Cartographie plus précise de la banquise // More accurate mapping of the sea ice

Un nouvel outil puissant, à base d’intelligence artificielle, est capable de prévoir les changements intervenus dans la banquise arctique jusqu’à un an à l’avance. Cela permettra aux entreprises de planifier des voies de navigation plus sures tout en protégeant l’un des endroits les plus fragiles de la planète.
Une équipe scientifique de l’Institut national des sciences et technologies d’Ulsan a créé un modèle d’IA qui indique la quantité de glace qui recouvrira des zones spécifiques de l’océan Arctique avec une précision remarquable : moins de 6 % d’erreur sur une année entière. C’est deux fois mieux que les anciennes méthodes de prévision.
Le secret réside dans un système informatique intelligent baptisé UNET qui s’appuie sur les modèles de glace passés et les données météorologiques, notamment la température de l’air, la température de l’eau, la lumière du soleil et le vent. Le principe est le même que pour une prévision météorologique, mais concerne de la glace au lieu de la pluie. En étudiant ces modèles au fil du temps, l’IA est capable de repérer des tendances que les chercheurs humains ont pu négliger.
La glace arctique devient de plus en plus difficile à prévoir avec la hausse des températures. Lors des principales fontes de cette glace en 2007 et 2012, la nouvelle IA a affiché la même précision avec seulement 7 % d’erreur, alors que les outils précédents ont connu un niveau d’erreur supérieur à 17 % pendant ces périodes critiques. Cela signifie que les navires peuvent désormais naviguer avec plus de sécurité, même dans des conditions imprévisibles.
L’équipe scientifique a fait une découverte intéressante : le soleil et le vent ont des effets significatifs sur les zones de glace les plus minces. Cette étude devrait résoudre les limites des modèles traditionnels basés sur la physique en explorant l’interaction complexe de divers facteurs environnementaux qui ont un impact sur les changements de la glace de mer arctique. En conséquence, ces résultats rendront la navigation dans l’Arctique plus sûre et plus intelligente tout en fournissant aux dirigeants de meilleures données pour protéger cette région sensible. Les entreprises peuvent désormais prévoir des itinéraires sans glace des mois à l’avance, réduisant ainsi la consommation de carburant et aidant les navires à éviter les zones dangereuses. Cela signifie que moins de navires seront bloqués, moins de carburant sera brûlé et on aura une meilleure protection de la faune arctique.

Cette technologie est prête à l’emploi ; elle offre aux scientifiques et aux compagnies de transport maritime une image plus claire de ce qui se passe dans cette partie du globe. Cela signifie des voyages plus sûrs, une meilleure planification et des choix plus intelligents pour protéger l’avenir de l’Arctique.
Source : Yahoo Actualités.

Photo: C. Grandpey

————————————————-

A powerful new artificial intelligence tool can predict changes in Arctic sea ice up to a year ahead of time, helping companies plan safer shipping routes while protecting one of Earth’s most fragile places.

A scientific team at the Ulsan National Institute of Science and Technology has created an AI model that tells us how much ice will cover specific areas of the Arctic Ocean with remarkable accuracy (less than 6% error across an entire year). That’s twice as precise as older prediction methods.

The secret lies with a smart computer system called UNET that learns from past ice patterns and weather data, including air temperature, water temperature, sunlight, and wind. It is like a weather forecast but for ice coverage instead of rain. By studying these patterns over time, the AI can spot trends that human researchers might miss.

Arctic ice is getting harder to predict as temperatures rise. During major ice melts in 2007 and 2012, the new AI stayed steady with just 7% error. Previous tools struggled with errors over 17% during these critical periods. This means ships can now navigate more confidently, even during unpredictable conditions.

The team discovered something interesting: Sunshine and wind have outsize effects on thinner ice areas. This study is said to solve the limitations of traditional physics-based models by exploring the complex interplay of various environmental factors that impact changes in Arctic sea ice. As a result, these findings will make Arctic shipping safer and smarter while giving leaders better data to protect this sensitive region. Companies can now map out ice-free routes months ahead, reducing fuel waste and helping ships avoid dangerous areas. This means fewer ships getting stuck, less fuel burned, and better protection for Arctic wildlife.

This technology is ready to use, giving scientists and shipping companies a clearer picture of what’s happening at the top of our planet. This means safer travel, better planning, and more intelligent choices for protecting the Arctic’s future.

Source : Yahoo News.

Nouveau système de surveillance volcanique // New volcano monitoring system

Un nouveau système de surveillance des volcans par radar mis au point par l’Université d’Alaska Fairbanks (UAF) et l’U.S. Geological Survey (USGS) va être adopté à travers les États-Unis et même au-delà. Ce nouveau système, financé par la NASA, pourrait permettre une détection plus précoce des signes d’activité volcanique. Reste à savoir si les coupes budgétaires décidées par l’Administration Trump permettront une utilisation efficace de ces nouveaux équipements.
L’Observatoire Volcanologique d’Alaska basé à l’UAF utilise un prototype de ce système, appelé VolcSARvatory, depuis début 2022. Son utilité est devenue immédiatement évidente lorsqu’un essaim sismique s’est produit sur le mont Edgecumbe, près de Sitka, en Alaska, le 11 avril 2022. Cela faisait longtemps que ce volcan ne se manifestait pas.

Vue du cratère du Mont Edgecumbe (Crédit photo : AVO)

Le VolcSARvatory utilise un radar à synthèse d’ouverture interférométrique, ou InSAR, pour détecter des variations de petits mouvements du sol de seulement un centimètre. Il fonctionne en combinant deux ou plusieurs images radar satellite de la même zone prises à des moments différents. Les variations de surface sur une longue durée peuvent être enregistrés en collectant des images répétées pour créer une série chronologique de données à partir d’un seul endroit. Selon des scientifiques américains, l’extension du système à tous les observatoires volcaniques de l’USGS permettra d’adopter une approche cohérente de surveillance des volcans actifs.
Le système VolcSARvatory permet de traiter et d’analyser de vastes volumes de données en quelques jours seulement là où un processus classique nécessiterait plusieurs semaines. Comme indiqué plus haut, le système s’est avéré utile pour étudier l’activité inattendue du mont Edgecumbe. En 2022, une équipe de l’Alaska Volcano Observatory et de l’Alaska Satellite Facility a commencé à analyser les données des 7 années et demie d’activité du mont Edgecumbe à l’aide du prototype VolcSARvatory. Les scientifiques ont découvert que la déformation de ce volcan avait commencé 3 ans et demi plus tôt, en août 2018. Une modélisation informatique ultérieure a révélé que c’était une nouvelle intrusion magmatique qui avait provoqué la déformation du sol.

Image InSAR montrant la déformation du sol sur l’île Kruzof dans le sud-est de l’Alaska. Elle permet de voir l’élévation du sol autour du mont Edgecumbe depuis août 2018. Les cases à droite de la carte indiquent, en centimètres, le soulèvement du sol sur les sites numérotés de l’île. (Source : AVO)

L’InSAR est utilisé depuis longtemps pour contrôler la déformation des volcans aux États-Unis, mais jusqu’à présent le travail a été effectué de manière fragmentaire. VolcSARvatory fournira désormais une connaissance situationnelle du comportement des volcans et identifiera peut-être des signes d’activité volcanique avant l’apparition d’autres paramètres, comme l’activité sismique.
L’utilisation de données satellite de type InSAR permettra d’améliorer la surveillance des volcans équipés de capteurs au sol et de surveiller les nombreux autres édifices qui ne disposent pas de stations au sol.
Le nouveau système de surveillance utilise de nombreuses autres observations par satellite, telles que la télédétection de gaz, thermique et visuelle pour surveiller ces volcans. La déformation de surface est un plus pour analyser l’activité volcanique. La déformation de surface peut révéler l’emplacement et le volume de nouveau magma et de gaz. Elle peut également indiquer si la pression augmente en raison de ce nouveau magma ou de ce gaz, ou si le système se dépressurise lorsque le magma et le gaz se déplacent en profondeur ou s’approchent de la surface et annoncent une prochaine éruption.
Le projet de l’UAF fait partie des sept projets sélectionnés par la NASA parmi les 60 autres dans le cadre du Disaster Program de l’agence spatiale. Les sept projets gagnants, annoncés le 20 décembre 2025, se partageront 6,3 millions de dollars sur deux ans.
Source : University of Alaska Faitbanks.

—————————————————

A new radar-based volcano monitoring system developed by the University of Alaska Fairbanks (UAF) and U.S. Geological Survey (USGS) will expand across the U.S. and beyond. The expansion, funded by NASA, could lead to earlier detection of volcanic unrest. It remains to be seen whether the budget cuts decided by the Trump administration will allow for the effective use of this new equipment.

The Alaska Volcano Observatory at UAF has been using a prototype of this system, named VolcSARvatory, since early 2022. Its usefulness was immediately apparent when a swarm of earthquakes occurred at long-quiet Mount Edgecumbe volcano, near Sitka, Alaska, on April 11, 2022.

VolcSARvatory uses interferometric synthetic aperture radar, or InSAR, to detect ground movement changes as small as one centimeter. It works by combining two or more satellite radar images of the same area taken at different times. Long-duration surface changes can be chronicled by collecting repeated images to build a time series of data from a single location. According to US scientists, expanding the system to all USGS volcano observatories will provide a consistent approach to monitoring active volcanoes.

The VolcSARvatory system allows the processing and analysis of vast volumes of data in only a handful of days. The process would otherwise require several weeks. The system proved valuable in studying Mount Edgecumbe’s unexpected activity. In 2022, a team from the Alaska Volcano Observatory and Alaska Satellite Facility began analyzing the previous 7 1/2 years of Mount Edgecumbe data using the VolcSARvatory prototype and found deformation began 3 1/2 years earlier, in August 2018. Subsequent computer modeling indicated an intrusion of new magma caused the ground deformation.

InSAR has long been used to track deformation at volcanoes in the USA, but the work has been done in a piecemeal fashion to this point. VolcSARvatory will provide situational awareness of volcano behavior and possibly identify volcanoes that are becoming restless before other indications, like earthquake activity, show up. Using InSAR-type satellite data will enhance the monitoring of volcanoes that have been fitted with ground sensors and will allow for the monitoring of the many others that don’t have ground-based stations.

The new monitoring system uses a lot of other observations that are satellite-based, such as gas, thermal and visual remote sensing to monitor those volcanoes, and surface deformation adds an important indicator of volcanic activity. Surface deformation can reveal the location and volume of new magma and gases. It can also indicate whether pressure is building due to that new magma or gas, or whether the system is depressurizing as magma and gas either move to other underground locations or approach an eruption at the surface.

The UAF project is one of seven NASA selected from 60 submitted as part of the space agency’s Disasters Program. The seven winning proposals, announced December 20, will share 6.3 million dollars over two years.

Source : University of Alaska Faitbanks.

Islande : éruption imminente ? // Iceland : an eruption in the very short term ?

Le Met Office islandais indique aujourd’hui que, selon les modélisations qui viennent d’être mises à jour, la quantité de magma accumulée sous Svartsengi est désormais aussi importante qu’avant l’éruption qui a débuté le 20 novembre 2024. En se référant aux événements précédents sur la chaîne de cratères de Sundhnúkagígar, il est de plus en plus probable que la 8ème éruption commence dans quelques jours ou quelques semaines.
Le rapport du Met Office indique également qu’en raison des événements éruptifs à répétition, la résistance de la croûte terrestre a diminué à chaque événement. Cela signifie qu’on enregistre aujourd’hui moins de séismes mineurs dans la région dans les semaines et les jours précédant une éruption qu’avant les premières éruptions.
Le Met Office prévient que le préavis d’une éruption peut être très court, de seulement 30 minutes.
Ma dernière prévision personnelle faisait état d’une éruption vers le 15 février tandis que la précédente, fin novembre 2024, après la 7ème éruption, suggérait mars 2025. Je n’étais pas d’accord avec les scientifiques du Met Office qui prédisaient le prochain événement pour la fin janvier 2025.

————————————————

The Icelandic Met Office indicates that according to updated modeling calculations, the amount of magma that has accumulated under Svartsengi is now as large as it was before the eruption that began on November 20th, 2024. Based on previous events at the Sundhnúkagígar crater row, it can be assumed that there is an increasing probability that the 8th eruption will begin within a few days or weeks.

The statement also reports that due to these repeated events, the tension in the earth’s crust has decreased with each event. This means that fewer and smaller earthquakes are measured in the area in the weeks and days before an eruption than before the first eruptions.

The Met Office warns that the notice of an eruption may bz very short, down to 30 minutes.

My last prediction suggested an eruption around February 15th while the preceding one, by the end of November 2024, after the previous euption, suggested March 2025. I did not agree with The Met Office’s scientists who predicted the next event for the end of January.

L’Islande et la prévision éruptive // Iceland and eruptive prediction

Aucune nouvelle éruption n’a eu lieu pour le moment sur la péninsule de Reykjanes. Le Met Office islandais avait prévu la 8ème éruption de la série pour fin janvier 2025. L’événement semble donc en retard…. En ce qui me concerne, j’ai pensé que cette prévision du Met Office était trop optimiste. Au départ, j’avais prévu la prochaine éruption pour le mois de mars 2025 – mais sûrement pas la fin janvier – avant de corriger ma prévision et d’écrire qu’elle était plutôt susceptible de se produire vers le 15 février, jour de la St Claude ! Les prochains jours diront si j’avais raison, comme ce fut le cas lorsque j’ai écrit que l’éruption précédente commencerait le 20 novembre 2024.
Il semble que les scientifiques du Met Office islandais fassent leurs prévisions éruptives en partant du principe que l’ascension du magma suit un mouvement linéaire régulier, ce qui est inexact. Un jour, à l’Observatoire Volcanologique d’Hawaï (HVO), le regretté Jim Kauahikaua m’a expliqué que la remontée de magma à Hawaï sous la croûte terrestre suivait un processus irrégulier avec des pauses, ce qui rendait la prévision éruptive difficile. Il semble que ce soit la même chose en Islande.
Dans sa dernière mise à jour (4 février 2025), le Met Office explique que « les mesures de déformation continuent de montrer un soulèvement continu du sol et une accumulation de magma sous Svartsengi. La quantité de magma en train de s’accumuler se rapproche maintenant du seuil inférieur considéré comme nécessaire pour que se déclenche la prochaine intrusion magmatique. Si l’on regarde les récentes éruptions le long de la chaîne de cratères de Sundhnúkur, elles se sont produites entre trois jours et quatre semaines après avoir atteint ce seuil inférieur. Cependant, cela ne signifie pas que le prochain événement se produira dans un mois, mais l’expérience montre que c’est le scénario le plus probable. » Il ne nous reste plus qu’à attendre et voir si ma prévision est à nouveau exacte cette fois-ci !

Il ressort de ce que je viens d’écrire que la prévision éruptive en Islande n’a pas une importance majeure. On pourrait presque organiser des concours de pronostics autour du jour possible d’une éruption. Il y a peut-être une fenêtre pour les bookmakers anglais ! En Islande, nous sommes face à un volcanisme d’accrétion avec un dynamisme effusif. Une éruption ne cause pas de pertes humaines ; au pire, elle provoque des pertes matérielles comme ce fut le cas à Grindavik.

On a une situation bien différente des volcans situés en zone de subduction, le long de la Ceinture de Feu du Pacifique. En Indonésie ou aux Philippines, on a affaire à un dynamisme explosif, avec des phénomènes éruptifs (explosions, coulées pyroclastiques) qui peuvent causer des pertes matérielles, et surtout humaines, considérables.

Le problème, c’est que nous ne savons pas prévoir ces éruptions. À cause de cette incapacité à prévoir, on a recours au principe de précaution : il vaut mieux évacuer les populations plutôt que de risquer les envoyer à une mort certaine. Certes, la vie dans les centres d’hébergement provisoires pose des problèmes sanitaires et de promiscuité, mais c’est mieux qu’une fin tragique. Parfois, on évacue à tort car aucune éruption majeure ne se produit. C’est ce qui s’est passé sur le Mont Agung à Bali, il y a quelques années, quand le volcan s’est contenté d’émettre de volumineux panaches de cendres, mais il vaut mieux protéger des dizaines de milliers de gens plutôt que de les envoyer au casse-pipe.

Évolution de la déformation en Islande. Situation le 10 février 2025 (Source: Met Office)

—————————————————–

No new eruption has occurred yet on the Reykjanes Peninsula. The Icelandic Met Office had predicted the 8th eruption of the series for the end of January 2025. It looks as if it is overdue.As fas as I’m concerned, I thought this was much too soon. Initially, I predicted the next eruption for March 2025 – but not the end of January – then corrected my prediction and wrote it was rather likely to happen around February 15th. The next days will tell us if I was right, like when I said the previous eruption would start on November 20th, 2024.

It seems the scientists at the Icelandic Met Office make their eruptive predictions with the notion that the ascent of magma follows a regular linear movement, which is not true. One day at the Hawaiian Volcano Observatory (HVO), the late Jim Kauahikaua explained me that the ascent of magma in Hawaii beneath Earth’s crust was irregular, with pauses, which made eruptive prediction difficult. It seems to be the same in Iceland.

In its latest update (February 4th, 2025) , the Met Office explains that « deformation measurements continue to show ongoing land uplift and magma accumulation beneath Svartsengi. The amount of magma accumulating beneath Svartsengi is now approaching the lower threshold, believed to be necessary to trigger the next magma intrusion. If we look at the recent eruptions on the Sundhnúkur crater row, they have occurred anywhere between three days and four weeks after reaching this lower threshold. However, this does not mean that the next event will occur within a month, but rather that experience suggests this as the most likely scenario. » We just need to wait and see whhether my prediction is again right this time !

It is clear from what I have just written that eruptive prediction in Iceland is not of major importance. One could almost organize prediction contests around the possible day of an eruption. There may be a window for English bookmakers! In Iceland, we are faced with accretionary volcanism with effusive dynamism. An eruption does not cause human losses; at worst, it causes material losses as was the case in Grindavik.
We have a very different situation from the volcanoes located in the subduction zones, along the Pacific Ring of Fire. In Indonesia or the Philippines, we are dealing with an explosive dynamism, with eruptive phenomena (explosions, pyroclastic flows) that can cause considerable material damage and human losses.
The problem is that we do not know how to predict these eruptions. Because of this inability, one resorts to the precautionary principle : it is better to evacuate people than to risk sending them to certain death. Of course, life in temporary shelters poses health and overcrowding problems, but it is better than a tragic end. Sometimes, evacuations are wrong because no major eruption occurs. This is what happened on Mount Agung in Bali a few years ago, when the volcano simply emitted voluminous ash plumes, but it is better to protect tens of thousands of people than to send them to a certain death.