Dernières nouvelles de Io, la lune de Jupiter // Latest news of Io, Jupiter’s moon

 CNN a publié un article très intéressant sur les dernières observations d’Io, la lune volcanique de Jupiter. Cette lune a été nommée ainsi en référence à une mortelle transformée en vache lors d’un combat entre Zeus et Hera dans la mythologie grecque
Plus de 400 volcans ornent la surface de Io, en faisant le monde volcanique le plus actif de notre système solaire. Certains de ces volcans sont si puissants que leurs éruptions peuvent être vues à l’aide de grands télescopes sur Terre.
De nouvelles images recueillies par un réseau de télescopes ALMA (Atacama Large Millimeter / submillimeter Array) au Chili ont permis de voir pour la première fois l’effet direct de cette activité volcanique sur la mince atmosphère de la lune. Une étude incluant ces données devrait être publiée prochainement  dans le Planetary Science Journal.
Les images capturées le réseau de télescopes offrent une nouvelle perspective sur la lune et sa palette de couleurs, avec du jaune, du blanc, de l’orange et du rouge. Ces couleurs sont dues aux gaz sulfureux émis par les nombreux volcans, et qui gèlent lorsqu’ils rencontrent les températures froides de la surface.

Une lune couverte de volcans pourrait faire penser que Io est un corps céleste chaud, mais il n’en est rien ; la surface d’Io est  froide en permanence, avec une température d’environ moins 145°C (- 230°F).
L’atmosphère d’Io est si ténue qu’elle est environ un milliard de fois plus mince que celle de la Terre. Des observations et études antérieures de la lune ont révélé que cette atmosphère est en grande partie composée de dioxyde de soufre (SO2).
Cependant, on ne sait pas quel processus entraîne la dynamique dans l’atmosphère d’Io. Il se peut qu’il s’agisse d’une activité volcanique ou d’un gaz qui se sublime au contact de la surface glacée lorsque Io est au soleil. Les chercheurs ont utilisé ALMA pour capturer des images de la lune alors qu’elle se déplaçait dans et hors de l’ombre de Jupiter afin de mieux comprendre son atmosphère. Lorsque Io passe dans l’ombre de Jupiter et qu’elle n’est pas exposée directement à la lumière du soleil, le SO2 condense à la surface de Io. Pendant ce temps, on ne peut voir que du SO2 d’origine volcanique. On peut donc mesurer exactement quelle proportion de l’atmosphère est affectée par l’activité volcanique. Par la suite, dès que Io reçoit le lumière du soleil, la température augmente, son atmosphère se reforme en 10 minutes environ, plus vite que l’avaient prédit les modèles précédents. Cependant, les dernières données montrent que tout le SO2 ne gèle pas pendant les périodes de baisse de température quand Io se trouve dans l’ombre de Jupiter. En fait, ALMA a pu détecter les émissions de SO2 en provenance de ce que les chercheurs appellent des « volcans furtifs », qui n’émettent pas de gaz ou de particules détectables, mais qui émettent leur gaz dans une atmosphère suffisamment chaude pour éviter leur condensation et le gel.
Les scientifiques sont désormais en mesure d’expliquer le déroulement de ces processus chauds. L’attraction de Jupiter, Ganymède et Europa chauffe l’intérieur d’Io, ce qui donne naissance à des volcans qui émettent du dioxyde de soufre sous forme de gaz. Finalement, le gaz se condense et gèle pour former une épaisse couche de glace à la surface d’Io. Cette couche est recouverte de poussière volcanique, ce qui fait apparaître les couleurs caractéristiques de la lune.
Les images ALMA ont révélé des panaches distincts de SO et de SO2 émis par les volcans, et contribuant pour 30% à 50% à l’atmosphère de la lune. Les scientifiques ont également détecté du chlorure de potassium gazeux (KCl), un composant observé dans le magma des volcans. Les chercheurs pensent que cela montre qu’il existe des réservoirs de magma diffèrents entre les volcans.
Io est à peine plus grande que notre Lune, mais elle est très différente. De plus, son environnement ne ressemble à rien de ce que l’on trouve sur Terre. À côté des volcans, la surface d’Io est également recouverte de lacs de lave silicatée en fusion. Avec un tel paysage, les scientifiques affirment qu’il serait totalement impossible d’y vivre.
Io est coincée entre la puissante gravité de Jupiter et le tiraillement des orbites des autres lunes comme Europa et Ganymède, ce qui participe à l’activité sur Io. Certains volcans sont imposants, comme Loki Patera, qui mesure 200 kilomètres de diamètre. La lune est sur une orbite verrouillée autour de Jupiter, ce qui signifie que c’est toujours la même face de la lune qui est orientée vers la planète.
Les images ALMA ont révélé que l’atmosphère d’Io devient incroyablement instable lorsqu’elle traverse l’ombre de Jupiter. Cela se produit toutes les 42 heures pendant l’orbite d’Io autour de sa voisine.
Les observations et études futures permettront aux chercheurs de déterminer la température de la basse atmosphère d’Io, qui reste inconnue pour le moment.
Source: CNN.

————————————————-

CNN has released a very interesting article about the latest observations of IO, Jupiter’s volcanic moon. The moon was named with reference to a mortal woman who is transformed into a cow during a fight between Zeus and Hera in Greek mythology

Io is covered by more than 400 active volcanoes, and it is the most volcanically active world in our solar system. Some of Io’s volcanoes are so powerful that their eruptions can be seen using large telescopes on Earth.

New images collected by an array of telescopes on Earth have observed for the first time the direct effect of this volcanic activity on the moon’s thin atmosphere. A study including this data is expected to be published in the Planetary Science Journal.

The images captured by ALMA, or the Atacama Large Millimeter/submillimeter Array of telescopes in Chile, provide a new perspective on the moon and its colour palette of yellow, white, orange and red. These colours are due to the sulphurous gases spewing from the moon’s many volcanoes that freeze when they meet the cold temperatures of the icy surface.

Although the idea of a moon covered in volcanoes suggests Io would be a hot celestial body, Io’s surface is always cold at about – 145°c (- 230°F)..

Io’s atmosphere is so faint that it is about a billion times thinner than Earth’s. Previous observations and studies of the moon revealed that this atmosphere is largely comprised of sulphur dioxide gas (SO2).

However, it is not known which process drives the dynamics in Io’s atmosphere. It might be volcanic activity, or gas that has sublimated from the icy surface when Io is in sunlight. Researchers used ALMA to capture images of the moon as it moved into and out of Jupiter’s shadow to understand more about the moon’s atmosphere. When Io passes into Jupiter’s shadow, and is out of direct sunlight, it is too cold for SO2, and it condenses onto Io’s surface. During that time one can only see volcanically-sourced SO2. One can therefore see exactly how much of the atmosphere is impacted by volcanic activity. Then, as soon as Io gets into sunlight, the temperature increases, its atmosphere reforms in about 10 minutes’ time, faster than what models had predicted. However, the researchers’ data show that not all of the SO2 freezes during the temperature drop Io experiences while in Jupiter’s shadow. In fact, ALMA was able to detect global radio SO2 emissions from what the researchers call “stealth volcanoes”, which don’t emit smoke or detected particles, but release the gas into the atmosphere that is warm enough to keep from condensing and freezing.

Scientists are now able to explain these hot processes unfold. The tug of Jupiter, Ganymede and Europa heat the interior of Io, which creates volcanoes that release hot sulphur dioxide gas. Eventually, the gas condenses and freezes in a thick layer of SO2 ice on Io’s surface. That layer is covered over by volcanic dust, which creates Io’s signature colours.

The clarity of the ALMA images revealed distinct plumes of SO and SO2 coming from the volcanoes, contributing between 30% to 50% of the moon’s atmosphere. The scientists also saw potassium chloride gas (KCl), a common component of magma, emerging from the volcanoes. The researchers believe that this suggests that the magma reservoirs differ between volcanoes.

Io is only slightly larger than our moon, but it is very different. What’s more, its environment is unlike anything found on Earth. Beside the volcanoes, Io’s surface is also covered with lakes of molten silicate lava. With such a dramatic landscape, scientists say it would be totally impossible to live there.

Io is caught between Jupiter’s massive gravity and the tug of orbits from the planet’s other moons like Europa and Ganymede, which contributes to the activity on Io. Some of its volcanoes are massive, like Loki Patera, which is 200 kilometres across. The moon is in a tidally locked orbit around Jupiter, meaning that the same side of the moon always faces the planet.

The ALMA images revealed that Io’s atmosphere becomes incredibly unstable when it passes through Jupiter’s massive shadow. This occurs every 42 hours during Io’s orbit around its neighbour.

Future observations and studies will allow researchers to determine the temperature of Io’s lower atmosphere, which remains unknown for now.

Source: CNN.

Les images ALMA d’Io montrent pour la première fois des panaches de dioxyde de soufre (en jaune) s’élevant des volcans. Jupiter est visible en arrière-plan (image de la sonde Cassini). [Source : ALMA, NASA, Space Science Institute]

Une éruption sur Io dans les prochains jours ? // An eruption on Io in the coming days ?

Io, la lune de Jupiter, est un univers de volcans actifs. Loki Patera est le plus grand d’entre eux. Il présente une vaste dépression d’un diamètre de 202 km dans laquelle se trouve un lac de lave actif probablement relié à un réservoir magmatique situé en dessous. On pense que le lac de lave est recouvert d’une fine croûte solidifiée. Les scientifiques qui observent Io à travers les télescopes pensent que cette croûte se rompt de temps en temps, ce qui provoque une tache de lumière.

Les éruptions du Loki sont si régulières qu’une astronome du Planetary Science Institute à Tucson (Arizona) en a prédit une pour la mi-septembre 2019. Si le volcan entre effectivement en éruption, les astronomes sur Terre pourront admirer, grâce à leurs télescopes, une lueur intense, ainsi que les nuages ​​toroïdaux de plasma qui encercleront Jupiter.
Après plus de 20 ans d’observations, la scientifique du Planetary Science Institute a déclaré que l’apparition des taches de lumière sur le Loki était le signe qu’une éruption allait se produire. Un tel événement est observé environ tous les 475 jours. Elle vient de présenter ses travaux au Congrès européen des sciences planétaires de Genève.
Le Loki est le volcan le plus imposant et le plus actif sur Io. Il est si brillant dans l’infrarouge que les astronomes peuvent l’observer à l’aide de télescopes sur Terre. Si son cycle éruptif ne s’est pas modifié, le Loki devrait entrer en éruption en septembre 2019. La dernière éruption a été correctement prévue en mai 2018.
En janvier, des caméras embarquées à bord de la sonde Juno de la NASA ont pris de superbes photos d’un énorme panache volcanique alors qu’elles observaient la surface de Io.
Bien que la taille énorme du Loki ait un effet stabilisateur sur ses cycles, ce qui le rend plus prévisible que de nombreux volcans, la scientifique reste prudente. En effet, au début des années 2000, alors qu’un cycle de 540 jours avait été détecté, le comportement du Loki a changé et il n’a plus présenté d’activité périodique jusqu’en 2013. Elle explique aussi qu’il est difficile de prévoir les éruptions volcaniques. De nombreux facteurs doivent être pris en compte, notamment l’alimentation magmatique, la composition du magma et en particulier la présence de bulles dans le magma, le type de roche sur lequel repose le volcan, les fracturations, ainsi que de nombreux autres facteurs. Selon elle, les éruptions du Loki Patera peuvent être prévues car c’est un très gros volcan. En raison de sa taille, c’est la physique de base qui est dominante au moment des éruptions. Les modifications ce comportement qui affectent les volcans de petite taille sont moins visibles en ce qui concerne le Loki.
Source: EarthSky.

———————————————————

Jupiter’s moon Io is a world of active volcanoes, and Loki Patera is the largest of these, a great depression in the moon’s surface some 202 km across. An active lava lake resides in this depression, and is thought to be directly connected to a magma reservoir below. The lake is likely covered over by a thin, solidified crust. Scientists peering through earthly telescopes have seen this area as continuously active. They think that the crust overlying the lake occasionally gives way, causing a brightness increase. In fact, Loki’s periodic eruptions are so regular that an astronomer of the Planetary Science Institute based in Tucson (Arizona) has predicted one for this month. Loki is expected to erupt again in mid-September 2019. If the volcano does erupt, Earth’s astronomers with their telescopes will be able to marvel as the celestial body brightens and its toroidal clouds of plasma encircle Jupiter.

Based on more than 20 years of lunar observations, the astronomer at Planetary Science Institute says Loki’s brightenings signal an on-schedule eruption that could be predicted approximately every 475 days. She presented her studies at the 2019 European Planetary Science Congress in Geneva.

Loki is the largest and most powerful volcano on Io, so bright in the infrared that astronomers can detect it using telescopes on the Earth. If its behaviour remains the same, Loki should erupt in September 2019. Scientists correctly predicted the last eruption in May 2018.

In January, cameras aboard NASA’s Juno spacecraft caught great photos of a massive volcanic plume as it shot material off Io’s surface.

Though Loki’s enormous size has a stabilizing effect on its cycles, making it more predictable than many volcanoes, the female scientist remains cautious. Indeed, in the early 2000s, once the 540-day pattern was detected, Loki’s behaviour changed and did not exhibit periodic behaviour again until about 2013. She explains that volcanoes are difficult to predict because they are complicated. Many things influence volcanic eruptions, including the rate of magma supply, the composition of the magma and particularly the presence of bubbles in the magma, the type of rock the volcano sits in, the fracture state of the rock, and many other issues. Loki Patera could be predictable because it is so large. Because of its size, basic physics are likely to dominate when it erupts, so the small complications that affect smaller volcanoes are likely to not affect Loki as much.

Source: EarthSky.

Vue du volcan Loki Patera sur Io. La structure en fer à cheval est un lac de lave. (Source : NASA)

Eruption à la surface de Io (Source: NASA)

 

Eruption volcanique sur Io // A volcanic eruption on Io

Les volcans actifs n’existent pas seulement sur Terre. Certains d’entre eux crachent de la lave ou de la glace dans l’espace et peuvent être beaucoup plus volumineux que ceux sur notre planète.
Lors de son 17ème survol de Jupiter, la sonde Juno de la NASA a pu photographier un panache éruptif à la surface de Io, la lune la plus active de la planète d’un point de vue géologique. Le cliché a été réalisé le 21 décembre 2018. Quatre instruments avaient été programmés pour étudier la surface de la lune, en particulier ses régions polaires. Le budget prévoyait une heure de travail et il se trouve qu’une éruption volcanique s’est produite pendant ce laps de temps.

La sonde Galileo de la NASA avait déjà détecté des traces d’activité volcanique sur Io il y a plus de 20 ans (voir photo ci-dessous), et c’est la première fois que Juno fait de semblables observations. Il s’agit d’un événement fortuit mais pas vraiment inattendu. En effet, Io est particulièrement active d’un point de vue volcanique. La surface et les parties internes de la lune sont soumises à l’influence gravitationnelle de Jupiter. Io a plus de 400 volcans actifs et une grande partie de sa surface est recouverte de lave.
La sonde Juno a pris la photo au moment où Io commençait à disparaître dans l’ombre de Jupiter. Bien que la photo soit assez floue, on peut discerner le panache brillant émis par l’éruption à la limite entre le jour et la nuit. Juno se trouvait à environ 300 000 kilomètres d’Io lorsque la photo a été prise.
Quelque 40 minutes plus tard, Io était totalement dans l’ombre de Jupiter. En plus du rayonnement intense de Io, la caméra à bord de Juno a détecté des traces d’activité de plusieurs autres volcans à la surface de Io, signalés par des points chauds sur une autre image (voir ci-dessous).
Grâce à ces données, les scientifiques peuvent étudier la manière dont les autres lunes de Jupiter influent sur l’activité à la surface de Io et comment l’activité volcanique sur Io peut être influencée par Jupiter lors d’une éclipse.
Source: NASA.

—————————————————–

Active volcanoes not only exist on Earth. Some of them spew lava or ice in space and may be much more voluminous.

While performing its 17th flyby of Jupiter, NASA’s Juno spacecraft witnessed a volcanic plume erupting from the surface of Io, the most geologically active moon of the planet. The flyby occurred on December 21st, 2018. Mission controllers had no less than four instruments honed in on Io in an effort to study the moon’s surface, especially its polar regions. An hour was budgeted for the survey, and it just so happened that a volcanic eruption occurred during this time.

NASA’s Galileo probe already captured evidence of volcanic activity on Io over 20 years ago, but this is the first time that Juno has done the same. It was a fortuitous but not unexpected event. Indeed, Io is the most geologically active object in the Solar System, with its surface and interior regions subject to Jupiter’s intense gravitational influence. Io has more than 400 active volcanoes and much of its surface is bathed in lava.

The photo captured by the JunoCam was taken just as Io was beginning to drift into Jupiter’s shadow. Although the snapshot is quite hazy, the bright plume can be discerned along the day-night boundary. Juno was around 300,000 kilometres from Io when the photo was taken.

Some 40 minutes later, Io was totally immersed in Jupiter’s shadow. In addition to detecting Io’s intense radiation signature, the Juno camera caught evidence of activity from several other volcanoes on Io’s surface, corresponding with hot spots on another image.

With this data, scientists can now investigate the possible ways in which Jupiter’s other large moons influence surface activity on Io, and how volcanic activity on Io may be influenced by its host planet during an eclipse.

Source : NASA.

L’éruption du 21 décembre 2018 photographiée par la sonde Juno

Anomalies thermiques à la surface de Io le 21 décembre 2018

 

Eruption photographiée par la sonde Galileo dans les années 1990

(Source: NASA)

Du Kilauea (Hawaii) à Io, la lune de Jupiter // From Kilauea Volcano (Hawaii) to Io, Jupiter’s moon

drapeau-francaisAu début du mois de décembre 2016, des scientifiques de l’USGS et de la NASA se sont rendus sur le Kilauea pour tester un système de caméra portable fonctionnant comme pyromètre d’imagerie optique. La caméra haute vitesse mise au point pour ce travail est capable d’acquérir plus de 50 images par seconde dans trois longueurs d’onde (verte, rouge et proche infrarouge). Elle a  été calibrée en recueillant les images d’un four d’étalonnage à haute température.
Au cours de leur travail sur le terrain, les scientifiques de l’USGS et de la NASA ont recueilli des milliers d’images de la lave émise par les deux éruptions du Kilauea : les sorties de lave le long de la coulée 61g, et les projections en bordure du lac de lave dans le cratère de l’Halema’uma’u.
La température de la lave du Kilauea est bien connue ; elle atteint environ 1 171°C au sommet et autour de 1 140°C sur l’East Rift Zone. De ce fait, le volcan est l’endroit idéal pour calibrer la caméra avec les températures fiables des coulées actives et du lac de lave.
Les résultats de cette étude permettront de valider une méthode générique de traitement des données applicable à d’autres ensembles de données de télédétection par satellite, avion et sur terre. Le but ultime de cette recherche financée par la NASA est de concevoir un instrument capable de mesurer de façon fiable la température de la lave active sur Io, la lune de Jupiter, le seul autre objet de notre système solaire connu pour avoir un volcanisme actif à haute température.
Source: USGS / HVO.

———————————–

drapeau-anglaisIn early December 2016, USGS and NASA scientists visited Kilauea Volcano to experiment with a portable, ground-based camera system for use as an optical imaging pyrometer. The custom-built, high-speed camera can acquire images at more than 50 frames per second in three wavelengths (green, red, and near-infrared). It was calibrated by collecting images of a high-temperature calibration oven.

During their field work, the USGS and NASA scientists collected thousands of images of active lava from Kilauea’s two ongoing eruptions. This included breakouts along the 61g lava flow, as well as spattering lava along the edges of the Halema’uma’u lava lake.

The eruption temperature of Kilauea lava is well-known—up to about 1,171°C degrees at the summit and around 1,140°C on the East Rift Zone. Because of this, the volcano is the perfect place to determine how these camera data can be used to retrieve reliable temperatures from the hottest parts of active flows and lava lakes.

The results of this study will establish the validity of a generic data processing method that could be applied to other satellite, airborne, and ground-based remote sensing data sets. The ultimate goal of this NASA-funded research is to design an instrument capable of reliably measuring the temperature of active lava on Jupiter’s moon, Io, the only other object in our solar system known to have active, high-temperature volcanism.

Source: USGS / HVO.

BI 002

BI 003

Lac de lave et coulées permettront de calibrer la caméra.

(Photos: C. Grandpey)