Avis de décès // Orbituary

L’Islande a la tristesse de vous faire part de la mort du glacier Okjökull, tué par le réchauffement climatique.

Une plaque commémorative en lettres d’or titrée en islandais et en anglais sera inaugurée le 18 août 2019 sur le site  del’Okjökull, dans l’ouest de l’île. Ce sont des chercheurs islandais et de l’Université Rice aux Etats-Unis qui sont à l’initiative du projet. On peut lire sur la plaque le texte suivant à l’adresse des générations futures : « « Une lettre pour l’avenir » – OK (l’Okjökull) est le premier glacier islandais à perdre son statut de glacier. Au cours des 200 prochaines années tous nos glaciers devraient connaître le même sort.  Ce monument atteste que nous savons ce qui se passe et ce qui doit être fait. Vous seuls savez si nous l’avons fait ». »

On sait depuis longtemps que l’Islande est l’un des pays où les glaciers reculent le plus vite sous les coups de boutoir du réchauffement climatique. L’Okjökull est probablement le premier d’une longue liste car 400 autres massifs glaciaires sont en train de se réduire comme peau de chagrin. La glace de l’Okjökull recouvrait encore 16 km2 en 1890 ; elle n’était plus que de 0,7 km2 en 2012, selon un rapport de l’université d’Islande publié en 2017.

Il est bon de rappeler que, pour avoir le statut de glacier, la masse de glace et de neige qui recouvre la montagne doit être assez épaisse pour pouvoir se déplacer grâce à son propre poids, soit une quarantaine de mètres d’épaisseur afin de produire suffisamment de pression pour rendre la glace malléable.

Avec cette plaque commémorative, les chercheurs espèrent sensibiliser la population face au déclin des glaciers et aux effets du changement climatique.  Au vu du comportement de nos gouvernants, la partie est loin d’être gagnée…

————————————————-

 Iceland is sad to report the death of Okjökull Glacier, killed by global warming.

A commemorative plaque in gold letters written in Icelandic and English will be inaugurated on August 18th, 2019 on the Okjokull site, in the western part of the island. Icelandic researchers and Rice University in the United States are the initiators of the project. The following text can be read on the plaque for future generations: « A letter for the future » – OK (Okjökull) is the first Icelandic glacier to lose its glacier status. Over the next 200 years all our glaciers are expected to follow the same path. This monument is to acknowledge that we know what is happening and what needs to be done. Only you know if we did it. »

It has long been known that Iceland is one of the countries where glaciers are retreating faster than ever before as a result of global warming. Okjökull is probably the first in a long list because 400 other glacial massifs are shrinking. The Okjökull ice covered 16 km2 in 1890; it was only 0.7 km2 in 2012, according to a report from the University of Iceland published in 2017.

It is worth remembering that, to be a glacier, the mass of ice and snow that covers the mountain must be thick enough to move with its own weight, or about forty meters thick to produce enough pressure to make the ice malleable.

With this commemorative plaque, researchers hope to raise awareness about the decline of glaciers and the effects of climate change. Given the behaviour of our rulers, the game is far from won …

Pour en savoir plus sur la fonte des glaciers et les effets du réchauffement climatique:

Une lecture rafraîchissante !

Etna Nord: Piste fermée!

Alors que l’Etna se réveillait ces derniers jours, le journal La Sicilia faisait ses gros titres sur la déception des touristes qui n’ont pas pu assister au spectacle. Une bonne solution pour admirer les gerbes de feu du Nouveau Cratère Sud-Est aurait été de se rendre à Piano Provenzana et de prendre un bus tout terrain pour atteindre le secteur de l’Observatoire.

Malheureusement, en raison de désaccords entre les municipalités de Linguaglossa et Castiglione di Sicilia, l’unique piste en terre battue est fermée à tout trafic.

On peut comprendre que l’accès à un volcan soit fermé pour des raisons de sécurité, mais on admet moins qu’il soit fermé au public à cause de querelles internes. On peut lire sur une banderole à l’entrée de la piste nord : « Fermée par choix politique. »

L’affaire repose sur un malentendu politique qui concerne les municipalités de Linguaglossa et de Castiglione di Sicilia, les deux propriétaires du terrain sur lequel passe la piste de l’Etna Nord. Après l’intervention de l’autorité Antitrust qui a supprimé le monopole de la société Russo Morosoli – qui exploite également le téléphérique sur le versant sud – les maires des deux communes n’ont pas été en mesure de conclure un contrat pouvant donner des garanties à long terme à cette société, étant donné que les investissements dans les véhicules et leur entretien sont considérables.
Le résultat, c’est que l’économie de Piano Provenzana est quasiment morte et Etna Nord est sorti des circuits touristiques proposés par les agences de voyage, avec des conséquences néfastes pour tout le monde

Reverra-t-on bientôt des bus sur la piste de Piano Provenzana ? Pas si sûr !

Source : Presse sicilienne.

Piano Provenzana a été déserté par les touristes

(Capture d’écran de la webcam Skyline)

Volcans du monde // Volcanoes of the world

Comme indiqué précédemment, l’activité de l’Ubinas (Pérou) a été intense ces derniers jours. Elle a culminé avec de violentes explosions le 19 juillet 2019. Cette activité explosive a débuté vers 2 h 35 (heure locale) ce même jour. Les images satellite ont montré que le nuage éruptif avait atteint une hauteur de 12,1 km au dessus du niveau de la mer. Des retombées de cendre ont été signalées dans plusieurs villages de la vallée d’Ubinas et de la région d’Arequipa
L’IGP a recommandé de relever le niveau d’alerte de Jaune à Orange.
Source: IGP.

++++++++++

Le VSI indique qu’une brève éruption s’est produite sur le Bromo (Indonésie) le 19 juillet 2019. Elle a duré environ 7 minutes et a déclenché une vague de panique parmi la population locale. Les mauvaises conditions météorologiques ont empêché une bonne observation de l’événement.
Parallèlement à l’éruption, il a été fait état d’un lahar dans le village de Ngadas. Cependant, le VSI a expliqué que la coulée de boue n’était pas directement liée à l’éruption. Elle était plutôt causée par les fortes précipitations qui se sont abattues sur la caldeira du Tengger et sur le Bromo ; elles ont remobilisé la cendre émise par le volcan.
Le niveau d’alerte du Bromo reste à 2 sur une échelle de 1 à 4. Il est toujours conseillé aux visiteurs de rester en dehors de la zone de danger d’un rayon de 1 km autour du cratère.
Source: VSI.

++++++++++

L’éruption de l’Etna observée le 19 juillet 2019 n’a pas été l’événement majeur décrit par plusieurs organes de presse. Ce fut une simple activité strombolienne avec un épanchement de lave classique sur ce volcan. Cependant, les nuages ​​de cendre produits par l’éruption ont fermé les aéroports de Catane et de Raguse pendant quelques heures.
L’intense activité strombolienne qui avait débuté sur le Nouveau Cratère Syd-Est (NCSE) le 19 juillet dans l’après-midi, a cessé brusquement entre 20h30 et 22h30. Au cours de la nuit, la vitesse d’écoulement de la lave sur le flanc nord du NCSE a fortement diminué et les fronts de coulées se sont arrêtés après avoir parcouru environ 2 200 mètres sur la paroi occidentale de la Valle del Bove où ils ont commencé à se refroidir, comme on pouvait le voir sur les caméras thermiques. Cependant, l’émission de lave a continué quelques heures. De petites explosions sporadiques se sont produites pendant la nuit dans le NCSE. À partir de 3h30 GMT), l’activité explosive au NCSE s’est de nouveau intensifiée avant de diminuer par la suite. Actuellement, les caméras thermiques confirment que les fronts de coulées ne bougent plus et sont en phase de refroidissement,
La sismicité et le tremor éruptif ont retrouvé des niveaux de base.

++++++++++

Dans son dernier bulletin hebdomadaire sur le Stromboli (Sicile), le laboratoire de Géophysique Expérimentale indique que l’activité éruptive reste soutenue, avec une augmentation de l’activité effusive, en particulier dans le secteur sud-ouest de la Sciara del Fuoco. On observe une vingtaine d’explosions stromboliennes chaque jour. Les projections de lave et de cendre atteignent souvent 400 mètres de hauteur. La coulée de lave qui émane du cratère sud-ouest présente un débit  d’environ 2 mètres cubes par seconde. La lave avance sur la partie supérieure de la Sciara del Fuoco sur une longueur d’environ 600 mètres et une largeur de 80 mètres. Le front de lave se situe à environ 300 mètres au-dessus du niveau de la mer. Des blocs se détachent régulièrement du front de coulée et roulent jusqu’à la mer.
Les émissions de SO2 montrent une tendance à la hausse et a atteignaient 255 tonnes par jour le 15 juillet, la valeur la plus élevée depuis 2014.

Source : Laboratorio Geofisica Sperimentale.

++++++++++

Le Marion Dufresne reprend la mer en direction du volcan sous-marin de Mayotte. Une nouvelle mission intitulée « Mayobs4 » a appareillé le 19 juillet 2019 pour observer le nouveau volcan  formé au large de l’île. Les scientifiques tentent toujours de comprendre le mécanisme des séismes qui ont secoué Mayotte pendant plus d’un an.

Prévue pour durer jusqu’au 31 juillet, cette mission va observer la dorsale volcanique entre le nouveau volcan et la zone sismique. Elle s’étire en Petite Terre et le nouveau volcan à 50 km à l’Est (voir carte ci-dessous). Cette dorsale est constituée d’une série de cônes volcaniques où l’on observe une instabilité depuis l’année dernière. Les séismes se situeraient beaucoup plus près de Petite Terre que du volcan, 5 à 15 kilomètres seulement. On a également détecté des émanations de gaz en cours d’analyse dans cette zone.

On suppose que la lave circule à l’intérieur d’un réseau de tunnels sous la croûte terrestre, et ressort au niveau du nouveau volcan. Dans ce cas les séismes seraient provoqués par ces remontées de magma. Cette circulation du magma a lieu à 20 ou 30 kilomètres de profondeur ; raison pour laquelle la magnitude des séismes serait atténuée en surface. Il faut parler au conditionnel car ces différentes hypothèses restent à vérifier.
Il faut rappeler que la Petite Terre est un volcan, comme en témoigne le cratère éteint du lac Dziani. Deux autres cratères se sont effondrés, formant les plages de Moya.
Source : FranceTV Info.

—————————————————

As I put it before, activity at Ubinas (Peru) has been intense in the past days. It culminated with violent explosions on July 19th, 2019. This explosive activity started at about 2:35 (local time) on that day. Satellite imagery showed that the eruptive cloud reached a height of 12.1 km above sea level. Ashfall was reported in several villages across the Ubinas Valley and the Arequipa region

IGP has recommended raising the alert level from Yellow to Orange.

Source: IGP.

++++++++++

VSI indicates that a short eruption occurred at Mount Bromo (Indonesia) on July 19th, 2019. It lasted about 7 minutes and sent a wave of panic along the local population. Poor weather conditions prevented a good observation of the event.

Parallel to the eruption, there were reports of a lahar in the village Ngadas. However, VSI indicated that the mudflow was not directly related to the eruption. It was rather caused by the heavy rainfall around the Tengger Caldera and the summit of Bromo which mixes with the ash produced by the volcano

The alert level for Mt Bromo remains at 2, on a scale of 1 – 4. Visitors are still advised to stay outside the 1-km radius danger zone around the crater.

Source: VSI.

++++++++++

The eruption of Mt Etna that was observed on July 19th, 2019, was not the major event mentioned by several news media. It was a simple strombolian activity with a minor lava effusion. However, the ash clouds produced by the eruption closed Catania and ragusa airports for a few hours.

The intense strombolian activity at the New Southeast Crater (NSEC), which had resumed on July 19th in the afternoon ceased between 8:30 and 10:30 p.m. During the night, the effusion rate at the vent on the northern flank of the NSEC was strongly reduced, and the lava fronts stagnated at about 2,200 metres on the western wall of the Valle del Bove and started cooling, as could be seen on the thermal cameras. However, lava effusion persisted a few hours. Sporadic small explosions occurred at the NSEC during the night. Starting at 3:30 a.m.(UTC), there was a renewed intensification of the explosive activity at the NSEC which later declined. Currently, the thermal cameras confirm that the most advanced lava flow fronts are not moving and are cooling,

Seismicity and the eruptive tremor have regained background levels.

In the meantime, activity is still quite intense at Stromboli, as can be seen on the Skyline webcam.

++++++++++

In its latest weekly bulletin on Stromboli (Sicily), the Laboratorio Geofisica Sperimentale reports that eruptive activity remains strong, with an increase in effusive activity, especially in the southwest sector of Sciara del Fuoco. About twenty strombolian explosions are observed every day. The projections often reach 400 metres in height. The lava flow from the southwestern crater has a flow rate of about 2 cubic metres per second. Lava advances on the upper part of the Sciara del Fuoco over a length of about 600 metres and a width of 80 metres. The lava front is about 300 metres above sea level. Blocks regularly break away from the front and roll to the sea.
SO2 emissions show an upward trend and reached 255 tonnes per day on July 15th, the highest value since 2014.
Source: Laboratorio Geofisica Sperimentale.

++++++++++

The Marion Dufresne is again taking the sea towards Mayotte’s submarine volcano. A new mission – Mayobs4 – left the port on July 19th, 2019 to observe the new volcano formed off the island. Scientists are still trying to understand the cause and process of earthquakes that have shaken Mayotte for more than a year.
Scheduled to last until July 31st, this mission will observe the volcanic ridge between the new volcano and the seismic zone. It stretches between Petite Terre and the new volcano, 50 km to the East (see map below). This ridge consists of a series of volcanic cones where there has been instability since last year. The earthquakes might be much closer to Petite Terre than the volcano, only 5 to 15 kilometers away. Gases that have been detected in this area are being analyzed.
It is suggested that the lava travels inside a network of tunnels under the earth’s crust, and comes out at the new volcano. In this case the earthquakes might be caused by these magma ascents. This circulation of magma takes place at a depth of 20 to 30 kilometres; This is why the magnitude of the earthquakes is probably attenuated on the surface. We must use the conditional because these different hypotheses remain to be verified.
It must be remembered that Petite Terre is a volcano, as evidenced by the extinct crater of Lake Dziani. Two other craters collapsed, forming the beaches of Moya.
Source: FranceTV Info.

Cratère et lac Dziani sur Petite Terre (Crédit photo: Wikipedia)

Les zones de rift du Kilauea (Hawaii) // Kilauea’s rift zones (Hawaii)

De nombreuses éruptions, que ce soit sur le Mauna Loa ou le Kilauea, se produisent dans des zones de rift, autrement dit de fractures à la surface du sol. C’est ce qui s’est passé en 2018 lorsque la lave est sortie dans la zone de rift est (East Rift Zone – ERZ) du Kilauea.
Ce volcan possède deux zones de rift. La zone de rift Est est longue ; elle s’étire sur une cinquantaine de kilomètres sur terre et environ 70 km sous le niveau de la mer. La zone de rift Sud-Ouest, qui est historiquement moins active, mesure environ 35 km de long et seule une petite partie se prolonge dans l’océan.

Les zones de rift sont des zones de faiblesse du volcan qui se forment dès le début de sa formation, probablement en raison de l’étirement de l’édifice au fur et à mesure de sa mise en place. Les zones de rift permettent au magma de migrer plus facilement depuis la région de stockage au sommet. Ce sont les éruptions successives des zones de rift qui mettent en place les flancs du volcan.
Les jeunes volcans hawaïens ont généralement deux ou trois zones de rift, selon qu’ils s’édifient ou non contre un volcan à proximité immédiate. Dans le cas du Kilauea, il n’y a que deux zones de rift, car le volcan s’appuie contre le flanc sud-est du Mauna Loa. Les deux zones de rift du Kilauea sont presque parallèles aux zones de rift du Mauna Loa, ce qui confirme l’appui du Kilauea contre son voisin. Les zones de rift séparent le flanc nord – relativement stable – du flanc sud qui est  plus mobile. Lorsque le magma pénètre dans la zone de rift, le flanc nord reste stable contre le Mauna Loa au nord tandis que le flanc sud du Kilauea est poussé vers le sud pour recevoir le nouveau magma.
À mesure que la pression augmente dans le système d’alimentation magmatique au sommet, des intrusions se produisent souvent dans la zone de rift, comme ce fut le cas en 2018 dans la partie inférieure de la zone de rift est, la Lower East Rift Zone (LERZ). Les intrusions s’accompagnent généralement d’une hausse de la sismicité lorsque le magma fracture le sol le long de son trajet. Les séismes ont leurs hypocentres à des profondeurs d’environ 2 à 4 km sous la surface et les périodes de forte sismicité peuvent durer plusieurs heures, voire plusieurs jours, en fonction de la progression de l’intrusion. En plus de la sismicité, on observe aussi des déformations du sol lors d’une intrusion magmatique dans une zone de rift. L’inflation au-dessus de l’intrusion est mesurée par des tiltmètres et des stations GPS qui révèlent un mouvement à la fois vertical et latéral au fur et à mesure que les stations s’éloignent de la zone de rift en phase d’inflation.
Tandis que le magma s’élève des profondeurs et se fraye un chemin à travers la roche, la fracturation se traduit à la surface du sol par de nombreuses fissures parallèles au-dessus de l’intrusion. Ces fissures continuent de s’élargir sous la pression du magma. Si l’intrusion atteint la surface, une ou plusieurs fissures vont s’ouvrir et laisser échapper la lave. Des rideaux de fontaines de lave et/ou des phénomènes de spatter apparaissent lorsque la lave jaillit des fissures. Lorsqu’une fissure évolue, on passe généralement d’une éruption linéaire à une éruption à partir d’une ou plusieurs bouches. Cela peut entraîner une augmentation de la pression dans le système éruptif, avec intensification des fontaines de lave.
Les fontaines de lave sont provoquées par la formation rapide de bulles de gaz lorsque le magma monte à de faibles profondeurs ; elles éclatent ensuite et projettent la lave sous pression vers la surface. Les bulles se forment parce que la pression à faible profondeur est suffisamment basse pour permettre au gaz dissous dans le magma de s’échapper, un peu comme des bulles qui se forment lorsqu’on ouvre une bouteille d’eau gazeuse. En plus des coulées, les fontaines qui jaillissent des fissures peuvent entraîner des accumulations de projections près de la bouche éruptive, ce qui donne naissance à des formations linéaires ou coniques. Les spatter cones que l’on rencontre souvent le long des zones de rift du Kilauea se forment de préférence lorsque l’activité éruptive persiste.

Quand l’éruption se termine, le magma de l’intrusion qui n’a pas atteint la surface redescend à l’intérieur de la zone de rift où il peut demeurer en fusion pendant des décennies. C’est ainsi qu’une lave de composition chimique semblable à celle de l’éruption de 1955 a été émise au cours de la première semaine de l’éruption de 2018 dans la Lower East Rift Zone, ce qui laisse supposer que la lave sortie des premières fissures était un magma résiduel de l’éruption de 1955.

Cela montre que les zones de rift jouent un rôle essentiel dans l’acheminement du magma dans l’édifice volcanique, mais elles peuvent aussi stocker du magma susceptible d’alimenter de futures éruptions.
Source: USGS / HVO.

————————————————-

Many eruptions on both Mauna Loa and Kilauea occur alon rift zones . This is what happened in 2018 when lava eruped along Kilauea’s East Rift Zone.

Kilauea has two rift zones. The East Rift Zone is longer, with about 50 kilometres on land, plus approximately 70 kilometres below sea level. The Southwest Rift Zone, which is historically less active, is about 35 kilometres long with only a small portion underwater.

Rift zones are areas of weakness in the volcano which form early in its lifetime, likely due to spreading of the volcano as it settles. Volcanic rift zones provide the easiest pathways for magma to travel underground from the summit storage region, with successive eruptions from the rift zones building up the volcano’s flanks.

The youngest Hawaiian volcanoes typically have two or three rift zones depending on whether they are built up against a neighbouring volcano. In the case of Kilauea, there are only two rift zones because the volcano is buttressed against the southeastern slope of Mauna Loa. Kilauea’s two rift zones are nearly parallel to Mauna Loa’s rift zones reflecting this buttressing and the rift zones separate the relatively stable northern flank from the more mobile southern flank of the volcano. When magma intrudes into the rift, the northern flank remains stable against Mauna Loa to the north, and Kilauea’s southern flank is forced southward to accommodate the additional magma.

As pressure builds within the summit magma plumbing system, rift zone intrusions, like the 2018 intrusion into the lower East Rift Zone (LERZ), can occur. Intrusions are typically accompanied by increasing numbers of earthquakes as the magma fractures the ground along its path. The earthquakes are concentrated at depths of about 2 to 4 kilometres below the ground surface, and periods of increased seismicity can last several hours to days as the intrusion progresses. In addition to seismicity, ground deformation also occurs during a rift zone intrusion. Inflation above the intrusion is measured by tilt and GPS stations showing upward and outward motion as the stations move away from the swelling rift zone.

As the magma ascends and forces its way through the rock, fracturing is mirrored on the ground surface with many parallel cracks above the intrusion. These cracks continue to widen as the rift is forced open. If the intrusion reaches the surface, one or more fissures will open and erupt lava. Long curtains of lava fountains or spatter form as the lava erupts through cracks in the ground. As a fissure evolves, it typically transitions from erupting along a line to focusing at a single or several vents. This in turn can cause increased pressurization within the erupting system resulting in higher lava fountains.

Lava fountains are driven by the rapid formation of gas bubbles as magma rises to shallow depths, which then burst to create the pressurized lava at the surface. The bubbles form because pressure at shallow depths is low enough for the gas dissolved within the magma to escape, like bubbles forming when you open a carbonated drink. Beside lava flows, fissure fountains can produce spatter build-up adjacent to the vent in linear or conical formations. Spatter cones which are common along Kilauea’s rift zones, are likely to build when eruptive activity persists.

When an eruption ends, the intrusion’s un-erupted magma drains back into the rift zone where it can remain molten for decades. In fact, lava with a chemical composition similar to the 1955 eruption was produced during the first week of the 2018 LERZ eruption, suggesting that the early fissures were supplied by stored magma. This illustrates that rift zones are not only essential for the transportation of magma within the volcano, but are also storing magma that could feed future eruptions.

Source : USGS / HVO.

Zone de rift Est du Kilauea

Zone de rift Sud-Ouest du Kilauea

(Photos: C. Grandpey)