Les éruptions sommitales à épisodes du Kilauea (Hawaï) // The episodic summit eruptions of Kilauea Volcano (Hawaii)

L’éruption sommitale du Kilauea, dans le cratère Halema’uma’u, dure depuis plus de trois mois maintenant, avec 16 épisodes éruptifs accompagnés de fontaines et de coulées de lave.

Cependant, ce n’est pas la première fois que des éruptions à épisodes se produisent sur le volcan. L’étude des situations qui ont précédé et suivi d’autres éruptions similaires est utile pour améliorer notre compréhension de l’éruption en cours.
Des éruptions à épisodes ont déjà eu lieu sur le Kilauea : 1) en 1959 (Kilauea Iki), 2) en 1969 (Mauna Ulu) et 3) de 1983 à 1986 (les trois premières années de l’éruption du Pu’uO’o).
Un paramètre important à prendre en compte est la pressurisation des chambres magmatiques sous le sommet du Kilauea. À cette fin, les scientifiques du HVO utilisent des inclinomètres (ou tiltmètres), capables de détecter de très faibles variations de mouvements du sol au niveau du sommet du Kīlauea. À mesure que la pression s’accumule, la surface du sol gonfle, et les inclinomètres montrent ces subtiles séquences d’inflation et de déflation au fil du temps.

1) Avant l’éruption sommitale du Kīlauea Iki en 1959, les chambres magmatiques situées sous le sommet du Kilauea se sont remplies et repressurisées pendant des années après l’éruption sur la Lower East Rift Zone en1955. Après l’éruption de 1959, qui a comporté 17 fontaines de lave tous les deux jours pendant environ un mois, la pression dans les chambres magmatiques sous le sommet du Kīlauea n’a fait qu’augmenter.

2) Les 12 épisodes de fontaines de lave du Mauna Ulu en 1969 ont fait suite à plusieurs brèves éruptions sommitales et dans l’East Rift Zone, précédées d’une inflation rapide des chambres magmatiques sous le sommet. Avant ces événements, le sommet du Kilauea a connu une éruption avec un lac de lave de 1967 à 1968, accompagnée d’une faible déformation du sol. Comme lors de l’éruption de 2025, les chambres magmatiques sommitales se sont dégonflées lors des épisodes de fontaines de lave du Mauna Ulu – espacés de quelques jours à quelques semaines – avant de regonfler pendant les pauses. Une fois terminés les épisodes de fontaines de lave du Mauna Ulu, le volcan est entré dans une phase pluriannuelle de coulées de lave.

3) Avant l’éruption du Pu’uO’o, plusieurs années d’éruptions sommitales et d’intrusions dans des zones de rift ont accompagné le gonflement de l’ensemble du sommet. Comme pendant l’éruption du Mauna Ulu, la phase de 44 fontaines de lave, se produisant environ une fois par mois pendant environ trois ans, a été suivie de coulées de lave qui ont fini leur course dans l’océan. Le sommet du Kilauea s’est dégonflé avec le début de l’éruption du Pu’uO’o, et cette phase de déflation s’est poursuivie pendant les deux décennies suivantes, tout au long de l’éruption.

4) Lors de l‘éruption actuelle, les inclinomètres montrent une tendance inflationniste avant chaque épisode de fontaine de lave, lorsque la pression augmente sous la surface, et un passage à une tendance déflationniste au début d’un épisode de fontaine de lave, indiquant une libération de la pression dans les chambres magmatiques. Cela s’est traduit par un schéma en dents de scie au cours des derniers mois (voir ci-dessous) ; cependant, le sommet du Kilauea n’a montré que peu de variations de pressurisation depuis le début de l’éruption le 23 décembre 2024, ce qui indique que le sommet a atteint un certain niveau d’équilibre.

Les bouches éruptives nord et sud de Halema’uma’u parviennent à libérer progressivement la pression accumulée dans les chambres magmatiques sous le sommet du Kilauea à chaque épisode éruptif. Tant que cet équilibre sera maintenu, l’éruption à épisodes au sommet se poursuivra. Cette régularité des éruptions a permis au HVO de publier des fenêtres de probabilité pour les différents épisodes éruptifs. Cependant, des événements comme une diminution ,de l’inflation ou un blocage à l’intérieur des bouches éruptives est susceptible de modifier la régularité actuelle des épisodes de fontaines, voire y mettre fin. Les prévisions deviendront alors quasiment impossibles !
Source : USGS / HVO.

—————————————————–

The summit eruption of Kilauea in Halema’uma’u Crater has been going on for more than 3 months, with 16 eruptive episodes displaying lava fountains and lava flows.

However, this is not the first time episodic eruptions have occurred at the volcano. Examining what happened before and after other similar episodic eruptions can improve our understanding of the ongoing summit eruption. .

Similar episodic eruptions at Kīlauea took place 1) in 1959 (Kīlauea Iki), 2) 1969 (Mauna Ulu) and 3) from 1983 to 1986 (first 3 years at Pu’uO’o).

An important parameter to take into account is the pressurization of the magma chambers beneath the Kilauea summit. For that purpose, HVO scientists use tiltmeters, which can detect very small changes in how the ground is movingaround Kīlauea summit. As pressure accumulates, ground surface bulges outward, and tiltmeters track these subtle ground inflation and deflation through time.

1) Leading to the 1959 summit eruption of Kīlauea Iki, the magma chambers beneath Kīlauea’s summit region refilled and repressurized for years following the 1955 lower East Rift Zone eruption. Following the 1959 eruption, which consisted of 17 high fountains every couple of days throughout about a month, pressure within Kīlauea’s summit magma chambers only increased.

2) The 12 episodic lava fountains at MaunaUlu in 1969, followed several brief summit and East Rift Zone eruptions preceded by rapid inflation of the magma chambers beneath the summit.

Before those events, the Kilauea summit was in a prolonged lava lake eruption from 1967 to 1968 that was accompanied by little ground deformation. Similar to during the 2025 eruption, the summit magma chambers deflated during MaunaUlu lava fountaining episodes, which happened days to weeks apart, and inflated during pauses. After the episodic lava fountaining phase of Mauna Ulu ended, the volcano entered a multi-year phase of lava flows.

3) Prior to the Pu’uO’o eruption, there were several years of summit eruptions and rift zone intrusions with overall inflation of the summit. Like the Mauna Ulu eruption, the phase of 44 lava fountains, occurring about once a month throughout about 3 years, was followed by lava flows building a shield and traveling downslope toward the ocean. The Kilauea summit deflated with the onset of the Pu’uO’o eruption, and that deflation continued for the next 2 decades as the eruption continued.

4) During the current eruption, tiltmeters have shown inflationary tilt prior to each lava fountaining episode as pressure builds beneath the surface, and a switch to deflationary tilt when a lava fountain episode begins, indicative of the pressure within the magma chambers being released.

This created a saw-tooth pattern in ground tilt records during the past several months; however, Kīlauea summit has shown little net change in pressurization since the eruption began on December 23rd, 2024, indicating the summit has been in some level of equilibrium.

The north and south eruptive vents in Halema’uma’u are able to incrementally release the pressure that accumulates within the Kilauea summit magma chambers with each eruptive episode. As long as that equilibrium is maintained, the episodic eruption at the summit is likely to continue. The regular eruption patterns have allowed HVO to publish windows of probability for when future eruptive episodes could begin. However, changes such as a decrease in the rate of inflation or a severe blockage of the vents could alter the current pattern of fountaining episodes, including bringing them to an end. The predictions have their limits !

Source : USGS / HVO.

Cartographie plus précise de la banquise // More accurate mapping of the sea ice

Un nouvel outil puissant, à base d’intelligence artificielle, est capable de prévoir les changements intervenus dans la banquise arctique jusqu’à un an à l’avance. Cela permettra aux entreprises de planifier des voies de navigation plus sures tout en protégeant l’un des endroits les plus fragiles de la planète.
Une équipe scientifique de l’Institut national des sciences et technologies d’Ulsan a créé un modèle d’IA qui indique la quantité de glace qui recouvrira des zones spécifiques de l’océan Arctique avec une précision remarquable : moins de 6 % d’erreur sur une année entière. C’est deux fois mieux que les anciennes méthodes de prévision.
Le secret réside dans un système informatique intelligent baptisé UNET qui s’appuie sur les modèles de glace passés et les données météorologiques, notamment la température de l’air, la température de l’eau, la lumière du soleil et le vent. Le principe est le même que pour une prévision météorologique, mais concerne de la glace au lieu de la pluie. En étudiant ces modèles au fil du temps, l’IA est capable de repérer des tendances que les chercheurs humains ont pu négliger.
La glace arctique devient de plus en plus difficile à prévoir avec la hausse des températures. Lors des principales fontes de cette glace en 2007 et 2012, la nouvelle IA a affiché la même précision avec seulement 7 % d’erreur, alors que les outils précédents ont connu un niveau d’erreur supérieur à 17 % pendant ces périodes critiques. Cela signifie que les navires peuvent désormais naviguer avec plus de sécurité, même dans des conditions imprévisibles.
L’équipe scientifique a fait une découverte intéressante : le soleil et le vent ont des effets significatifs sur les zones de glace les plus minces. Cette étude devrait résoudre les limites des modèles traditionnels basés sur la physique en explorant l’interaction complexe de divers facteurs environnementaux qui ont un impact sur les changements de la glace de mer arctique. En conséquence, ces résultats rendront la navigation dans l’Arctique plus sûre et plus intelligente tout en fournissant aux dirigeants de meilleures données pour protéger cette région sensible. Les entreprises peuvent désormais prévoir des itinéraires sans glace des mois à l’avance, réduisant ainsi la consommation de carburant et aidant les navires à éviter les zones dangereuses. Cela signifie que moins de navires seront bloqués, moins de carburant sera brûlé et on aura une meilleure protection de la faune arctique.

Cette technologie est prête à l’emploi ; elle offre aux scientifiques et aux compagnies de transport maritime une image plus claire de ce qui se passe dans cette partie du globe. Cela signifie des voyages plus sûrs, une meilleure planification et des choix plus intelligents pour protéger l’avenir de l’Arctique.
Source : Yahoo Actualités.

Photo: C. Grandpey

————————————————-

A powerful new artificial intelligence tool can predict changes in Arctic sea ice up to a year ahead of time, helping companies plan safer shipping routes while protecting one of Earth’s most fragile places.

A scientific team at the Ulsan National Institute of Science and Technology has created an AI model that tells us how much ice will cover specific areas of the Arctic Ocean with remarkable accuracy (less than 6% error across an entire year). That’s twice as precise as older prediction methods.

The secret lies with a smart computer system called UNET that learns from past ice patterns and weather data, including air temperature, water temperature, sunlight, and wind. It is like a weather forecast but for ice coverage instead of rain. By studying these patterns over time, the AI can spot trends that human researchers might miss.

Arctic ice is getting harder to predict as temperatures rise. During major ice melts in 2007 and 2012, the new AI stayed steady with just 7% error. Previous tools struggled with errors over 17% during these critical periods. This means ships can now navigate more confidently, even during unpredictable conditions.

The team discovered something interesting: Sunshine and wind have outsize effects on thinner ice areas. This study is said to solve the limitations of traditional physics-based models by exploring the complex interplay of various environmental factors that impact changes in Arctic sea ice. As a result, these findings will make Arctic shipping safer and smarter while giving leaders better data to protect this sensitive region. Companies can now map out ice-free routes months ahead, reducing fuel waste and helping ships avoid dangerous areas. This means fewer ships getting stuck, less fuel burned, and better protection for Arctic wildlife.

This technology is ready to use, giving scientists and shipping companies a clearer picture of what’s happening at the top of our planet. This means safer travel, better planning, and more intelligent choices for protecting the Arctic’s future.

Source : Yahoo News.

Nouveau système de surveillance volcanique // New volcano monitoring system

Un nouveau système de surveillance des volcans par radar mis au point par l’Université d’Alaska Fairbanks (UAF) et l’U.S. Geological Survey (USGS) va être adopté à travers les États-Unis et même au-delà. Ce nouveau système, financé par la NASA, pourrait permettre une détection plus précoce des signes d’activité volcanique. Reste à savoir si les coupes budgétaires décidées par l’Administration Trump permettront une utilisation efficace de ces nouveaux équipements.
L’Observatoire Volcanologique d’Alaska basé à l’UAF utilise un prototype de ce système, appelé VolcSARvatory, depuis début 2022. Son utilité est devenue immédiatement évidente lorsqu’un essaim sismique s’est produit sur le mont Edgecumbe, près de Sitka, en Alaska, le 11 avril 2022. Cela faisait longtemps que ce volcan ne se manifestait pas.

Vue du cratère du Mont Edgecumbe (Crédit photo : AVO)

Le VolcSARvatory utilise un radar à synthèse d’ouverture interférométrique, ou InSAR, pour détecter des variations de petits mouvements du sol de seulement un centimètre. Il fonctionne en combinant deux ou plusieurs images radar satellite de la même zone prises à des moments différents. Les variations de surface sur une longue durée peuvent être enregistrés en collectant des images répétées pour créer une série chronologique de données à partir d’un seul endroit. Selon des scientifiques américains, l’extension du système à tous les observatoires volcaniques de l’USGS permettra d’adopter une approche cohérente de surveillance des volcans actifs.
Le système VolcSARvatory permet de traiter et d’analyser de vastes volumes de données en quelques jours seulement là où un processus classique nécessiterait plusieurs semaines. Comme indiqué plus haut, le système s’est avéré utile pour étudier l’activité inattendue du mont Edgecumbe. En 2022, une équipe de l’Alaska Volcano Observatory et de l’Alaska Satellite Facility a commencé à analyser les données des 7 années et demie d’activité du mont Edgecumbe à l’aide du prototype VolcSARvatory. Les scientifiques ont découvert que la déformation de ce volcan avait commencé 3 ans et demi plus tôt, en août 2018. Une modélisation informatique ultérieure a révélé que c’était une nouvelle intrusion magmatique qui avait provoqué la déformation du sol.

Image InSAR montrant la déformation du sol sur l’île Kruzof dans le sud-est de l’Alaska. Elle permet de voir l’élévation du sol autour du mont Edgecumbe depuis août 2018. Les cases à droite de la carte indiquent, en centimètres, le soulèvement du sol sur les sites numérotés de l’île. (Source : AVO)

L’InSAR est utilisé depuis longtemps pour contrôler la déformation des volcans aux États-Unis, mais jusqu’à présent le travail a été effectué de manière fragmentaire. VolcSARvatory fournira désormais une connaissance situationnelle du comportement des volcans et identifiera peut-être des signes d’activité volcanique avant l’apparition d’autres paramètres, comme l’activité sismique.
L’utilisation de données satellite de type InSAR permettra d’améliorer la surveillance des volcans équipés de capteurs au sol et de surveiller les nombreux autres édifices qui ne disposent pas de stations au sol.
Le nouveau système de surveillance utilise de nombreuses autres observations par satellite, telles que la télédétection de gaz, thermique et visuelle pour surveiller ces volcans. La déformation de surface est un plus pour analyser l’activité volcanique. La déformation de surface peut révéler l’emplacement et le volume de nouveau magma et de gaz. Elle peut également indiquer si la pression augmente en raison de ce nouveau magma ou de ce gaz, ou si le système se dépressurise lorsque le magma et le gaz se déplacent en profondeur ou s’approchent de la surface et annoncent une prochaine éruption.
Le projet de l’UAF fait partie des sept projets sélectionnés par la NASA parmi les 60 autres dans le cadre du Disaster Program de l’agence spatiale. Les sept projets gagnants, annoncés le 20 décembre 2025, se partageront 6,3 millions de dollars sur deux ans.
Source : University of Alaska Faitbanks.

—————————————————

A new radar-based volcano monitoring system developed by the University of Alaska Fairbanks (UAF) and U.S. Geological Survey (USGS) will expand across the U.S. and beyond. The expansion, funded by NASA, could lead to earlier detection of volcanic unrest. It remains to be seen whether the budget cuts decided by the Trump administration will allow for the effective use of this new equipment.

The Alaska Volcano Observatory at UAF has been using a prototype of this system, named VolcSARvatory, since early 2022. Its usefulness was immediately apparent when a swarm of earthquakes occurred at long-quiet Mount Edgecumbe volcano, near Sitka, Alaska, on April 11, 2022.

VolcSARvatory uses interferometric synthetic aperture radar, or InSAR, to detect ground movement changes as small as one centimeter. It works by combining two or more satellite radar images of the same area taken at different times. Long-duration surface changes can be chronicled by collecting repeated images to build a time series of data from a single location. According to US scientists, expanding the system to all USGS volcano observatories will provide a consistent approach to monitoring active volcanoes.

The VolcSARvatory system allows the processing and analysis of vast volumes of data in only a handful of days. The process would otherwise require several weeks. The system proved valuable in studying Mount Edgecumbe’s unexpected activity. In 2022, a team from the Alaska Volcano Observatory and Alaska Satellite Facility began analyzing the previous 7 1/2 years of Mount Edgecumbe data using the VolcSARvatory prototype and found deformation began 3 1/2 years earlier, in August 2018. Subsequent computer modeling indicated an intrusion of new magma caused the ground deformation.

InSAR has long been used to track deformation at volcanoes in the USA, but the work has been done in a piecemeal fashion to this point. VolcSARvatory will provide situational awareness of volcano behavior and possibly identify volcanoes that are becoming restless before other indications, like earthquake activity, show up. Using InSAR-type satellite data will enhance the monitoring of volcanoes that have been fitted with ground sensors and will allow for the monitoring of the many others that don’t have ground-based stations.

The new monitoring system uses a lot of other observations that are satellite-based, such as gas, thermal and visual remote sensing to monitor those volcanoes, and surface deformation adds an important indicator of volcanic activity. Surface deformation can reveal the location and volume of new magma and gases. It can also indicate whether pressure is building due to that new magma or gas, or whether the system is depressurizing as magma and gas either move to other underground locations or approach an eruption at the surface.

The UAF project is one of seven NASA selected from 60 submitted as part of the space agency’s Disasters Program. The seven winning proposals, announced December 20, will share 6.3 million dollars over two years.

Source : University of Alaska Faitbanks.

Islande : éruption imminente ? // Iceland : an eruption in the very short term ?

Le Met Office islandais indique aujourd’hui que, selon les modélisations qui viennent d’être mises à jour, la quantité de magma accumulée sous Svartsengi est désormais aussi importante qu’avant l’éruption qui a débuté le 20 novembre 2024. En se référant aux événements précédents sur la chaîne de cratères de Sundhnúkagígar, il est de plus en plus probable que la 8ème éruption commence dans quelques jours ou quelques semaines.
Le rapport du Met Office indique également qu’en raison des événements éruptifs à répétition, la résistance de la croûte terrestre a diminué à chaque événement. Cela signifie qu’on enregistre aujourd’hui moins de séismes mineurs dans la région dans les semaines et les jours précédant une éruption qu’avant les premières éruptions.
Le Met Office prévient que le préavis d’une éruption peut être très court, de seulement 30 minutes.
Ma dernière prévision personnelle faisait état d’une éruption vers le 15 février tandis que la précédente, fin novembre 2024, après la 7ème éruption, suggérait mars 2025. Je n’étais pas d’accord avec les scientifiques du Met Office qui prédisaient le prochain événement pour la fin janvier 2025.

————————————————

The Icelandic Met Office indicates that according to updated modeling calculations, the amount of magma that has accumulated under Svartsengi is now as large as it was before the eruption that began on November 20th, 2024. Based on previous events at the Sundhnúkagígar crater row, it can be assumed that there is an increasing probability that the 8th eruption will begin within a few days or weeks.

The statement also reports that due to these repeated events, the tension in the earth’s crust has decreased with each event. This means that fewer and smaller earthquakes are measured in the area in the weeks and days before an eruption than before the first eruptions.

The Met Office warns that the notice of an eruption may bz very short, down to 30 minutes.

My last prediction suggested an eruption around February 15th while the preceding one, by the end of November 2024, after the previous euption, suggested March 2025. I did not agree with The Met Office’s scientists who predicted the next event for the end of January.