Contrôle de la déformation du Kilauea pendant la dernière éruption // Monitoring the deformation of Kilauea during the last eruption

L’Observatoire des Volcans d’Hawaii, le célèbre HVO, géré par l’’USGS, dispose d’un vaste réseau d’instruments permettant de surveiller les déformations du sol provoquées par les  mouvements du magma dans le sous-sol. Cependant, ce réseau s’est avéré insuffisant pour mesurer ces déformations pendant la dernière éruption et l’Observatoire a reçu le soutien d’autres organismes scientifiques.
Le GPS (Global Positioning System) est utilisé pour surveiller les variations de surface du sol sur la Grande Ile d’Hawaï depuis la fin des années 1980. Plusieurs dizaines de stations GPS permanentes sont disséminées sur l’île et communiquent leurs données au HVO via des liaisons radio. Chaque jour, la position tridimensionnelle d’une station GPS est calculée à partir de ces données. La précision est généralement supérieure au centimètre.
En plus des stations GPS permanentes, fixées sur un support ancré au sol, le HVO effectue des mesures à partir d’un ensemble de repères en utilisant des installations portables. Lors d’une éruption, ces stations temporaires offrent une couverture supplémentaire dans des zones importantes.
Le problème avec l’éruption dans la Lower East Rift Zone (LERZ), qui a débuté le 3 mai 2018, c’est qu’elle a affecté une grande partie du Kilauea. Dans les jours qui ont suivi l’ouverture de la première fracture, toutes les stations GPS du HVO ont été sollicitées, mais il restait des zones non couvertes dans des endroits où la surveillance de la déformation du sol était essentielle.
Pour compenser ce manque de surveillance, l’University Navstar Consortium, un organisme basé dans le Colorado et spécialisé dans l’utilisation du GPS pour mesurer la déformation de la surface de la Terre, a pu fournir des équipements supplémentaires au HVO. La zone à contrôler comprenait la partie occidentale du flanc sud du Kilauea et le HVO a pu recueillir davantage d’informations sur les conséquences du séisme de magnitude 6,9 ​​survenu le 4 mai 2018.
D’autres stations GPS ont été déployées le long de la Middle East Rift Zone du Kilauea, entre le Pu’uO’o et l’Heiheiahulu, afin de mesurer la déformation des fractures provoquée par l’évacuation du magma de cette zone et sa migration vers les Leilani Estates. D’autres stations temporaires ont été déployées autour de la caldeira du Kilauea pour mieux mesurer la déflation et l’affaissement du sommet.
Les satellites représentent un autre outil majeur utilisé par le HVO pour mesurer la déformation de la surface du sol. L’interférométrie radar à synthèse d’ouverture (InSAR) est une technologie qui utilise deux images radar satellitaires acquises au même point dans l’espace, mais à des moments différents. À partir de ces images, on peut générer une carte montrant les déformations de la surface de la Terre au cours d’une période donnée.
L’Agence Spatiale Européenne (ESA) exploite deux satellites Sentinel-1. Les données InSAR fournies par ces satellites sont généralement disponibles avec un cycle de 12 jours. Cependant, afin de mieux surveiller l’éruption et l’effondrement du sommet du Kilauea, l’ESA a été en mesure de fournir les données InSAR tous les six jours.
Le système de satellites Cosmo-SkyMed est exploité par l’Agence Spatiale Italienne (ASI) et comprend quatre satellites. L’ASI a veillé à ce que les quatre satellites acquièrent des images haute résolution du sommet de Kilauea tout au long des événements d’effondrement, avec des données InSAR pour chaque journée!
Les nombreux passages des satellites SAR au-dessus du Kilauea furent particulièrement utiles pour les mises à jour régulières et les vues à grande échelle. Cela a permis au HVO de contrôler d’infimes déformations de la surface qui auraient pu autrement passer inaperçues. Les données satellitaires ont également été utilisées pour produire des animations de l’effondrement du sommet.
Source: USGS / HVO.

+++++++++++++++

Dans sa mise à jour du 10 septembre, HVO indique qu’un petit effondrement s’est produit au fond de la Fracture n° 8 ; il a laissé apparaître de l’incandescence. Toutefois, aucune coulée de lave n’a été observée.
De petits effondrements continuent de se produire dans le cratère du Pu’uO’o en générant des panaches de poussière de couleur marron. Les tiltmètres positionnés sur le Pu’uO’o et le long de l’East Rift Zone montrent une légère déflation.

La sismicité et la déformation du sol restent faibles au sommet du Kilauea.
Les émissions de SO2 sont globalement très faibles sur le volcan.
Même si le HVO continue de dire que l’éruption pourrait recommencer à tout moment, tous les paramètres tendent à confirmer qu’elle est terminée. L’autorisation donnée aux habitants des Leilani Estates de regagner leurs habitations va dans ce sens. L’incandescence observée au fond de la Fracture n° 8 est probablement provoquée par une certaine quantité de lave résiduelle encore présente dans le réseau de tunnels.

———————————————–

The USGS Hawaiian Volcano Observatory (HVO) has an extensive network of instruments that allows to monitor how the ground deforms due to magma moving underground. However, this network was too limited to monitor ground deformation during the last eruption and the Observatory received the support of scientific colleagues.

The Global Positioning System (GPS) has been used to monitor surface motion on the Island of Hawaii since the late 1980s. Several dozen permanent GPS stations are scattered across the island, and all communicate data to HVO via radio links. Each day, an independent solution for the 3-dimensional position of a GPS station is calculated from these data. The accuracy of the GPS station positions is typically better than a centimetre.

In addition to permanent GPS stations, which are affixed to a monument anchored to the ground, HVO also regularly measures the positions of a set of benchmarks using portable installations. During an eruption, these temporary stations provide extra coverage in important areas.

The problem with the Lower East Rift Zone ( LERZ) eruption, which began on May 3rd, 2018, was that it involved a large portion of Kilauea volcano. Within days of the first fissure opening, all HVO GPS equipment was deployed, but gaps remained in places where ground deformation monitoring was critical.

Fortunately, the University Navstar Consortium, a Colorado-based organization that specializes in using GPS to measure deformation of Earth’s surface, was able to provide additional equipment to expand the area that HVO could monitor. This expanded area included the western side of Kilauea’s south flank, which enabled HVO to gather more insights on the after-effects of the M 6.9 earthquake that occurred on May 4th, 2018.

Additional GPS stations were deployed along Kilauea’s Middle East Rift Zone, from Pu’uO’o to Heiheiahulu, to measure rift deformation caused by magma draining from the area and migrating to Leilani Estates. Other temporary stations were deployed around the Kilauea caldera to give better measurements on summit deflation and collapse.

Satellites were another major tool used by HVO to measure surface deformation. Interferometric Synthetic Aperture Radar (InSAR) is a technique that uses two satellite radar images acquired from about the same point in space at different times. From these images, a map can be produced to show how the Earth’s surface has deformed during the time spanned.

The European Space Agency (ESA) operates a two-satellite constellation called Sentinel-1. InSAR data from Sentinel-1 are typically available with a 12-day repeat cycle. However, in response to Kilauea’s eruption and summit collapse events, ESA provided InSAR results every six days.

The Cosmo-SkyMed satellite system is operated by the Italian Space Agency (ASI) and consists of four satellites. ASI made sure that all four satellites acquired high-resolution views of Kilauea’s summit throughout the collapse events, with individual InSAR results spanning as little as one day!

The increased frequency of SAR satellite passes was especially valuable for regular updates and broad-scale views of Kilauea’s summit, allowing HVO to monitor subtle surface deformation that might otherwise have gone undetected. The data were also used to produce animations of the summit collapse.

Source: USGS / HVO.

++++++++++++++++

In its update of September 10th, HVO indicates that “a small collapse pit formed within the Fissure 8 cone over the past day, exposing hot material underneath and producing an increase in incandescence. No surface flow was associated with this event.”

Small collapses continue to occur at Pu’uO’o, producing visible brown plumes. Tiltmeters on the vent and along the East Rift Zone are showing a slight decrease in inflationary tilt.  Seismicity and ground deformation remain low at the summit of Kilauea.

SO2 emission rates are globally very low on the volcano.

Even though HVO keeps saying that the eruption might start again at any moment, all parameters tend to confirm it is over. This is confirmed by the authorisation given to Leilani Estates residents to go back to their homes. The incandescence in Fissure 8 is probably caused by some residual lava still present in the tunnel network.

 

Profil de déformation du sommet du Kilauea et du Pu’uO’o avant et après le début de la dernière éruption (Source: USGS / HVO)

Publicités

Mesure de la déformation du sol sur le Mauna Loa et le Kilauea (Hawaii) // Measuring ground deformation on Mauna Loa and Kilauea (Hawaii)

La déformation du sol est l’un des paramètres qui permettent de mieux comprendre l’activité volcanique. Il est particulièrement révélateur des modifications de volume du magma à l’intérieur d’un volcan. Par exemple, à Hawaii, les épisodes d’inflation et de déflation du Kilauea coïncident généralement avec le comportement du lac de lave dans le cratère de l’Halema’uma’u. L’élévation de la surface du sol correspond à  une accumulation de magma dans les zones de stockage en profondeur tandis que l’affaissement peut indiquer la vidange d’une poche ou chambre magmatique. Les variations rapides de déformation précèdent ou accompagnent souvent une nouvelle activité éruptive.
Sur la Grande Ile d’Hawaii, on mesure la déformation principalement à l’aide de trois techniques: les tiltmètres, le GPS (Global Positioning System) et l’InSAR (Interferometric Synthetic Aperture Radar).
– Une vingtaine de tiltmètres sont actuellement répartis sur les volcans Kilauea et Mauna Loa. Le HVO a mis en place des alarmes automatisées qui informent les scientifiques des variations inclinométriques en temps réel, celles susceptibles d’annoncer une éruption imminente.
– Environ 70 stations GPS sont réparties sur la Grande Île, mais elles se concentrent sur le Kilauea et le Mauna Loa, les deux volcans hawaïens les plus actifs. Ces stations GPS enregistrent continuellement le mouvement de la surface du sol en trois dimensions. Les positions quotidiennes moyennes et précises des sites GPS fournissent une bonne indication sur le long terme de la déformation au sol, et donc du comportement des réservoirs magmatiques.

– L’InSAR est une technique spatiale qui compare les données radar recueillies à partir de satellites à différents moments. Les variations de distance entre le satellite et le sol proviennent des déplacements de la surface entre les passages des satellites. Les données InSAR fournissent des « instantanés » exceptionnellement clairs et précis montrant la déformation du sol, mais seulement lorsque les satellites passent au-dessus de la zone concernée (en moyenne, environ une fois par semaine).
En utilisant cet ensemble de données, les scientifiques du HVO ont pu suivre les variations d’inflation du Kilauea et du Mauna Loa au cours des dernières années.
La chambre magmatique du Mauna Loa a commencé à se remplir – et donc à gonfler – immédiatement après le dernière éruption de 1984. L’inflation a ensuite montré des épisodes de hausse et de baisse au cours des 30 années suivantes. L’épisode d’inflation le plus récent et prolongé du Mauna Loa a commencé en 2014, accompagné d’un nombre conséquent de séismes superficiels.
Le Kilauea a également gonflé ces dernières années. Comme pour le Mauna Loa, l’inflation du Kilauea se produit principalement au niveau d’un système de stockage magmatique situé sous la caldeira sommitale et la partie supérieure de la zone de rift sud-ouest (SWRZ). Mais ce réservoir magmatique est plus circulaire et centré sous la partie sud de la caldeira du Kilauea. Comme je l’ai indiqué précédemment, de petits événements d’inflation et de déflation (DI events) sont enregistrés sur le Kilauea de manière assez fréquente ; ils viennent se superposer à l’inflation globale et entraînent des variations assez spectaculaires du niveau du lac de lave sommital, dans le cratère de l’Halema’uma’u.
Il convient de noter que le HVO a modifié son site Web pour que les visiteurs puissent suivre les variations sur les stations GPS et inclinométriques en quelques clics de souris.
https://volcanoes.usgs.gov/volcanoes/kilauea/monitoring_deformation.html

Source: USGS / HVO.

—————————————–

Ground deformation is one of the parameters that help better understand volcanic activity. It is especially indicative of changes in the volume of magma within a volcano For instance, at Hawaii, the inflation and deflation episodes of Kilauea Volcano usually coincide with the behaviour of the lava lake within Halema’uma’u Crater. Uplift of the ground surface suggests accumulation of magma in underground storage areas, while subsidence can indicate magma drainage. Rapid changes in the rate of deformation often precede or accompany new eruptive activity.

On Hawaii Big Island, deformation is measured primarily with three techniques: tiltmeters, GPS (Global Positioning System), and InSAR (Interferometric Synthetic Aperture Radar).

– About 20 tiltmeters are currently installed on Kilauea and Mauna Loa volcanoes. The Hawaiian Volcano Observatory (HVO) has implemented automated alarms that notify scientists of real-time changes in tilt that might reflect the impending onset of an eruption.

– About 70 GPS stations are spread across the Big Island, but are focused on Kilauea and Mauna Loa, currently the two most active Hawaiian volcanoes. These GPS stations continuously record motion of the ground surface in three dimensions. Precise, daily average positions of GPS sites provide an important long-term record of ground deformation that indicates the locations and conditions of magma reservoirs.

InSAR is a space-based technique that compares radar data collected from satellites at different times. Variations in the distance between the satellite and the ground are caused by surface displacements between the times of the satellite overpasses. InSAR data provide exceptionally clear “snapshots” of deformation, but only when satellites are overhead (on average, about once a week).

Using this combination of datasets, HVO scientists have tracked inflation of both Kilauea and Mauna Loa over the past several years.

Mauna Loa began refilling with magma – and inflating – immediately after the most recent eruption in 1984. Inflation then waxed and waned over the next 30 years. The most recent and ongoing episode of Mauna Loa inflation started in 2014, with significantly increased numbers of shallow earthquakes.

Kilauea has also been inflating in recent years. Similar to Mauna Loa, inflation of Kīlauea is mainly occurring in a magma storage system beneath the volcano’s summit caldera and upper Southwest Rift Zone. But this magma reservoir is more circular and centered beneath the south part of Kilauea’s caldera. As I put it above, small, deflation-inflation events in Kilauea tilt that occur over a few days to a week are superimposed on this overall inflation and result in rather dramatic fluctuations in the summit lava lake level.

It should be noted that HVO has modified its website sothat visitors can now track changes at any of HVO’s tilt and GPS stations on the island with a few mouse clicks.

https://volcanoes.usgs.gov/volcanoes/kilauea/monitoring_deformation.html

Source: USGS / HVO.

Exemples de données consultables sur le site Web du HVO.

L’InSAR et le Kilauea (Hawaii)

drapeau-francaisL’interférométrie radar à synthèse d’ouverture (InSAR) est en train de devenir un élément clé en volcanologie. J’ai déjà écrit plusieurs notes à propos de cette nouvelle technologie sur ce blog entre 2013 et 2015.
L’InSAR a récemment prouvé son efficacité dans la compréhension des différents épisodes d’intrusion magmatique dans la caldeira sud du Kilauea au cours du printemps 2015. En avril, le réservoir superficiel sous la caldeira du Kilauea a commencé à gonfler rapidement, provoquant une hausse du niveau du lac de lave et son débordement sur le plancher du cratère de l’Halema’uma’u.
Le 11 mai, les inclinomètres ont commencé à enregistrer une rapide phase de dégonflement, accompagnée de la baisse de niveau du lac de lave et d’une augmentation de la sismicité dans la caldeira sud, que ce soit en fréquence ou en magnitude des événements. En une seule journée, on a pu parfaitement observer l’inflation dans la caldeira sud sur le réseau de capteurs GPS ainsi que sur les inclinomètres.
Les images InSAR illustrant le début de cet événement montrent dans le moindre détail le soulèvement associé à l’inflation initiale et révèlent en même temps la complexité de la forme du réservoir magmatique. Les images traduisent également la transition vers la déflation de l’Halema’uma’u et l’inflation de la caldeira sud.

INSAR

(Source: HVO)

L’interférogramme en arc-en-ciel ci-dessus montre parfaitement la forme et l’importance du soulèvement au cours de cet événement (entre le 11 avril et le 22 mai). L’image révèle que le soulèvement coïncide avec l’emplacement d’un réservoir magmatique – déjà identifié par les scientifiques – sous la caldeira sud. C’est aussi pour les chercheurs du HVO la première preuve indiquant un transfert de magma rapide entre les réservoirs magmatiques.
Les couleurs de l’arc-en-ciel représentent le changement de distance entre le sol et le satellite InSAR entre deux orbites effectuées par ce dernier. Chaque cycle de couleurs, du magenta au bleu, indique un déplacement égal à la moitié de la longueur d’onde du radar satellitaire. Le motif se répète, et en comptant tous les arcs-en-ciel, on obtient la totalité du déplacement
Au cours des deux dernières décennies, l’augmentation du nombre de satellites disponibles a amélioré les possibilités offertes par l’InSAR aux chercheurs du HVO. Ils disposent désormais d’une plus grande variété de longueurs d’ondes. Les ondes courtes permettent d’améliorer la résolution, tandis que les ondes plus longues autorisent une meilleure pénétration à travers la végétation. Le HVO utilise les données fournies par de nombreux satellites InSAR pour étudier les mouvements de sol sur les volcans d’Hawaï, y compris les satellites lancés par l’Agence Spatiale Européenne, le Canada, l’Allemagne et le Japon.
Les États-Unis s’apprêtent à lancer leur premier satellite InSAR. En 2014, la NASA a annoncé un projet conjoint avec l’Indian Space Research Organization visant à construire et lancer un satellite InSAR multi-longueurs d’ondes spécifiquement conçu pour l’étude des risques naturels. Le lancement du satellite est prévu pour 2020.
Source: HVO.

————————————–

drapeau-anglaisInterferometric Synthetic Aperture Radar (InSAR) is becoming a key tool in volcanology. I have already written several notes about this new technology on this weblog between 2013 and 2015.
InSAR recently proved important in understanding the various episodes of Kilauea’s south caldera intrusion during spring 2015. In April, the shallow reservoir beneath the Kilauea caldera began to rapidly inflate, causing the lava lake to rise to the point where it overflowed onto the floor of Halema’uma’u Crater.
On May 11th, tiltmeters began recording rapid deflation, the lava lake level dropped and earthquakes in the south caldera increased in rate and magnitude. Within a day, inflation in the south caldera could clearly be seen on the network of continuous GPS instruments and tiltmeters.
InSAR images spanning the beginning of this event show the uplift associated with the initial inflation in great detail, revealing a complexity to the shape of the reservoir. The images also capture the transition to deflation at Halema’uma’u and south caldera inflation.
As shown in the accompanying image (see above), the rainbow pattern seen in the interferogram beautifully captured the shape and extent of ground uplift during this event (from April 11th to May 22nd). This image shows that the uplift coincides with the location of a known south caldera storage reservoir. This is the first evidence that HVO scientists have ever had suggesting rapid magma transfer between storage reservoirs.
The rainbow colours represent the change in distance between the ground and the satellite in the time between two orbits of the InSAR satellite. Each cycle of colours, from magenta to blue indicates motion equal to half the satellite’s radar’s wavelength. The pattern repeats and by counting up all the rainbows, you get the total amount of motion.
Over the past two decades, the increasing number of available satellites has improved HVO’s InSAR capabilities by providing a variety of wavelengths that allow for improved resolution at short wavelengths and better penetration through vegetation at longer wavelengths. HVO has used data from many different InSAR satellites to investigate motion on Hawaii’s volcanoes, including satellites launched by the European Space Agency, Canada, Germany and Japan.
The United States is working toward launching its first InSAR satellite. In 2014, NASA announced a joint project with the Indian Space Research Organization to build and launch a multi-wavelength InSAR satellite specifically designed for studying natural hazards. The project is scheduled for a 2020 launch.
Source : HVO.

L’InSAR et les Champs Phlégréens (Italie) // InSAR and the Phlegrean Fields (Italy)

drapeau francaisLe 20 mars 2015, j’ai mis en ligne une note montrant l’importance de l’interférométrie radar à synthèse d’ouverture (InSAR) dans le domaine de la volcanologie. Cette technologie vient d’être utilisée pour observer le comportement des Champs Phlégréens, zone volcanique active aux portes de Naples. La proximité d’une zone de population dense oblige les scientifiques à la surveiller de très près car on sait que l’activité éruptive explosive peut être particulièrement violente.

Le radar à bord du satellite Ten Sentinel – 1A de l’Agence Spatiale Européenne (ESA) a confirmé la poursuite du processus de déformation du sol dans la région. Ce processus, connu sous le nom de bradyséisme, consiste en des mouvements verticaux, parfaitement visibles, par exemple, sur les colonnes du temple de Serapis à Pouzzoles avec des empreintes de coquillages prouvant que la mer a recouvert le secteur à une certaine époque.

Les mesures effectuées par l’InSAR entre octobre 2014 et mars 2015 ont révélé que le sol se soulevait à raison de 0,5 cm par mois. Il semblerait donc que le phénomène soit dans une phase basse car en 2012 la déformation atteignait 3 centimètres par mois, ce qui avait poussé la Protection Civile à élever d’un cran le niveau d’alerte.

Source : ESA.

 ————————————————-

drapeau anglaisOn March 20th, 2015, I posted a note showing the importance of Interferometric Synthetic Aperture Radar (InSAR) in the field of volcanology. This technology has just been used to observe the behaviour of the Campi Flegrei, an active volcanic area on the outskirts of Naples. The proximity of a densely populated area forces scientists to monitor it very closely because we know that the explosive eruptive activity may be particularly violent.
The radar on board the Sentinel Ten – 1A satellite of the European Space Agency (ESA) has confirmed the continuation of the soil deformation process in the region. This process, known as the bradyseism, consists of vertical movements, perfectly visible, for example, on the columns of the Temple of Serapis at Pozzuoli, with shells showing that the sea covered the area at one time.
Measurements by InSAR between October 2014 and March 2015 revealed that the ground was rising at a rate of 0.5 cm per month. This suggests that the phenomenon is in a low phase, because in 2012 the deformation reached 3 centimeters per month, which pushed the Civil Protection to raise the alert level by a notch.
Source: ESA.

Campi-Flegrei

Source:  ESA.

Pouzzoles-temple

Effets du bradyséisme à Pouzzoles  (Photo:  C.  Grandpey)

L’interférométrie radar au service des volcans // InSAR and volcanoes

drapeau francaisAvec les progrès scientifiques, de nouvelles technologies sont utilisées pour essayer de comprendre le comportement des volcans. L’une des plus populaires est l’interférométrie radar à synthèse d’ouverture (InSAR). Elle est applicable à de multiples domaines comme l’évolution des glaciers, un domaine très sensible avec le réchauffement climatique. Le radar enregistre deux images ou plus de la même région à des moments différents. En comparant les images, il est alors possible de détecter tous les changements susceptibles de s’être produits dans l’intervalle. L’interférométrie peut être réalisée par un seul satellite ou par deux satellites évoluant en tandem sur la même orbite.

Une enseignante du Département des Sciences de La Terre et de l’Institut de Cyberscience de l’Université de Pennsylvanie (Penn State) étudie le Kilauea (Hawaii) depuis plusieurs années et elle est sur le point de commencer une nouvelle étude en utilisant l’InSAR.

Le Kilauea est en éruption depuis 32 ans et il y a donc une grande quantité de magma qui monte des profondeurs. Il sera intéressant d’étudier quelles sont les différentes sources magmatiques ainsi que les relations qui peuvent exister entre elles.

L’un des éléments clés pour répondre à cette question se trouve dans les déformations qui se produisent à la surface du volcan. En effet, les déformations en surface sont forcément provoquées par des mouvements en profondeur.

Pour commencer son étude, l’universitaire pennsylvanienne va rassembler les données satellitaires qui se trouvent dans les archives. Elle va examiner les déformations de surface qui ont précédé et suivi un événement naturel (séisme ou éruption) sur le Kilauea. Elle utilisera ensuite ces données pour créer deux images : une avant l’événement naturel et une après. Ainsi, elle pourra voir dans quelle mesure l’événement naturel a modifié la surface du sol. Il est possible de combiner les deux images pour créer un interférogramme, autrement dit une image InSAR beaucoup plus globale de la situation. Cette image utilise la couleur pour traduire les mouvements du sol, comme on peut le voir dans l’image au bas du texte.

Les images InSar peuvent être créées à partir de deux images, mais la chercheuse a également recours à une approche multi séries baptisée Multi-Temporal (MT) InSAR quand un nombre suffisant d’images radar est disponible. Cette approche qui bénéficie d’images multiples est plus précise, mais elle requiert beaucoup plus de données et aussi une puissance informatique plus importante.

Après avoir créé les images InSAR, la scientifique pourra commencer à les utiliser pour prévoir le comportement en profondeur du Kilauea. Elle utilisera également une technique appelée modélisation inverse pour étudier la ou les causes des déformations.

Les mouvements du magma ne sont pas le seul facteur susceptible d’affecter le comportement du Kilauea. Le flanc sud du volcan a tendance à avancer, peut-être à cause du système d’alimentation et de l’activité du volcan. Même si le flanc sud avance vers l’océan à raison de 6 à 10 centimètres par an, il faut savoir que des séismes ont entraîné dans le passé des déplacements encore plus importants et même déclenché des tsunamis.

Des technologies comme l’InSAR sont très intéressantes car elles permettent de faire des recherches sans avoir  l’obligation d’être sur le terrain.

Source: Penn State

 —————————————————-

drapeau anglaisWith scientific progress, new technologies are being used to try and understand the behaviour of volcanoes. One of the most popular is called Interferometric Synthetic Aperture Radar (InSAR) which is applicable to multiple domains like the glaciers which are very sensitive to global warming. The radar records two images or more of the same region at the different moments. By comparing the images, it is then possible to detect all the changes susceptible to have occurred in the meantime. InSAR can performed by a single satellite or by two satellites evolving in tandem on the same orbit.

An assistant professor in the Department of Geosciences and the Institute for CyberScience at the Pennsylvania State University (Penn State) has been studying Kilauea volcano for several years and is getting ready to start a new project using InSAR.

The volcano has been erupting for 32 years, so obviously there’s a lot of magma coming from below and it would be interesting to know where all these magma sources are and how they relate to each other. One of the keys to answering this question is found in the deformations happening on the surface of Kilauea. Indeed, a change of deformation on the volcano’s exterior implies something that causes the change much deeper below the surface.

To begin the process, the Pennsylvanian researcher gathers satellite data from archived databases. She looks for information about changes in elevation from before and after a natural hazard event – an eruption or earthquake, for example. She then uses this data to create two images: one from before the natural event and one from after. This shows how the event changed the ground’s surface. The two pictures can then be combined to create a single, much more comprehensive InSAR image called an interferogram, which uses colour to represent movement. (see example with the image below)

While InSAR images can certainly be created from two images, she also uses a time-series approach called Multi-Temporal (MT)-InSAR when enough radar images are available. This technique uses multiple images instead of two. This approach is much more accurate, but it also requires much more data and computing power

After creating the InSAR images, the researcher can begin to use them to predict what might be happening underneath Kilauea. She uses an approach called inverse modeling to estimate what caused the deformation.

Magma processes aren’t the only things that could be affecting Kilauea’s behaviour. The southern flank of the volcano is moving away from the island, and this could also be influencing the volcano’s magma plumbing system and activity. Although the flank is slipping seaward at an average speed of 6 to 10 centimetres a year, earthquakes in the past have caused more drastic movement and have even generated tsunamis.

Remote-sensing technologies like InSAR are important because they allow researchers to do important research without physically being on location.

Source: Penn State.

INSAR-blog

Interférogramme InSAR couvrant la période du 5 mai au 20 juin 2007. Elle montre les déformations du sol provoquées par le séisme du 24 mai 2007 sur le Kilauea.  (Source:  Penn State)