Coup de chaud en Alaska (suite) // Heatwave in Alaska (continued)

Comme prévu, des records de chaleur viennent d’être battus en Alaska et ce n’est probablement pas terminé car les hautes pressions devraient se maintenir au-dessus de cet état pendant encore plusieurs jours.

Le 4 juillet 2019 à 17 heures, l’aéroport international d’Anchorage a officiellement atteint 90 degrés Fahrenheit, soit 32,2 °C pour la première fois » depuis que des relevés y sont effectués. Le précédent record en Alaska avait été établi le 14 juin 1969, avec 85 degrés Fahrenheit, soit 29,4 °C. Cela signifie que les normales saisonnières sont dépassées de 14 °C

Selon les météorologues, la température maximale moyenne pour un 4 juillet à Anchorage est de 18,3 °C. Plusieurs autres records historiques ont été battus dans différents sites du sud de l’Alaska.

L’Alaska est particulièrement sensible au réchauffement climatique et avait déjà battu des records de douceur au printemps, surtout dans la zone arctique.

Source: Presse alaskienne.

—————————————-

As expected, heat records have just been broken in Alaska and this is probably not over because high pressures are expected to remain above this State for several more days.
On July 4th, 2019 at 5 pm, Anchorage International Airport officially reached 90 degrees Fahrenheit, or 32.2 degrees Celsius for the first time since surveys were conducted there. The previous record in Alaska was set on June 14th, 1969, at 85 degrees Fahrenheit, or 29.4 degrees Celsius This means that the seasonal norms are exceeded by 14 degrees Celsius
According to meteorologists, the average maximum temperature for July 4th in Anchorage is 18.3 ° C. Several other historical records have been broken at various sites in southern Alaska.
Alaska is particularly sensitive to global warming and had already broken records in the spring, especially in the Arctic.
Source: Alaskan press.

Avec une telle chaleur, j’imagine la souffrance des glaciers! (Photo: C. Grandpey)

Comment lire un interférogramme // How to read an interferogram

Depuis le début des années 1990, les scientifiques utilisent des satellites radar pour cartographier les mouvements ou les déformations de la surface de la Terre. Le radar à synthèse d’ouverture interférométrique (InSAR) calcule la différence entre deux images radar acquises par un satellite en orbite, prises à des moments différents, mais concernant un même endroit sur Terre. Cette différence s’appelle un interférogramme; il s’agit d’une carte présentant une certaine ressemblance avec un arc-en-ciel sur laquelle apparaît la déformation de surface.
La déformation est un paramètre important pour surveiller l’activité des volcans hawaïens. En effet, la morphologie d’un volcan peut se modifier au gré des mouvements du magma dans leurs systèmes d’alimentation. Cela peut entraîner des déplacements de leurs pentes à cause de failles ou à cause de la gravité, en particulier lorsqu’ils subissent des changements internes de pression. Les interférogrammes, associés au GPS et aux tiltmètres, permettent aux scientifiques du HVO d’étudier le comportement d’un volcan lorsque sa morphologie est en train de changer.
Les interférogrammes couvrent de vastes étendues – l’ensemble de Big Island peut apparaître dans une seule scène radar! – et fournissent une précision centimétrique du mouvement du sol. Cependant, l’interprétation des interférogrammes est parfois compliquée. Voici quelques conseils pour les comprendre.
La différence de distance au sol entre deux passages d’un satellite, appelée phase interférométrique, est représentée par des franges ou des bandes de couleur dans un interférogramme. Cette différence inclut les déformations de la surface qui se sont produites entre les passages, mais elle est également influencée par l’incertitude des orbites des satellites, les ambiguïtés topographiques, les conditions atmosphériques et d’autres sources d’erreur. Tous ces paramètres contribuent à la phase interférométrique. Pour obtenir le vrai mouvement du sol, il faut compenser ces sources d’erreur.
La première étape de la lecture d’un interférogramme consiste à déterminer à quel moment la déformation s’est produite. Différents satellites utilisent différentes longueurs d’onde et permettent de contrôler l’ampleur de la déformation du sol représentée par frange colorée. Dans l’interférogramme présenté ci-dessous, le satellite utilisé est le système COSMO-SkyMed (CSK) de l’Agence spatiale italienne. La longueur d’onde du radar pour le CSK est la bande X (environ 3,3 centimètres de longueur totale). Étant donné qu’un interférogramme est créé à l’aide d’ondes radar qui se déplacent entre le satellite et la Terre, la déformation est calculée en fonction de la moitié de la longueur d’onde. Cela signifie que lors de la lecture d’un interférogramme CSK, une frange équivaut à 1,65 centimètre de changement entre les deux dates.
La deuxième étape consiste à compter les franges colorées afin de déterminer l’ampleur de la déformation indiquée dans un interférogramme. La déformation volcanique ayant souvent une forme concentrique, il faut donc commencer par l’extérieur du motif de franges et compter le nombre de cycles de couleur allant du bord de la zone déformée au centre. Il faut ensuite multiplier le nombre de franges colorées par la demi-longueur d’onde pour déterminer l’ampleur de la déformation.
La troisième étape consiste à déterminer si la surface s’est déplacée vers le haut ou le bas. Pour ce faire, lorsque l’on compte les franges de l’extérieur vers l’intérieur d’un motif concentrique, il faut noter le sens des changements de couleur. On regarde si le motif passe du bleu au violet et au jaune en allant vers le centre, ou du bleu au jaune et au violet. L’échelle de couleur au bas de l’image révèle que la tendance bleu-jaune-violet montre une hausse, ce qui signifie que, dans cet interférogramme, le sol se déplace vers le satellite; il y a donc une inflation. La séquence de couleurs doit toujours être définie sur une barre d’échelle dans l’interférogramme, ainsi que la demi-longueur d’onde, car tous les interférogrammes n’utilisent pas la même séquence de couleurs et tous les satellites radar n’ont pas la même longueur d’onde.
La dernière étape consiste à interpréter les informations collectées. Sur l’interférogramme CSK ci-dessous, il y a 3 franges colorées à l’intérieur de la caldeira du Kilauea, ce qui signifie que la surface dans cette région s’est déplacée vers le satellite; elle a gonflé d’environ 4,95 centimètres entre le 6 avril et le 2 juin 2019. Il faut se rappeler que les franges colorées incluent non seulement le déplacement, mais également d’autres influences, telles que les erreurs orbitales et les anomalies atmosphériques. Ce type d’anomalie est particulièrement répandu autour de hautes montagnes, comme le Mauna Loa et le Mauna Kea, et dans les zones de forte topographie, comme le flanc sud du Kilauea. Dans ce cas, les anomalies atmosphériques ne sont probablement pas un problème, car la zone de déformation est plus petite que la plupart des situations météorologiques. Les scientifiques compensent également les erreurs orbitales car ils connaissent très précisément les orbites des satellites. Cependant, des erreurs topographiques dues aux importants changements intervenus au sommet de Kilauea en 2018 pourraient introduire une certaine erreur dans la mesure. De plus, comme les satellites radar ne sont pas orientés directement vers la Terre, la déformation dans les interférogrammes est un ensemble de déplacements verticaux et horizontaux, bien que les changements verticaux soient généralement dominants.
Source: USGS, HVO.

———————————

Since the early 1990s, scientists have used radar satellites to map movement or deformation of Earth’s surface. Interferometric Synthetic Aperture Radar (InSAR) calculates the difference between two radar images acquired by an orbiting satellite taken at different times but looking at the same place on Earth. This difference is called an interferogram and is essentially a ainbow-like map of surface deformation.
Deformation is an important parameter to monitor activity of Hawaiian volcanoes. Indeed, volcanoes can change their shape as magma moves in and out of their plumbing systems, as their slopes shift on faults or because of gravity, and when they have internal changes in pressure. Interferograms, together with GPS and tilt, help HVO scientists study the behaviour of a volcano when its morphology is changing.
Interferograms cover large areas of land – the whole Big Island can fit into a single radar scene! – and provide centimetre-scale accuracy of ground motion. However, interferograms can be tricky to read. Here are a few tips to understand them.
The difference in the distance to the ground between two satellite passes, known as the interferometric phase, is shown as fringes or bands of colour in an interferogram. This difference includes deformation of the surface that occurred between passes, but it is also influenced by uncertainty in satellite orbits, topographic ambiguities, atmospheric conditions, and other sources of error. These all contribute to the interferometric phase. To get at the true movement of the ground, you have to compensate for these sources of error.
The first step in reading an interferogram is to determine when the deformation occurred. Different satellites use different wavelengths, and that controls the amount of ground deformation represented per coloured fringe. In the interferogram shown here below, the satellite used is the Italian Space Agency’s COSMO-SkyMed (CSK) system. The radar wavelength for CSK is X-band (approximately 3.3 centimetres in total length). Because an interferogram is made using radar waves that travel to Earth from the satellite and back, the deformation is calculated in terms of half the wavelength. This means that when reading a CSK interferogram, one fringe is equal to 1.65 centimetres of change between the two dates.
Step two is to count the coloured fringes to determine the amount of deformation shown in an interferogram. Volcanic deformation is often concentric in shape, so start on the outside of the fringe pattern and count the number of colour cycles from the edge of the deformed area to the center. Multiply the number of coloured fringes by the half wavelength to determine the magnitude of the deformation.
Step three is to determine if the surface moved up or down. To do this, as you count fringes from the outside to the inside of a concentric pattern, note the sense of colour changes. Look if the pattern goes blue-purple-yellow in towards the centre, or blue-yellow-purple. The colour scale at the bottom of the image reveals that blue-yellow-purple is an increasing trend, which in this interferogram, means that the ground is moving towards the satellite—it is inflating! The colour sequence should always be defined on a scale bar in the interferogram, along with the half wavelength, because not all interferograms use the same colour sequence, and not all radar satellites have the same wavelength.
The last step is to interpret the information you have collected. On the CSK interferogram shown here, there are 3 coloured fringes inside the Kilauea Caldera, which means that the surface within this region moved towards the satellite, or inflated, by about 4.95 centimetres between April 6th and June 2nd, 2019. One should remember that the coloured fringes include not just displacement, but also other influences, like orbital errors and atmospheric anomalies. These sorts of anomalies are especially prevalent around tall mountains, like Mauna Loa and Mauna Kea, and areas of very steep topography, like the south flank of Kīlauea. In this case, atmospheric anomalies are probably not an issue, since the area of deformation is smaller than most weather patterns. Scientists also compensate for orbital errors, since they know the satellite orbits very precisely. However, topographic errors due to the massive changes that took place at the summit of Kilauea in 2018 might introduce a small amount of error to the measurement. Besides, because radar satellites don’t look straight down on Earth, the deformation in interferograms is a combination of vertical and horizontal displacements, although vertical changes usually dominate.
Source: USGS, HVO.

 

Interférogramme COSMO-SkyMed (CSK) couvrant la zone sommitale du Kilauea entre le 6 avril et le 2 juin 2019. Chaque frange de couleur représente 1;65 centimètre de déplacement du sol. Les franges de couleur les plus resserrées à l’intérieur de la caldeira indiquant une inflation bien localisée, alors que les franges les plus espacées dans la partie NO de la caldeira indiquent une faible inflation dont le centre se trouve à proximité du Jaggar Museum. Chaque cycle de couleur ou frange à l’intérieur de la caldeira a été doté de nombres en blanc sur l’interférogramme; ils font référence à un ensemble de 3 franges correspondant à un déplacement de 3 X 1,65= 4,95 cm. Ces données ont été fournies par l’agence Spatiale Italienne pour permettre au HVO d’effectuer des mesures de contrôle du Kilauea.
Vous trouverez une image haute résolution à cette adresse:
http://bigislandnow.com/wp-content/uploads/2019/06/VolcanoWatch_20June_Graphic.png

———————

COSMO-SkyMed interferogram (CSK) covering the summit area of Kilauea between April 6th and June 2nd, 2019. Each colour fringe represents 1.65 centimetres of ground movement. The closely spaced colour fringes within the caldera indicate well-localized inflation, while the broader fringes in the NW portion of the caldera indicate minor inflation centered near the Jaggar Museum. Each colour cycle or fringe inside the caldera has been given white numbers on the interferogram; they refer to a set of 3 fringes corresponding to 3 X 1.65 = 4.95 cm of displacement. This data was provided by the Italian Space Agency to help HVO to carry out Kilauea monitoring measures.
You will find a high resolution image at this address:
http://bigislandnow.com/wp-content/uploads/2019/06/VolcanoWatch_20June_Graphic.png