Passé, présent et futur sur le Mauna Loa (Hawaii) // Past, present and future on Mauna Loa (Hawaii)

Dominant la Grand Ile d’Hawaii de ses 4170 mètres, le, Mauna Loa est l’un des volcans les plus actifs sur Terre. Il est entré en moyenne en éruption tous les 5 à 6 ans au cours des 3 000 dernières années.
Les éruptions peuvent se produire dans différents secteurs du volcan: au sommet, en général dans la caldeira Moku’weweoweo ; le long de l’une des zones de rift nord-est et sud-ouest, ou à partir de bouches radiales à l’extérieur de la caldeira et sur des zones de rift sur les flancs nord et ouest du volcan.
Depuis 1843, Mauna Loa est entré 33 fois en éruption. Parmi ces éruptions historiques, environ la moitié ont commencé au sommet et sont restées confinées dans la zone sommitale. 24% des éruptions ont commencé au sommet puis, au bout de quelques minutes ou quelques jours, elles ont migré vers la zone de Rift Nord-est. 21% ont commencé au sommet puis ont migré vers des altitudes plus basses le long de la zone de Rift Sud-ouest. Environ 6% des éruptions se sont produites au niveau de bouches radiales, mais ces éruptions historiques avaient également une relation avec le sommet.

L’Observatoire des Volcans d’Hawaii (HVO) surveille le Mauna Loa 24 heures sur 24. Un vaste réseau d’instruments a été mis en place, avec des sismomètres, des inclinomètres, des stations GPS et des webcams, ainsi que des capteurs de température, de SO2 et de CO2. Ces instruments transmettent les données en temps réel au HVO 24 heures sur 24, sept jours sur sept.

Que ce soit pour les éruptions volcaniques ou les autres événements géologiques, le passé est essentiel pour comprendre le futur. C’est pourquoi, pour anticiper le déroulement de la prochaine éruption du Mauna Loa, le HVO se tourne vers le passé.
Au vu des éruptions passées du Mauna Loa, les scientifiques du HVO s’attendent à ce que la prochaine commence au sommet du volcan. Malheureusement, il n’est pas possible de savoir si elle restera confinée au sommet, si elle migrera vers l’une des zones de rift, ou si elle comportera une éruption radiale. Les volcanologues  ne le saurons qu’en observant le processus éruptif.

Comme nous sommes en avril, il est intéressant d’observer les éruptions du Mauna Loa qui se sont produites au cours de ce mois.
En 1942, une éruption a commencé le 26 avril. C’était au moment de la Seconde Guerre mondiale et l’éruption s’est déroulée dans la plus grande discrétion à Hawaï. Les autorités américaines craignaient que l’armée japonaise puisse utiliser la forte lueur émise de nuit par la lave pour guider leurs avions de guerre vers l’archipel hawaiien. L’éruption a commencé sur la lèvre ouest de la caldeira sommitale du Mauna Loa, avant de migrer vers la Zone de Rift Nord-est.

La troisième plus longue éruption sommitale de l’histoire du Mauna Loa a commencé le 7 avril 1940. Des fontaines de lave de 20 à 60 mètres de hauteur ont tout d’abord jailli le long d’une ligne de fissures entre le centre de la caldeira sommitale et une zone sur le flanc sud-ouest du volcan. Le lendemain soir, l’éruption, qui a duré 134 jours, se limitait à la partie sud-ouest de la caldeira. Là, des bouches actives ont construit un cône de cendres et de projections de 100 mètres de haut, encore bien visible aujourd’hui sur le plancher de la caldeira.
Le 10 avril 1926, une éruption a commencé au sommet du Mauna Loa, mais des fissures ont rapidement migré sur 5 kilomètres le long de la Zone de Rift Sud-ouest du volcan. Trois jours plus tard, l’éruption a continué à migrer le long de la zone de rift ; trois bouches sont restées actives entre 2200 et 2400 mètres d’altitude et ont émis de volumineuses coulées de lave «a». La coulée  principale s’est rapidement dirigée vers la mer en détruisant au passage le petit village et le port de Ho`ōpūloa le 18 avril. Cette éruption de courte durée, mais destructrice, s’est terminée le 26 avril.
En 1896, une éruption sommitale de 16 jours a commencé le 21 avril.
Une autre éruption sommitale du Mauna Loa a commencé le 20 avril 1873 et a duré 18 mois.

Au moment où j’écris ces lignes, le Mauna Loa n’est pas en éruption. Son niveau d’alerte reste à ADVISORY (Vigilance conseillée). Des séismes de faible magnitude sont souvent enregistrés dans la partie supérieure du volcan, mais cela ne signifie pas qu’une éruption est sur le point d’avoir lieu. Les instruments montrent que la lente inflation sommitale se poursuit. La température des fumerolles et les concentrations de gaz dans la Zone du Rift Sud-Ouest restent stables.
Source: USGS / HVO.

——————————————-

On Hawaii Big Island, Mauna Loa (4,170 m) is one of the most active volcanoes on Earth. It has erupted, on average, every 5 to 6 years during the past 3,000 years.

Eruptions may occur in different areas of the volcano: at the summit, typically within the Moku‘āweoweo caldera, along one of the Northeast and Southwest Rift Zones, or from radial vents outside the caldera and rift zones on the volcano’s north and west flanks.

Since 1843, Mauna Loa has erupted 33 times. Of these historic eruptions, about half started at the summit and stayed in the summit area. 24% of the eruptions started at the summit and then, within minutes to days, migrated down the Northeast Rift Zone. 21% started at the summit and then migrated to lower elevations along the Southwest Rift Zone. Around 6% of the eruptions occurred at radial vents, but those historical eruptions also had a summit component.

The Hawaiian Volcano Observatory (HVO) is monitoring Mauna Loa 24 hours. To track changes on the volcano, an extensive network of instruments has been set up, including seismometers, tiltmeters, GPS stations and webcams, as well as temperature, SO2 and CO2 sensors. These instruments transmit real-time data to HVO 24 hours a day, seven days a week.

With volcanic eruptions and other geologic events, the past is the key to the future. So, to understand what might happen during the next Mauna Loa eruption, HVO looks to the past.

Given what we know about past Mauna Loa eruptions, HVO scientists expect that the next one will begin at the summit of the volcano. Unfortunately, it is not possible to know if it will stay at the summit, if it will migrate down one of the rift zones, or if it will result in a radial vent eruption. That will only be revealed as the eruption progresses.

As we are in April, it is interesting to observe the Mauna Loa eruptions that occurred during this month.

In 1942, an eruption began on April 26th. With World War II underway, news blackouts were imposed on Hawaii. American officials feared that if the eruption was publicized, the Japanese military could use the bright glow of lava at night to guide warplanes to the islands. The eruption began on the western rim of Mauna Loa’s summit caldera but then migrated down the volcano’s Northeast Rift Zone.

Mauna Loa’s third-longest summit eruption in recorded history began on April 7th, 1940. Lava fountains 20-60 metres high initially erupted along a line of fissures extending from near the centre of Mauna Loa’s summit caldera to an area down the volcano’s southwest flank. By the next evening, the eruption, which lasted 134 days, was restricted to the southwestern part of the caldera. There, active vents built a 100-metre high cinder-and-spatter cone, which remains a prominent landmark on the caldera floor today.

On April 10th, 1926, an eruption began at the summit of Mauna Loa, but fissures soon migrated 5 kilometres down the volcano’s Southwest Rift Zone. Three days later, the eruption migrated farther down the rift zone, with three main vents between 2,200 and 2,400 metre elevation, sending massive ‘a’ā flows downslope. The main flow rapidly advanced toward the sea, where it destroyed the small village and harbour at Ho`ōpūloa on April 18th. This short-lived, but destructive, eruption ended on April 26th.

In 1896, a 16-day-long summit eruption on Mauna Loa began on April 21st.

Another Mauna Loa summit eruption started on April 20th, 1873, and lasted 18 months.

As I am writing these lines, Mauna Loa is not erupting. Its alert level remains at ADVISORY. Small-magnitude earthquakes are often recorded beneath the upper elevations of the volcano, but they do not mean an eruption is about to take place. Monitoring data show that slow summit inflation continues and fumarole temperature and gas concentrations on the Southwest Rift Zone remain stable.

Source: USGS / HVO.

Vue aérienne du sommet du Mauna Loa (Crédit photo : USGS)

Dans la caldeira sommitale (Photo : C. Grandpey)

Caldeira sommitale avec le cône de 1940 (Photo: C. Grandpey)

Zones éruptives du Mauna Loa (Source: USGS / HVO)

Coulée de lave de 1926 (Photo: C. Grandpey)

En cas d’éruption…(Photo : C. Grandpey)

 

Péninsule de Reykjanes (Islande) : Au cas où…// Reykjanes Peninsula (Iceland) : Just in case…

Comme je l’ai écrit précédemment, la sismicité est toujours relativement importante sur la Péninsule de Reykjanes. Les scientifiques locaux ont renforcé la surveillance, en particulier celle concernant l’inflation du Mont Þorbjörn qui pourrait être causée par une accumulation de magma. .
De nouveaux instruments ont été installés par l’Icelandic Met Office (IMO) qui a désormais accès aux données fournies par d’autres équipements de surveillance. L’IMO prévoit d’installer deux GPS, un sur le Mt Þorbjörn et un autre à l’ouest de la montagne. L’inflation dans la région a atteint environ 3 cm, après avoir progressé de 3-4 mm par jour depuis le 21 janvier 2020
L’Icelandic Met Office possède un sismomètre à l’ouest de Grindavík, un autre à l’extrémité nord de la Péninsule de Reykjanes ainsi qu’à Vogar et Krýsuvík. De plus, l’IMO aura accès aux données de trois ou quatre sismomètres supplémentaires qui sont utilisés pour un projet de recherche indépendant.
Des images satellites ainsi que la technologie InSAR sont également utilisées pour contrôler et évaluer l’inflation.
L’Icelandic Met Office dispose d’un réseau GPS dans toute la péninsule afin de pouvoir mesurer les mouvements à la surface de la terre. Par ailleurs, il pourra accéder aux données GPS de l’Institut des Sciences de la Terre.
L’accélération de la gravité sera mesurée par l’Islande GeoSurvey (Ísor) pour déterminer si le magma est toujours en train de s’accumuler.
Si une éruption devait se produire, une station radar, située sur le plateau de Miðnesheiði, fournirait des informations sur les panaches de cendre volcanique. Une autre station radar, actuellement implantée ailleurs sur l’île, sera installée à Reykjanes. Enfin, un LiDAR, utilisé pour mesurer les concentrations de cendre volcanique dans l’air, sera installé dans la zone. En cas d’éruption, il sera important de décider si les aéroports peuvent rester ouverts.
Source: Iceland Monitor.

———————————————

As I put it before, seismicity is still significant on the Reykjanes Peninsula, and local scientists want to better monitor the situation, including the inflation of Mt Þorbjörn which might be caused by magma accumulation. .

Additional monitoring equipment has been installed by the Icelandic Met Office (IMO)  and access to data from other monitoring equipment will be obtained. IMO expects to install two GPS devices – one on Þorbjörn volcano, and another one west of the mountain. Inflation in the area has reached about 3 cm, after amounting to 3-4 mm a day since January 21st, 2020

The Icelandic Met Office has one seismometer west of Grindavík, another one on the northernmost tip of Reykjanes as well as in Vogar and Krýsuvík. In addition, the Met Office will obtain access to data from three or four additional seismometers that have been used for a special research project.

Satellite pictures as well as InSAR technology are used as well to assess the inflation.

The Icelandic Met Office has a system of GPS devices throughout Reykjanes, measuring movements on the earth’s surface. The Met Office will obtain access to GPS data from the Institute of Earth Sciences.

In addition, gravity acceleration of the earth will be measured by Iceland GeoSurvey (Ísor) to help determine whether magma is accumulating.

In xase of an eruption, a radar station, located on Miðnesheiði plateau, would provide information about volcanic ash plumes. Another radar station, currently located elsewhere, will be installed in Reykjanes. Finally, a LiDAR, used to measure volcanic ash in the air, will be installed in the area. It would be important when determining whether airports can remain open.

Source : Iceland Monitor.

Vue de Grindavík et du volcan Þorbjörn (Crédit photo mbl.is / Kristinn Magnússon)

La surveillance du volcan Taal (Philippines) // The monitoring of Taal Volcano (Philippines)

Comme je l’ai écrit précédemment, l’éruption du Taal est moins intense depuis quelques jours, mais ce n’est peut-être pas une bonne nouvelle. Les scientifiques surveillent la situation à distance, à l’aide d’instruments au sol et à bord de satellites, pour essayer de comprendre ce qui pourrait se passer dans les prochains jours.
L’image radar ci-dessous révèle que le lac qui se trouvait autrefois au cœur même de Volcano Island a maintenant presque complètement disparu. C’est l’interaction entre l’eau du lac et le magma qui a provoqué l’épisode explosif observé en début d’éruption. La ligne pointillée montre l’étendue du lac avant le début de l’éruption. La ligne continue montre le niveau du lac au moment de l’acquisition de l’image (16 janvier 2020 à 06h37 GMT).
Le lac Taal, beaucoup plus vaste, qui entoure l’édifice central n’a pas évolué. D’autres satellites analysent la déformation du sol autour du volcan. Cette technique interférométrique permet aux scientifiques de mieux comprendre comment le magma se déplace sous le volcan et ce que cela pourrait signifier pour l’activité future.
Les autorités philippines ont du mal à empêcher certaines personnes évacuées d’essayer de rentrer chez elles pour récupérer leurs biens et contrôler le bétail.
Les images satellites (voir ci-dessous) révèlent la quantité de cendre tombée sur la zone autour du volcan.
Source: BBC News.

————————————————–

As I put it before, the eruption of Taal Volcano has been less intense in the past few days, but this may not be good news. Scientists are monitoring the situation remotely, using ground and space instrumentation, to try to gauge what might happen next.

The data provided by the radar image below data reveals how the inner lake that once filled the very heart of the Taal Volcano Island has now almost completely disappeared. It was the interaction between this water and magma that drove the early explosive behaviour. The dashed line shows the extent of the lake before the onset of the eruption. The solid line traces the waterline at the time of the image acquisition (January 16th, 2020 at 06:37 GMT).

The much wider Lake Taal that surrounds the central edifice of the volcano remains in place.

Other radar satellites are looking at how the ground is deforming around the volcano. This interferometric technique can help scientists understand how magma is shifting below the volcano and what that might mean for future activity.

Philippine authorities have been struggling to keep some evacuated residents from trying to return to their homes to gather possessions and to check on livestock.

Satellite pictures (see below) reveal how much ash has fallen over the area around the volcano.

Source: BBC News.

Cet interférogramme du Taal montre la déformation du sol. Chaque frange de couleur correspond à un déplacement du sol de 2,8 cm. (Source : ESA)

 La photo de gauche montre le Taal en juillet 2019 ; celle de droite le volcan aujourd’hui (Source : CNES)

Collaboration entre observatoires aux Etats-Unis // Collaboration between observatories in the United States

Les observatoires volcanologiques à travers les États-Unis fonctionnent en étroite relation les uns avec les autres pour assurer une surveillance efficace des volcans actifs de ce pays. Cette collaboration est particulièrement évidente lors d’une crise, comme ce fut le cas au moment de l’éruption du Kilauea en 2018. Cette année-là, des scientifiques, des ingénieurs et des administratifs du Volcano Science Center de l’USGS se sont rendus sur la Grande Ile d’Hawaï pour épauler le HVO, l’observatoire des volcans d’Hawaï, et aider les volcanologues locaux à surveiller les coulées de lave et les effondrements qui se produisaient au sommet du Kilauea. Leur aide fut essentielle au bon fonctionnement du HVO 24 heures sur 24, 7 jours sur 7.
La collaboration entre les observatoires volcanologiques existe également quand il n’y a pas de crise éruptive majeure. Certains observatoires tels que l’Alaska Volcano Observatory (AVO) doivent effectuer toutes les missions sur le terrain en été car les conditions météorologiques sont difficiles et les conditions de travail dangereuses le reste de l’année. Comme la saison estivale est courte en Alaska, il est important de faire appel à l’aide temporaire d’autres États.
L’AVO a beaucoup de travail à effectuer au cours de la saison estivale. Le soleil est presque en permanence dans le ciel et les heures de clarté sont pleinement utilisées lorsque le temps le permet. L’aide d’autres observatoires permet aux équipes de terrain d’être renouvelées tous les mois afin d’éviter l’épuisement professionnel.

Comme il y a peu à faire en ce moment à Hawaii depuis la fin de l’éruption du Kilauea, plusieurs géologues du HVO se sont rendus en Alaska cet été pour aider à la mise en place de nouveaux sites de surveillance sismique et la mise à niveau d’instruments plus anciens sur les volcans des Aléoutiennes. Cela fait partie d’une campagne entreprise par l’AVO pour convertir l’ensemble de son réseau sismique analogique en un réseau entièrement numérique. Un tel travail est important car les instruments numériques peuvent détecter une gamme plus large de signaux sismiques. Le HVO est passé à un réseau numérique de 2014 à 2017.
Dans les Aléoutiennes, la mission a débuté à Adak, une île située à environ 1 700 kilomètres au sud-ouest d’Anchorage. L’île, qui abritait une base militaire de 1942 à 1997, est très paisible maintenant que la plupart des installations ont été abandonnées. Adak a servi de base aux opérations scientifiques. En effet, c’est un point central où les stations les plus éloignées sont raccordées au réseau de surveillance des volcans de l’Alaska.
A partir d’Adak, les scientifiques ont voyagé à bord d’un navire de recherche qui les a conduits à travers la Mer de Béring afin de visiter différents volcans. Une fois un volcan atteint, le capitaine jetait l’ancre dans un port bien protégé des tempêtes parfois très violentes qui surviennent dans les Aléoutiennes. À partir de là, les scientifiques ont pris l’hélicoptère embarqué sur le navire pour visiter les différents sites.
Les conditions météorologiques sont souvent difficiles dans les Aléoutiennes, ce qui rend la surveillance des volcans d’autant plus délicate. Un scientifique explique qu’il y avait un épais brouillard presque tous les matins. À chaque fois que le pilote de l’hélicoptère estimait qu’une fenêtre était utilisable, les hommes chargeaient le matériel et décollaient.
Une fois sur un volcan, les scientifiques se mettaient au travail. Il fallait d’abord installer un local de protection du matériel et creuser un trou de 2 mètres de profondeur pour y loger le sismomètre. Des panneaux solaires étaient ensuite installés sur le local avec à l’intérieur 15 batteries de 12 volts pour alimenter l’électronique qui numérise les signaux du sismomètre et envoie les données à Adak par radio. Le travail a toujours été une course contre le soleil, tout en luttant contre les conditions météorologiques en constante évolution.
Les hommes expliquent que le travail fut difficile mais enrichissant. La cohabitation permanente, l’élaboration de stratégies pour faire face aux éléments et le travail en équipe sur un volcan loin de tout ont permis de créer des liens solides entre le HVO et l’AVO. Cet état d’esprit se prolongera bien au-delà du travail sur le terrain dans les îles Aléoutiennes.
Source: USGS / HVO.

—————————————————

Volcano observatories across the United States work together to ensure efficient and thorough monitoring of the nation’s active volcanoes. This collaboration is particularly evident during a crisis, like the 2018 eruption of Kilauea Volcano. In 2018, scientists, field engineers, and administrative professionals from across the US Geological Survey Volcano Science Center came to the Island of Hawaii to assist the Hawaiian Volcano Observatory (HVO) in monitoring Kilauea’s Lower East Rift Zone (LERZ) lava flows and summit collapses. Their assistance was critical to maintaining HVO’s 24/7 response capability.

Collaboration between volcano observatories also occurs in non-crisis times. Some volcano observatories, such as the Alaska Volcano Observatory (AVO) must accomplish all field work in the summer because other times of the year can bring harsh weather and dangerous working conditions. Since the summer field season in Alaska is short, it is important to use temporary help from other states.

The field season for AVO staff is intense. The sun is almost always up, and the daylight hours are fully used when weather permits. Help from other volcano observatories allows field teams to be rotated every month to avoid burn-out.

As there is little to do in Hawaii with the end of the Kilauea eruption, several HVO staff travelled to Alaska this summer to help build new, and upgrade old, seismic monitoring sites on western Aleutian volcanoes. This is part of a big step that AVO is taking to convert their entire seismic network from an analog to an all-digital network. This is important because digital instruments can detect a wider range of earthquake signals. HVO made the transition to a digital network in 2014 to 2017.

The mission began on Adak, an island about 1,700 kilometres SW from Anchorage. The island, home to a military base from 1942 to 1997, is very peaceful now that most of the facilities have been abandoned. Adak was the base of operations, a central place where more-remote field stations tie into the Alaska volcano monitoring network.

From Adak, the scientists boarded a research vessel which took them across the Bering Sea in order to visit different volcanoes. Once the targeted volcano was reached, the captain dropped anchor in a harbour that would be mostly protected from potentially fierce Aleutian storms. From there, the scientists flew in the onboard helicopter to go back and forth from the ship to the different field sites.

Weather conditions are often difficult in the Aleutians, which makes the monitoring of the volcanoes all the more difficult. The scientific team explains that they were shrouded in fog nearly every morning. Whenever the helicopter pilot deemed that a safe window of opportunity had arrived, they loaded up and took off.

Once the geologists landed on a volcano, the real work began. They dug a foundation for the equipment hut and a 2-metre-deep hole where the seismometer would reside. Solar panels were mounted on the hut, which housed 15 12-volt batteries to power the electronics that digitizes signals from the seismometer and sends data back to Adak via radio. The work was always a race against the sun, while battling the ever-changing weather conditions.

The men explain that the work was difficult but rewarding. Living in close quarters, continuously strategizing to overcome the elements, and working as a team on a remote volcano, led to a bond between HVO and AVO that will last beyond the Aleutian field work.

Source : USGS / HVO.

Le Cleveland, le Semisopochnoi  ou le Veniaminof comptent parmi les volcans les plus actifs des Aléoutiennes, sans oublier l’Augustine… (Photos : AVO et C. Grandpey)

Les volcans des Cascades (Etats-Unis) sont sous-équipés // Cascade Range volcanoes (United States) are under-monitored

Ce n’est pas une nouveauté : on sait depuis longtemps que Donald Trump se moque éperdument de tout ce qui a trait à la Nature et il a toujours exprimé des doutes sur le changement climatique.

En ce qui concerne les volcans, les scientifiques américains attirent depuis longtemps l’attention du public et du gouvernement sur le sous-équipement de certains volcans de la Chaîne des Cascades dont les éruptions pourraient avoir des conséquences désastreuses pour les localités situées à proximité. Les sismologues de la région viennent de nouveau lancer un appel pour que la situation change ; ils affirment une fois de plus que la plupart des volcans du nord-ouest du Pacifique sont très mal surveillés. Cela fait suite à un récent rapport paru dans le New York Times où l’on peut lire que les États-Unis négligent beaucoup trop les volcans les plus dangereux du pays.
Les scientifiques expliquent qu’une éruption comme celle du Mont St Helens en 1980 est susceptible de se produire de notre vivant. Cinq volcans sont prioritaires dans la Chaîne des Cascades, à l’intérieur de l’Etat de Washington: le Mont Baker, Glacier Peak, le Mont. Rainier, le Mont Adams et le Mont St. Helens. Le Mont Hood, dans l’Oregon, constitue lui aussi une menace imminente pour les localité des environs.
On ne sait pas prévoir les séismes, mais les scientifiques peuvent fournir des indications et prévenir lorsqu’un volcan est sur le point d’entrer en éruption, même si la prévision volcanique parfaite n’est pas pour demain.
Il existe un nombre suffisant de stations de surveillance sur le Mont St. Helens, mais beaucoup moins sur les autres volcans de l’Etat de Washington. Ainsi, il n’y a qu’une station sur Glacier Peak. Le directeur du Pacific Northwest Seismic Network (réseau sismique du Pacifique nord-ouest)  a déclaré avoir besoin de 12 à 20 systèmes de surveillance sur plusieurs volcans dangereux, tels que le Mont. Rainier.
En mars 2019, le Congrès a adopté une loi débloquant 55 millions de dollars pour garantir un meilleur suivi des volcans à l’échelle nationale. Le problème, c’est que le gouvernement n’a pas encore distribué tout cet argent.
Des plans sont en train d’être établis pour déterminer comment on pourra mettre en place l’ensemble de ces nouveaux dispositifs de surveillance si l’argent est alloué en 2020. Néanmoins, même si le Congrès octroie de l’argent pour installer de nouvelles stations sur les volcans, il faudra des années pour se débarrasser de toutes les formalités administratives nécessaires pour obtenir l’autorisation d’installer ces stations sur des terres protégées par les lois sur l’environnement.
Source: The Seattle Times.

++++++++++

En complément de cette note, j’ai lu que l’Observatoire Volcanologique de la Chaîne des Cascades, géré par l’USGS, venait d’installer trois nouvelles stations de surveillance sur les flancs du Mont Hood.
Ces stations amélioreront la capacité des scientifiques à détecter tout changement dans l’activité sismique, la déformation du sol ou les émissions de gaz susceptibles de signaler une augmentation de l’activité volcanique et donc un danger pour les personnes et les biens.
Les nouveaux sites de surveillance du Mont Hood comprennent trois ensembles de stations sismiques et GPS situées à moins de 4 kilomètres du sommet. Une station de mesure en continu des gaz volcaniques au sol sera installée ultérieurement. Ces stations auront un impact minimal sur l’environnement. Elles sont situées à l’écart des sentiers et peintes pour se fondre dans l’environnement.
Des informations sur l’historique des éruptions du Mont Hood et les dangers qui s’y rapportent sont disponibles à l’adresse : https://volcanoes.usgs.gov/volcanoes/mount_hood/mount_hood_geo_hist_93.html.

Les données de surveillance des stations de surveillance du Mont Hood sont disponibles à l’adresse :

https://volcanoes.usgs.gov/volcanoes/mount_hood/monitoring_map.html.

Source: USGS.

———————————————–

It has been known for a long time. Donald Trump does not care a straw about Nature and has long expressed his doubts about climate change. As far as volcanoes are concerned, US scientists have alerted for a long time to the under equipment of some of the Cascade Range volcanoes whose eruptions might have disastrous consequences for nearby communities. Local seismologists have again been calling for change, saying most volcanoes in the Pacific Northwest are severely under-monitored. This comes after a recent report from the New York Times that said that the U.S. is doing a poor job of tracking the country’s most dangerous volcanoes.

Scientists say another eruption, like Mt. Saint Helen’s blast in 1980 might happen in our lifetime. There are five major volcanoes in the Washington Cascade Range: Mt. Baker, Glacier Peak, Mt. Rainier, Mt. Adams and Mount St. Helens. Mt. Hood in Oregon is also a looming threat to the surrounding communities.

Earthquakes which are currently totally impossible to predict, but scientists can give some advance notice when a volcano is about to erupt, although perfect volcanic prevision is still far ahead.

There is an adequate number of monitoring stations on Mount St. Helens, but far fewer for the other Washington volcanoes. In fact, there is just one station on Glacier Peak. The Director of the Pacific Northwest Seismic Network says they need 12-20 tracking devices on many of the dangerous volcanoes like Mt. Rainier.

Congress passed an act in March 2019 that authorized 55 million dollars with the aim of ensuring volcanoes are better tracked nationwide. However, the government has not invested all of that money yet.

Plans are being made right now to determine how to implement all of these new monitoring devices if the money happened to be allotted in 2020. Even still, if Congress grants the money to build more monitoring stations on volcanoes, it will take years to get through all the red tape to get approval to put these stations on protected wilderness land.

Source: The Seattle Times.

++++++++++

As a complement to this post, I have read that the USGS Cascades Volcano Observatory has just installed three new volcano monitoring stations on the flanks of Mount Hood.

These stations will improve the ability scientists to detect any changes in earthquake activity, ground deformation or volcanic gas emissions that may signal an increase in volcanic activity and a subsequent danger to people and property.

The new Mount Hood monitoring sites will consist of three sets of co-located seismic and GPS stations situated within 4 kilometres of the summit. One ground-based continuous volcanic gas monitoring station will be installed at a later date. The stations will be constructed with minimal impact on the environment: they will be located away from trails and painted to blend in with the surroundings.

Information about Mount Hood’s eruption history and hazards is available at https://volcanoes.usgs.gov/volcanoes/mount_hood/mount_hood_geo_hist_93.html.

Monitoring data from Mount Hood stations is available either at   https://volcanoes.usgs.gov/volcanoes/mount_hood/monitoring_map.html

Source : USGS.

°°°°°°°°°°

Voici des images des volcans prioritaires dans la Chaîne des Cascades:

Mont Baker

Glacier Peak

Mont Rainier

Mont Adams

Mont St Helens

Mont Hood

(Photos: C. Grandpey)

Nouvelles recherches sur l’histoire éruptive de Yellowstone // More research about Yellowstone eruptive history

La surveillance des volcans aux États-Unis est une priorité pour l’USGS qui est en train de mettre en place un système d’alerte volcanique à l’échelle du pays. Le système permettra aux scientifiques de mieux contrôler les volcans dangereux aux États-Unis en modernisant et en étendant les réseaux de surveillance existants, notamment à l’aide de sismomètres large bande, de récepteurs GPS effectuant des mesures en continu et en temps réel, et de capteurs de gaz volcaniques. De nouveaux réseaux sont également en train d’être installés sur des volcans mal surveillés jusqu’à présent, comme le Mont Baker dans l’Etat de Washington. Yellowstone fait partie de ces efforts pour améliorer la surveillance des volcans américains.
La plupart des articles de presse sur Yellowstone affirment que le volcan est en retard dans son processus éruptif et qu’une éruption majeure pourrait survenir à court terme. Le super volcan de Yellowstone a provoqué une éruption cataclysmale il y a environ 613 000 ans. Il a alors a rejeté environ 1 000 kilomètres cubes de matériaux, ce qui représente plus du double du volume du Lac Érié et 2 500 fois le volume de matériaux émis pendant l’éruption du Mont St. Helens en 1980.
Depuis la dernière super éruption, le volcan de Yellowstone a connu de nombreuses éruptions de moindre importance avec émissions de coulées de rhyolite. Les scientifiques de l’USGS essayent maintenant de mieux appréhender ces événements de moindre envergure afin de comprendre les dangers liés au système magmatique du volcan de Yellowstone.
Selon le California Volcano Observatory, le super volcan a connu au moins 28 éruptions de rhyolite au cours des 610 000 dernières années. Ce ne sont pas des éruptions mineures car elles ont donné naissance à des coulées de lave avec des volumes allant de 0,42 à 71 km3. En comparaison, le Mont St. Helens a vomi 0,25 kilomètre cube de matériaux en 1980.
Les scientifiques espèrent savoir si ces coulées de lave ont été produites lentement au fil du temps, ou si elles proviennent de courtes éruptions réparties sur un bref laps de temps. Si les éruptions sont regroupées dans le temps, la survenue d’une première éruption peut indiquer que d’autres peuvent se produire à brève échéance.
Les chercheurs ont utilisé une technique de datation basée sur la désintégration du potassium 40 radioactif en argon 40 radioactif ; elle permet de savoir à quel moment la roche s’est cristallisée et donc de calculer l’époque à laquelle elle est apparue.
En analysant les roches volcaniques de Yellowstone, les chercheurs ont découvert que les coulées de rhyolite étaient «fortement concentrées dans le temps», avec des éruptions qui se sont produites par épisodes. Au cours de l’une des phases d’activité, il y a eu sept éruptions sur une période d’environ 1 000 ans. L’équipe scientifique espère maintenant affiner ces recherches et les intégrer dans l’évaluation des risques volcaniques à Yellowstone.
Source: USGS, Newsweek.

—————————————————

Monitoring volcanoes across the U.S. is a priority for the USGS, and the agency is currently in the process of establishing a National Volcano Early Warning System. The system will help scientists better monitor all dangerous volcanoes in the U.S. by modernizing and expanding its networks using broadband seismometers, real-time continuous GPS receivers and volcanic gas sensors, among other technologies. New networks are also being introduced to poorly monitored volcanoes like Mount Baker in Washington. Yellowstone is part of these efforts to better monitor U.S. volcanoes.

Most press articles about Yellowstone affirm that the volcano is overdue in its eruptive history and that a major eruption might occur in the short term. The Yellowstone supervolcano produced a huge eruption around 613,000 years ago, when it ejected about 1,000 cubic kilometres of material. This is more than double the volume of Lake Erie, and 2,500 times bigger than the 1980 eruption of Mount St. Helens.

Since that time, the Yellowstone volcano has produced many more smaller eruptions of rhyolite lava flows. USGS scientists are now working to better understand these smaller events in order to understand the hazards posed by the magmatic system at Yellowstone.

According to the California Volcano Observatory, the super volcano has produced at least 28 rhyolite eruptions over the last 610,000 years. These were not small eruptions as they produced lava flows ranging from 0.42 to 71 cubic kilometres. In comparison, Mount St. Helens produced 0.25 cubic kilometres of material.

What scientists are hoping to work out is whether these lava flows were produced slowly over time, or whether it came from short, clustered eruptions. If eruptions are clustered in time then the occurrence of one eruption may indicate that the next eruption may follow closely.

Researchers used a dating technique based on the decay of the radioactive potassium-40 to radioactive argon-40, which can tell them when the rock crystalized, allowing them to work out time of origin.

By analyzing the volcanic rocks at Yellowstone, researchers discovered that rhyolite lava flows were “highly clustered in time,” with eruptions taking place in episodes. In one phase of activity there were seven eruptions over a period of around 1,000 years. The scientific team now hopes to further refine these episodes and build this into volcanic hazard assessments for Yellowstone.

Monitoring volcanoes across the U.S. is a priority for the USGS, and the agency is currently in the process of establishing a National Volcano Early Warning System. The system will help scientists better monitor all dangerous volcanoes in the U.S. by modernizing and expanding its networks using broadband seismometers, real-time continuous GPS receivers and volcanic gas sensors, among other technologies. New networks are also being introduced to “under-monitored” volcanoes like Mount Baker in Washington.

“Improvements to volcano monitoring networks allow the USGS to detect volcanic unrest at the earliest possible stage,” Tom Murray, the USGS Volcano Science Center director, said in a statement. “This provides more time to issue forecasts and warnings of hazardous volcanic activity and gives at-risk communities more time to prepare.”

Source : USGS, Newsweek.

Coulées de lave et dépôts de rhyolite à Yellowstone (Photos: C. Grandpey)

Mayotte : Enfin ! // Mayotte : At last !

On va peut-être connaître enfin la cause de la sismicité qui affecte et angoisse Mayotte depuis un an ! En effet, un volcan a été découvert à 50 km à l’Est de l’île à 3500m de profondeur sous la mer.

Quatre ministères qui ont fait état le 16 mai 2019 de cette découverte, en indiquant que « le gouvernement est pleinement mobilisé pour approfondir et poursuivre la compréhension de ce phénomène exceptionnel et prendre les mesures nécessaires pour mieux caractériser et prévenir les risques qu’il représenterait. »

En juin 2018, une mission scientifique avait été lancée pour réaliser une campagne océanographique des environs à bord du navire Marion Dufresne. Différents organismes français comme le CNRS, l’IPG, ou le BRGM ont mis en évidence un nouveau volcan sous-marin, à 50 km de Petite-Terre.

Ce volcan présente une hauteur de 800 mètres et une base de 4 à 5 km de diamètre. Le panache de fluides volcaniques de 2 km de hauteur n’atteint pas la surface de l’eau. Les émanations de gaz constatées sur le littoral de Petite-Terre par la population sont, selon la mission, un signe habituel rencontré dans ce type d’activité volcanique et feront l’objet d’études spécifiques.

L’instrumentalisation marine va permettre de mieux localiser l’essaim sismique qui affecte Mayotte. L’État indique dans un communiqué qu’il adapte depuis le début de l’épisode sismique, « en fonction de l’éclairage des scientifiques, les mesures de surveillance et de prévention pour faire face à ce phénomène géologique exceptionnel qui impacte la population mahoraise et plus largement  cette partie de l’océan indien ».

Un plan d’action a été mis en place. Son but est, entre autres, de compléter dans les meilleurs délais les dispositifs de surveillance et instruments de mesure pour suivre en continu le phénomène. Il prévoit de procéder immédiatement à une actualisation de la connaissance des risques que présente ce phénomène et les impacts potentiels pour le territoire mahorais. La population sera régulièrement informée, en lien avec les élus locaux.

Source : Clicanoo , Journal de l’Ile de la Réunion.

————————————————–

We will perhaps finally know the cause of the seismicity that has affected and worried Mayotte for a year! Indeed, a volcano was discovered 50 km east of the island, 3500 metres deep under the sea.
Four ministries reported on May 16th, 2019 that « the government is fully mobilized to deepen and continue to understand this exceptional phenomenon and take the necessary measures to better characterize and prevent the risks it would represent. »
In June 2018, a scientific mission was launched to carry out an oceanographic campaign of the area, aboard the ship Marion Dufresne. Various French organizations such as CNRS, IPG, or BRGM have discovered a new submarine volcano, 50 km from Petite-Terre.
This volcano has a height of 800 metres and a base of 4 to 5 km in diameter. The plume of volcanic fluids 2 km in height does not reach the surface of the water. The gas emissions observed on the shore of Petite-Terre by the population are, according to the mission, a usual sign met in this type of volcanic activity and will be the object of specific studies.
Marine instrumentalization will help to better locate the seismic swarm that affects Mayotte. The government indicates in a statement that it has adapted since the beginning of the seismic episode, « according to the scientists’ recommendations, the measures of surveillance and prevention to face this exceptional geological phenomenon which impacts the Mahoran population and more widely this part of the Indian Ocean. »
An action plan has been put in place. Its aim is, among other things, to complete as quickly as possible monitoring devices and measuring instruments to continuously monitor the phenomenon. It plans to immediately update the knowledge of the risks posed by this phenomenon and the potential impacts on the Mahorese territory. The population will be regularly informed, in connection with local officials.
Source: Clicanoo, Journal de l’Ile de la Réunion.

Source: IPGP