilauea Iki en 1959 avec une épaisseur de 44 mètres a mis environ 35 ans à se solidifier complètement. La température en profondeur est encore supérieure à 540°C.
En utilisant des drones, le HVO a pu élaborer une carte de l’épaisseur des coulées de lave de l’éruption de 2018. Cette carte indique qu’au carrefour connu sous le nom de «Four Corners», la lave présente une épaisseur d’une quinzaine de mètres. En utilisant cette valeur et les équations relatives à l’éruption de Kalapana en 1994, on peut calculer comment se sont solidifiées les coulées de 2018.  Ainsi, au cours des 14 mois qui ont suivi la fin de l’éruption, la partie supérieure de la coulée de « Four Corners » s’est solidifiée sur 7,80 mètres, tout comme les 5,50 mètres de sa partie inférieure. En revanche, une épaisseur de 1,70 mètre au cœur de la coulée est restée encore visqueuse. On estime qu’il faudra encore environ 3 ans pour que la température de ce cœur de coulée descende à 850°C et que la lave se solidifie complètement. Cela correspond aux dernières observations faites par les services de l’équipement qui ont remarqué des roches encore très chaudes lorsque les bulldozers ont effectué une tranchée le long de la Highway 132. Les géologues du HVO ont confirmé ces observations en août, lorsque une température de 425° C a été mesurée sur le site. Des températures élevées persisteront à plusieurs dizaines de centimètres sous la surface et généreront probablement de la vapeur lorsqu’il pleuvra.
Bien que l’éruption de 2018 du Kilauea se soit achevée il y a 14 mois, il faudra des années avant que les coulées de lave se solidifient complètement avec une température inférieure à 850°C, et il faudra attendre plus d’un siècle avant que la zone de 250 mètres d’épaisseur, là où la lave est entrée dans l’océan,  se solidifie complètement.
Source: USGS, HVO.

Cet article m’intéresse particulièrement car j’ai moi-même effectué un travail d’observation sur le processus de refroidissement de la lave sur le Kilauea, pour le compte du HVO et du Parc National des volcans d’Hawaii. Vous trouverez un résumé de mes travaux sous l’entête de ce blog.

————————————————-

HVO has released a very interesting article which explains why and how lava from the Kilauea 2018 eruption is cooling very slowly. The short and simple answer is that lava insulates itself very well.

Since the end of the 2018 eruption, accurate measurements have been made on the flow field of lava thickness, cooling times, and the relative proportions of the internal molten core to the exterior solid crust.

Previous work by HVO scientists published in 1994 measured the cooling rate of pahoehoe lava at Kalapana. They found that the upper crust of a basalt lava flow grows thicker as a function of the square root of time. In other words, the lava flow crust grows more slowly with time. Therefore, thicker lava flows will take longer to become completely solid.

Lava erupts from Kilauea at a temperature of 1150°C. In 1917, Thomas Jaggar published results from the then-active Halema‘uma‘u lava lake that indicated basalt can remain molten at temperatures as low as 750–850°C. These figures are now the reference. For the current calculations, the crust has been considered solid when it is below 850°C and this crust is viscoelastic (semi-solid or malleable) at 850–1070°C.

Additional insight comes from previous HVO studies of active lava lakes in Kilauea Iki craters. By drilling into the cooled upper crusts of lava lakes within these craters, scientists documented that solidification takes decades. More specifically, the 44-metre-thick 1959 Kilauea Iki lava lake took about 35 years to fully solidify. Today, its core is still hotter than 540°C.

Using drones, HVO was able to create a lava flow thickness map of the 2018 eruption. This map indicates that at the intersection known as “Four Corners” there is a thickness of approximately 15 metres of lava. Using this value and the equations from the 1994 study of the Kalapana lava flows, one can calculate how much of the 2018 flows have solidified. Over the 14 months since the end of the eruption last year, the upper 7.8 metres and lower 5.5 metres at “Four Corners” should already be solidified crust, and the middle 1.7 metres should still be malleable.

It will take about 3 more years for the remaining 1.7 metres of malleable lava over the “Four Corners” intersection to reach 850°C and be completely solid. This matches recent observations by road-construction crews, who noticed hot rocks being exposed at a road cut along Highway 132. HVO geologists confirmed this in August, when temperatures of 425°C were measured at the newly-cut road site. Hot temperatures will remain several tens of centimetres below the surface for now and will likely generate steam when it rains.

Although Kilauea’s 2018 eruption ended 14 months ago, it will be years before the lava flows emplaced on land are entirely solidified below 850°C, and over a century before the 250-metre-thick area offshore fully solidifies.

Source: USGS, HVO.

This article is of particular interest to me because I performed an observation work on the cooling process of lava on Kilauea, on behalf of HVO and the Hawaii Volcanoes National Park. You will find an abstract of my work beneath the heading of this blog.

Refroidie et durcie en surface, une coulée de lave conserve pendant longtemps une température élevée à l’intérieur (Photo: C. Grandpey)

Mesure de l’épaisseur des coulées de lave // How to measure the thickness of lava flows

Au cours des premières années de l’éruption du Kilauea au niveau du Pu’uO’o, les scientifiques de l’Observatoire des Volcans d’Hawaii (HVO) ont mesuré l’épaisseur des coulées de lave en effectuant des relevés manuels en bordure de chaque coulée. Le volume de la coulée était ensuite calculé en multipliant sa surface par son épaisseur moyenne. Le débit éruptif était égal à ce volume divisé par la durée de l’éruption en secondes. Pendant la première année d’activité du Pu’uO’o en 1983, le débit éruptif a été estimé entre 15 et 65 mètres cubes par seconde. Cependant, cette méthode ne tenait pas compte de toutes les variations d’épaisseur des coulées à travers le champs de lave. Par exemple, de nombreuses coulées a’a, comme la coulée de lave émise par la Fracture n° 8 en 2018, abritent un chenal ou une cavité vide. En conséquence, si l’on suppose que la coulée présente une épaisseur constante, on surestime le volume de la lave ainsi que le débit éruptif.
En 1993, les scientifiques ont utilisé un radar aéroporté et survolé Kilauea à un peu moins de 8 km d’altitude. Le radar pouvait élaborer une image des coulées de lave avec une précision de 1 à 2 mètres. Il était également en mesure de fournir des milliers de points de hauteur de la surface de chaque coulée de lave, et pas seulement l’épaisseur en bordure de coulée, comme cela se faisait auparavant. Le volume d’une coulée calculé de cette manière (hauteur de la surface du sol avant la éruption soustraite de la hauteur de la lave de 1993) était légèrement supérieur à celui calculé avec la méthode classique de mesure manuelle en bordure des coulées.

Un progrès dans la mesure de l’épaisseur des coulées est intervenu avec l’arrivée du LIDAR [Light (ou Laser Imaging) Detection And Ranging], appareil qui émet un faisceau laser et en reçoit l’écho (comme le radar), ce qui permet de déterminer la distance d’un objet. Le LIDAR a été embarqué à bord d’avions ou d’hélicoptères et a envoyé des milliards d’impulsions laser en direction du sol. On a ainsi obtenu une foule de données précises (à quelques centimètres près) sur l’épaisseur des coulées de lave.
Au cours des dernières années, les géologues ont obtenu des résultats semblables en hélicoptère, en prenant des photos numériques superposées du sol, avec pour chaque cliché les coordonnées GPS de l’appareil photo. Les logiciels informatiques utilisant la “Surface-from-Motion” (SfM) technique – Surface à partir du Mouvement – peuvent identifier automatiquement les emplacements communs sur des photos adjacentes et réaliser une image 3 D des hauteurs du sol à partir de centaines de photos. Un autre avantage est que les photos peuvent être assemblées pour produire une carte haute résolution, en mosaïque de photos, de la zone observée.
Lors de l’éruption dans l’East Rift Zone du Kilauea en 2018, des appareils photo ont été embarqués sur des drones. A partir de quelque 2 800 photographies aériennes, le logiciel SfM a calculé 1,5 milliard de points communs qui ont été connectés pour créer un modèle altimétrique numérique à l’échelle du centimètre de la coulée de lave dans le district de Puna. Un modèle pré-éruptif obtenu avec le LIDAR a été soustrait du modèle réalisé avec la technique SfM du drone pour produire une carte d’épaisseur des coulées de lave. Une première version de cette carte, publiée sur le site web du HVO le 19 février 2019, est visible ci-dessous. (https://volcanoes.usgs.gov/volcanoes/kilauea/multimedia_maps.html)

En utilisant cette première ébauche de la carte, on peut obtenir une estimation approximative du volume total de lave émis au cours de l’éruption : environ 0,8 kilomètre cube. En tenant compte des cavités dans la lave et en divisant par la durée de l’éruption, on obtient un débit éruptif minimum d’environ 50 à 200 mètres cubes par seconde. Ce débit éruptif est nettement supérieur à la plupart de ceux enregistrés lors des précédentes éruptions du Kilauea.

Source: USGS / HVO.

———————————————–

During the first few years of Kilauea Volcano’s eruption at Pu’uO’o, Hawaiian Volcano Observatory (HVO) scientists measured thicknesses using hand levels at multiple locations along the edges of each lava flow. The flow volume was then calculated as the product of the flow area multiplied by the average flow thickness. The eruption rate equalled this volume divided by the duration of the eruption in seconds. For the first year of Pu’uO’o activity in 1983, calculated eruption rates were 15-65 cubic metres per second. However, this method did not rale into account all the variations of lava flow thicknesses across flows. For example, many a’a flows, like Kilauea’s fissure 8 lava flow in 2018, host an empty lava channel. If they assumed that the flow was uniformly as thick as the height of its edges, scientists would overestimate the lava flow volume as well as the eruption rate.

In 1993, scientists used an airborne radar flown over Kilauea at an altitude of just under 8 km. The radar could image a lava flow with accuracies of 1-2 metres and determine thousands of surface elevations for each lava flow, not just a few thicknesses along its edge. Flow volumes calculated this way (pre-eruption elevations of the ground surface subtracted from the 1993 elevations of a lava flow) were slightly higher than those calculated with the simpler method of measuring thicknesses along flow edges.

The next improvement in measuring flow thickness was the development and use of Light Detection and Ranging (LIDAR). Specialized equipment was flown over an area by airplane or helicopter, from which billions of laser pulses showered down to the ground. This produced details on lava flow surface elevations accurate to a few centimetres.

Over the last few years, similar results have been obtained by geologists in helicopters snapping overlapping digital photos of the ground, each tagged with the camera’s GPS coordinates. Computer software, using the “Surface-from-Motion” (SfM) technique, can automatically identify common locations in adjacent photos and assemble a 3-dimensional image of ground elevations from hundreds of photos. A bonus is that the photos can be stitched together to produce a single, high-resolution, photo mosaic map of the area.

During Kilauea’s 2018 lower East Rift Zone eruption, cameras on drones did the photography. Using about 2,800 aerial photographs, the SfM software calculated 1.5 billion common points that were connected to create a centimetre-scale digital elevation model of the Puna lava flow. A pre-eruption LIDAR digital elevation model was subtracted from the drone SfM digital elevation model of the erupted flows to produce a lava flow thickness map. A preliminary version of this map was posted on the HVO website on February 19, 2019 and can be seen here below. (https://volcanoes.usgs.gov/volcanoes/kilauea/multimedia_maps.html)

Using the preliminary map, one can calculate a rough estimate of the total volume of lava erupted and added to the land surface: about 0.8 cubic kilometres. When corrected for voids in the lava and divided by the duration of the eruption, this yields a minimum eruption rate of about 50-200 cubic metres per second. This eruption rate is significantly larger than most known Kilauea eruption rates.

Source : USGS / HVO.

Source: USGS / HVO

La Fracture n°8 a émis d’énormes quantité de lave dans l’East Rift Zone  en 2018 (Crédit photo : USGS /HVO)