Vers un changement de comportement du Kilauea (Hawaï) ? // Towards a change in behaviour of Kilauea (Hawaii) ?

Le 14 janvier 2026, après la fin de l’Épisode 40, un nouvel essaim sismique a été enregistré sous le cratère Halemaʻumaʻu, au sommet du Kilauea. Cette activité sismique a progressivement diminué en fréquence et en intensité sur une période de 40 minutes. Comme on peut le voir sur la carte ci-dessous, les épicentres de ces séismes sont largement répartis dans la partie Est du cratère de l’Halemaʻumaʻu et la caldeira sud. Tous les séismes avaient une magnitude inférieure à M2,0, et de M1,0 ou moins pour la plupart.

Localisation des quelque 300 séismes enregistrés entre le 12 et le 22 janvier 2026 dans la région sommitale du Kilauea.

Il s’agit du troisième essaim sismique sous le cratère de l’Halemaʻumaʻu depuis la fin de l’Épisode 40. Les deux premiers essaims présentaient des magnitudes similaires. La plupart des séismes semblent se produire dans le secteur de la chambre magmatique superficielle de l’Halemaʻumaʻu, à une profondeur de 1,5 à 4 km.
La plupart de ces séismes sont volcano-tectoniques, liés à l’ouverture de fissures sous l’effet de la pression magmatique. Une activité sismique d’une telle intensité n’avait jamais été observée au sommet du Kilauea depuis le début de l’éruption en décembre 2024. Reste à savoir si ces essaims sismiques auront un impact sur l’activité des fontaines de lave en surface.
Actuellement, toute l’activité éruptive se concentre sous la caldeira du Kilauea et rien n’indique que le magma s’éloigne de cette zone. Les zones de rift est et sud-ouest ne montrent aucun signe de réveil pour le moment.

Dans un communiqué publié le 23 janvier 2026, l’Observatoire volcanologique d’Hawaï (HVO) indique que l’éruption qui a débuté le 23 décembre 2024 dans le cratère de l’Halema’uma’u au sommet du Kīlauea, se poursuit après 40 épisodes de fontaines de lave. Les dernières données montrent que la pression à l’intérieur de la chambre magmatique superficielle, située sous le sommet du Kīlauea, augmente lentement et pourrait (le conditionnel est de rigueur) à terme modifier la dynamique éruptive.
On ne sait pas quel sera l »impact des récents essaims sismiques sur le prochain épisode de fontaines de lave, mais aucune modification des déformations du sol ne laisse entrevoir une intrusion magmatique dans une nouvelle zone. L’Observatoire suggère plusieurs scénarios possibles pour les mois à venir :
– Poursuite de l’éruption. La lave pourrait continuer à jaillir des bouches éruptives nord et sud dans l’ l’Halemaʻumaʻu pendant une durée et un nombre d’épisodes imprévisibles.
– Une ou plusieurs nouvelles bouches éruptives pourraient se former au sommet ou dans la partie supérieure de la zone de rift sud-ouest, avec des projections de lave à proximité des bouches existantes, ou bien à l’intérieur de la caldeira sommitale.
– Une autre possibilité est une intrusion magmatique ou une éruption dans la zone de rift Est : du magma pourrait migrer vers cette zone et provoquer potentiellement une éruption. Cependant, compte tenu de l’emplacement des bouches éruptives et des déformations de la zone sommitale, ce scénario est le moins probable.
Source : HVO.

Inflation du Kilauea sur 2 jours :

Inflation du Kilauea sur 3 mois :

Source: HVO

Le communiqué du HVO illustre la difficulté de prévoir le comportement d’un volcan, même celui du Kilauea, qui est truffé d’instruments et fait l’objet d’une surveillance étroite. La même remarque pourrait s’appliquer au Piton de la Fournaise (Île de la Réunion), un volcan de point chaud, lui aussi. La dernière éruption a mis longtemps à démarrer et a parfois décontenancé l’OVPF, l’observatoire local, avec des éruptions avortées en décembre et le 1er janvier 2026.

————————————————

On January 14 2026, following the end of Episode 40, a new seismic swarm was recorded beneath Halemaʻumaʻu crater at the summit of Kilauea. Elevated seismic activity gradually died down in frequency of occurrence and intensity, over the course of 40 minutes. Locations of these earthquakes are spread broadly beneath east side of Halemaʻumaʻu crater and the south caldera. All of the detected earthquakes have been less than magnitude M2.0, with most being magnitude M1.0 or smaller.

This is the third small swarm of earthquakes beneath Halemaʻumaʻu crater since the end of episode 40. The first and second swarms both had magnitude ranges similar to the third. Most of the earthquakes seem to be occurring around the shallow Halemaʻumaʻu magma chamber, some 1.5 to 4 km beneath the surface.

Most of the earthquakes are volcano-tectonic earthquakes that accompany crack opening due to magmatic pressure. Elevated seismic activity of these intensities have not been seen at the summit since the start of the eruption in December 2024. It is yet to be determined if these swarms after Episode 40 will have an impact on lava-fountaining activity at the surface.

Currently all of the activity remains beneath Kīlauea caldera and there is no observable evidence that magma is migrating away from this area.  Both the east and the southwest rift zones remain quiet at this time.

In an information statement released on 23 January 2026, the Hawaiian Volcano Observatory (HVO) indicates that the eruption that began within Halemaʻumaʻu at the summit of Kilauea volcano on December 23, 2024, continues after 40 lava fountaining episodes. Monitoring data show that the modeled pressurization within the shallow Halemaʻumaʻu magma chamber beneath Kīlauea’s summit has been slowly increasing over time and could eventually result in a change to the eruption dynamics.

The impact of the recent earthquake swarms on the next episode of lava fountaining, if any, is unknown at this time, but there have not been changes in ground deformation patterns to suggest that magma has intruded or is intruding into a new area.

In its statement, the HVO explains that it is not possible to forecast an exact outcome of the latest seismic activity on the behaviour of Kilauea. The Observatory suggests some potential scenarios in the coming months :

  • The eruption continues. Lava could continue to erupt from the north and south vents in Halemaʻumaʻu for an unforeseeable amount of time or number of episodes.
  • One or several new vents might form in the summit region or upper Southwest Rift Zone, erupting lava near the existing vents in Halemaʻumaʻu, or nearby within the summit caldera.
  • Another possibility is an East Rift zone intrusion or eruption: Magma could migrate into East Rift Zone, potentially resulting in an eruption there. However, given the vent locations and summit region deformation patterns, this is the least likely scenario.

Source : HVO.

This statement shows the difficulty to predict a volcano’s behaviour, even on Kilauea which is fully monitored. The same remark is valid for Piton de la Fournaise (Reunion Island), a similar hotspot volcano. The last eruption took a long time to start and puzzled the OVPF. the local observatory, with aborted eruptions in December and on January 1st 2026.

Nouvelles informations sur l’éruption du Hunga-Tonga Hunga-Ha’apai // More information on the Hunga-Tonga Hunga-Ha’apai eruption

Des chercheurs viennent de terminer la cartographie du cratère du Hunga-Tonga Hunga-Ha’apai, le volcan sous-marin de l’archipel des Tonga qui, le 15 janvier 2022, a produit l’une des plus grandes explosions atmosphériques jamais observées sur Terre. La caldeira mesure maintenant 4 km de large et descend à 850 m sous le niveau de la mer. Avant l’éruption, la base du volcan était à une profondeur d’environ 150m. Le volume de matière émis est estimé à au moins 6,5 km3.
Des scientifiques de l’Université d’Auckland (Nouvelle-Zélande) ont publié un rapport qui analyse le processus éruptif et formule des recommandations pour la résilience future. Là encore, on remarquera que les scientifiques sont capables de décrire l’éruption, mais que personne n’a jamais été en mesure de la prévoir.
Bien qu’il soit peu probable que le Hunga-Tonga Hunga-Ha’apai (HTHH) produise une éruption semblable avant plusieurs siècles, il ne faudrait pas oublier qu’il existe au moins 10 volcans sous-marins dans cette région du Pacifique sud-ouest. Eux aussi pourraient entrer violemment en éruption sur une échelle de temps plus brève.
L’Institut national de recherche sur l’eau et l’atmosphère (NIWA) de Nouvelle-Zélande a publié une carte bathymétrique de la zone autour du volcan. Une comparaison avec les cartes de la caldeira, réalisées en 2015 et 2016, donc avant l’éruption, montre des changements majeurs.
En plus d’un approfondissement général de la caldeira, de grosses parties des parois intérieures de la falaise ont disparu, en particulier à l’extrémité sud du cratère. Cependant, le cône du volcan tel qu’il se présente aujourd’hui semble structurellement solide. La caldeira est un peu plus grande en diamètre et un peu moins profonde à cause des effondrements des côtés vers l’intérieur. Le côté nord-est semble un peu mince et fragile; s’il lâchait prise, un tsunami mettrait en danger les îles Ha’apai, mais la structure du volcan semble globalement assez robuste.
Les scientifiques commencent à avoir une bonne idée du processus éruptif. Les très nombreuses données d’observation obtenues le15 janvier montrent que l’événement a connu une surcharge dans la demi-heure après 17h00 (heure locale).
Au fur et à mesure que la caldeira s’est fracturée, l’eau de mer a commencé à interagir avec le magma à haute température qui se décompressait en remontant des profondeurs. Il y a eu des explosions assourdissantes causées par des interactions entre le magma et l’eau à grande échelle.
Les scientifiques néo-zélandais insistent sur l’importance des coulées pyroclastiques au cours de l’éruption. Les nuages de cendres et de roches très denses projetés dans le ciel sont retombés et ont roulé sur les flancs du volcan et sur le fond de l’océan. Ils sont en grande partie à l’origine des vagues de tsunami qui ont déferlé sur les côtes de l’archipel des Tonga. Ces vagues de tsunami atteignaient 18 m de hauteur à Kanokupolu, à l’ouest de Tongatapu (65 km au sud du HTHH) ; 20m de haut sur l’île Nomukeiki (une distance similaire mais au nord-est); 10m de haut sur les îles à des distances supérieures à 85 km du volcan.
Source : Université d’Auckland, NIWA.

—————————————–

Researchers have just finished mapping the crater of Hunga-Tonga Hunga-Ha’apai, the underwater Tongan volcano that, on January 15th, 2022, produced one of Earth’s biggest atmospheric explosions. The caldera of the volcano is now 4km wide and drops to a base 850m below sea level. Before the eruption, the base was at a depth of about 150m. The volume of material ejected by the volcano can thus be estimated at least 6.5 cubic km.

Scientists from the University of Auckland (New Zealand) have issued a report which assesses the eruption and makes recommendations for future resilience. Here again, we can notice that we are able to describe the eruption but nobody was ever able to predict it.

Although Hunga-Tonga Hunga-Ha’apai (HTHH) is unlikely to give a repeat performance for many hundreds of years, there are at least 10 volcanic seamounts in the wider region of the south-west Pacific that could produce something similar on a shorter timescale.

New Zealand’s National Institute for Water and Atmospheric (NIWA) Research has released a bathymetry map for the area immediately around the volcano. A comparison with pre-eruption maps of the caldera, made in 2016 and 2015, shows the major changes.

In addition to a general deepening, big chunks have been lost from the interior cliff walls, particularly at the southern end of the crater. However, the volcano cone as it stands today looks structurally sound. The caldera is a little bigger in diameter and a little shallower as the sides collapse inwards. The north-eastern side looks a bit thin and if that failed, a tsunami would endanger the Ha’apai islands. But the volcano’s structure looks quite robust.

Scientists are beginning to get a good idea of how the eruption progressed. The wealth of observational data from January 15th suggests the event became supercharged in the half-hour after 17:00 (local time).

As the caldera cracked, seawater was able to interact with decompressing hot magma being drawn up rapidly from depth. There were sonic booms caused by large-scale magma-water interactions.

NZ scientists insist on the significance of pyroclastic flows in the eruption. These thick dense clouds of ash and rock thrown into the sky fell back to roll down the sides of the volcano and along the ocean floor. They caused much of the tsunami wave activity that inundated coastlines across the Tongan archipelago. The tsunami waves were 18m high at Kanokupolu, on western Tongatapu (65km south of HTHH); 20m high on Nomukeiki Island (a similar distance but to the north-east); 10m high on islands at distances greater than 85 km from the volcano.

Source: University of Auckland, NIWA.

Source: Université d’Auckland

Source: Tonga Services

Rapport annuel sur l’Arctique // Arctic Report Card

Alors que la planète se réchauffe à la vitesse V, ce qui se passe dans l’Arctique, où les températures augmentent deux fois plus vite que dans le reste du monde, affecte de plus en plus les modes de vie dans l’ensemble de la planète.
Le 14 décembre 2021, une équipe de 111 scientifiques de 12 pays a publié le 16ème Rapport annuel sur l’Arctique. Vous verrez un résumé du Rapport dans l’excellente vidéo ci-dessous. Vous trouverez le Rapport dans son intégralité en cliquant sur ce lien:

https://www.arctic.noaa.gov/Report-card

Comme un contrôle de santé annuel chez un médecin, le Rapport fait le point sur les signes vitaux de l’Arctique : températures de l’air, températures de surface de la mer, glace de mer, couverture neigeuse, calotte glaciaire du Groenland, verdissement de la toundra et niveaux de photosynthèse des algues océaniques, tout en prenant en compte d’autres indicateurs de santé et facteurs émergents qui apportent une lumière sur les changements intervenus dans l’Arctique.
Comme le précise le Rapport, le réchauffement rapide d’origine anthropique continue d’être à l’origine de la plupart des changements et, en fin de compte, ouvre la voie à des perturbations qui affectent les écosystèmes et les communautés dans leur globalité.
La banquise arctique, indicateur majeur du changement climatique dans le monde, continue de rétrécir sous l’effet de la hausse des températures. En prenant en compte les données de 2021, les 15 plus faibles étendues de glace de mer pendant l’été se sont toutes produites au cours des 15 dernières années.
La banquise s’amincit également à un rythme alarmant en même temps que la glace pluriannuelle la plus ancienne et la plus épaisse de l’Arctique disparaît. Cette perte de glace de mer diminue la capacité de l’Arctique à refroidir le climat de la planète. Le phénomène peut également avoir un impact sur les systèmes météorologiques de basse latitude, avec une probabilité accrue de sécheresses, vagues de chaleur et tempêtes hivernales extrêmes.
De même, la fonte persistante de la calotte glaciaire du Groenland entraîne une hausse du niveau des mers dans le monde entier, avec un risque de plus en plus important d’inondations et d’érosion côtières pour un plus grand nombre de communautés.
Ce passage de la glace à l’eau a des conséquences évidentes dans tout le système arctique. Les huit principaux fleuves de la région déversent davantage d’eau douce dans l’océan Arctique. Fait remarquable et très inquiétant, le sommet de la calotte glaciaire du Groenland a connu ses toutes premières précipitations sous forme de pluie au cours de l’été 2021.

Ces évolutions ont profondément modifié l’Arctique aujourd’hui. Elles donnent également du crédit à de nouvelles modélisations qui montrent le risque pour l’Arctique de passer d’un système dominé par la neige à un autre dominé par la pluie en été et en automne au moment où la température de la planète se situera à seulement 1,5°C au-dessus de l’époque préindustrielle.
Cette hausse de température atteint actuellement 1,2°C. Cette évolution vers davantage de pluie et moins de neige transformera forcément les paysages, tout en favorisant un recul encore plus rapide des glaciers et le dégel du pergélisol. Le dégel du pergélisol affecte les écosystèmes mais contribue également au réchauffement climatique en permettant aux restes de plantes et d’animaux auparavant gelés de se décomposer en libérant de nouveaux gaz à effet de serre dans l’atmosphère.
Le dernier Rapport annuel sur l’Arctique souligne à quel point le recul des glaciers et la détérioration du pergélisol constituent des menaces réelles pour la vie humaine en raison des inondations et des glissements de terrain soudains qu’ils peuvent engendrer. Le Rapport appelle à des efforts internationaux coordonnés pour identifier ces dangers. Une intensification de la pluie dans l’Arctique ne fera que multiplier ces menaces.
Source : La Conversation.

————————————————

As the planet rapidly warms, what happens in the Arctic, where temperatures are rising twice as fast as the rest of the globe, increasingly affects lives around the world.

On December 14th, 2021, a team of 111 scientists from 12 countries released the 16th annual Arctic Report Card, a yearly update on the state of the Arctic system. You will see a summary of the Report in the excellent video below. You’ll find the whole report by clicking on this link :

https://www.arctic.noaa.gov/Report-card

Like an annual checkup with a physician, the Report assesses the Arctic’s vital signs, including surface air temperatures, sea surface temperatures, sea ice, snow cover, the Greenland ice sheet, greening of the tundra, and photosynthesis rates by ocean algae, while inquiring into other indicators of health and emerging factors that shed light on the trajectory of Arctic changes.

As the Report describes, rapid and pronounced human-caused warming continues to drive most of the changes, and ultimately is paving the way for disruptions that affect ecosystems and communities far and wide.

Arctic Sea ice, a central vital sign of global climate change, is continuing to shrink under warming temperatures. Including data from 2021, 15 of the lowest summer sea ice extents have all occurred in the last 15 years.

The sea ice is also thinning at an alarming rate as the Arctic’s oldest and thickest multi-year ice disappears. This loss of sea ice diminishes the Arctic’s ability to cool the global climate. It can also alter lower latitude weather systems to an extent that makes droughts, heat waves and extreme winter storms, more likely.

Similarly, the persistent melting of the Greenland ice sheet is raising seas worldwide, exacerbating the severity and exposure to coastal flooding and coastal erosion for more communities around the planet.

This transition from ice to water and its effects are evident across the Arctic system. The eight major Arctic rivers are discharging more freshwater into the Arctic Ocean. Remarkably, the summit of the Greenland ice sheet experienced its first-ever observed rainfall during summer 2021.

These developments point to a changed and more variable Arctic today. They also give credence to new modeling studies that show the potential for the Arctic to transition from a snow-dominated to rain-dominated system in summer and autumn by the time global temperatures rise to only 1.5 degrees Celsius above pre-industrial times.

The world has already warmed by 1.2°C. Such a shift to more rain and less snow will further transform landscapes, fueling faster glacier retreat and permafrost loss. The thaw of permafrost not only affects ecosystems but also further adds to climate warming by allowing previously once-frozen plant and animal remains to decompose, releasing additional greenhouse gases to the atmosphere.

This year’s report highlights how retreating glaciers and deteriorating permafrost are also posing growing threats to human life through abrupt and localized flooding and landslides. It urges coordinated international efforts to identify these hazards. More rain in the Arctic will further multiply these threats.

Source: The Conversation.

Eruption islandaise: des changements d’activité, mais toute prévision reste impossible ! // Icelandic eruption: changes in activity but no volcanic prediction !

Le Met Office islandais indique que l’éruption de Fagradalsfjall se poursuit au niveau de l’un des principaux cratères. Le cratère actif en ce moment est le cinquième à s’être ouvert sur la fracture le 13 avril 2021. Depuis le 27 avril, l’activité volcanique a été marquée par des fontaines de lave ininterrompues. Toutefois, cette activité s’est modifiée vers minuit le 2 mai ; depuis ce moment, l’éruption procède par impulsions. On observe des périodes d’intense activité d’une durée de 8 à 12 minutes et alternant avec des périodes de calme de 1 à 2 minutes. Les périodes intenses commencent par une forte activité, avec des fontaines de lave atteignant le plus souvent 100-150 m de hauteur, mais parfois 200 ou 300 mètres (voir la vidéo ci-dessous). Ces séquences d’activité intense sont parfaitement visibles sur le tremor dans les stations sismiques réparties autour du site éruptif. Hier soir, le cratère principal avait un comportement qui me rappelait celui d’un geyser, avec de brèves phases actives alternant avec des périodes de repos.

https://youtu.be/JX-H_sRMSUY

Les volcanologues islandais disent qu’il est difficile de déterminer la cause de ces changements intervenus dans l’activité volcanique. Il se pourrait qu’ils soient dus à des modifications dans le flux du magma, sa composition chimique ou celle des gaz, ou éventuellement des changements dans le conduit d’alimentation.

Páll Einarsson pense que les raisons peuvent être multiples et qu’il est trop tôt pour dire exactement ce qui explique ces changements. Il fait remarquer que vers la fin des dernières éruptions de l’Hekla, une activité similaire a été observée, même si les pauses et les séquences éruptives ont duré plus longtemps. Cependant, ces éruptions étaient différentes de l’événement actuel à Fagradalsfjall et elles mettaient en œuvre un type de magma différent. Il est donc difficile de faire une comparaison.

Un autre géophysicien pense que ce changement pourrait indiquer une baisse de l’activité volcanique. Il ajoute que l’éruption pourrait aussi réapparaître sur un autre site.

Un professeur de volcanologie à l’Université d’Islande a remarqué qu’à l’heure actuelle, l’éruption semble être beaucoup plus explosive qu’auparavant. Il explique que des explosions de lave comme celles observées ces dernières heures coïncident généralement avec une diminution de l’activité volcanique, mais il n’a pas précisé si l’éruption était en déclin ou en hausse.

En d’autres termes, personne ne sait ce qui va se passer maintenant… . !

 Compte tenu de ces changements d’activité, la taille de la zone de sécurité sur le site éruptif est en cours de réévaluation. Elle devrait désormais avoir un rayon de 500 mètres autour de l’éruption.

——————————————-

The Icelandic Met Office indicates that the eruption in Fagradalsfjall continues through one main crater. The active crater is the fifth fissure opening that opened in the area on April 13th, 2021. Since April 27th, the volcanic activity was characterized by continuous lava fountains, but activity changed at around midnight on May 2nd, and has since  been showing pulsating behaviour. These pulses have intermittent active periods of 8-12 minutes, with 1-2 minutes of rest periods in between. The active pulses start with a strong fountain activity, with fountains reaching up to 100-150 m above ground level, and some even higher (see video below). These pulses are very apparent in the seismic tremor at seismic stations in a wide area around the eruption site. Last night, the main crater had a behaviour that looked like a geyser, with brief active phases, alternating with quiet periods.

https://youtu.be/JX-H_sRMSUY

Local volcanologists say it is not clear what is causing these changes in volcanic activity, but changes in magma flow, the chemical composition of magma/gas, or possibly changes in the volcanic conduit cannot be ruled out.

Páll Einarsson  states that the reasons for this can be many, and that it’s too early to tell what exactly is causing this transformation. He states that toward the end of the most recent eruptions at Hekla, a similar activity was seen, although the pauses and the bursts of eruption there lasted longer. However, those eruptions were different from the one by Fagradalsfjall mountain and involved a different kind of magma, making it hard to draw any conclusions.

Another geophysicist thinks that this change in the activity could indicate a reduced volcanic activity, but he adds that the eruption may possibly be looking for another place to reach the surface.

A professor of volcanology at the University of Iceland has noticed that at the moment the eruption seems to be much more explosive than before. He explains that explosive high lava jets such as this usually coincide with a decrease in volcanic activity, but did not state whether as a whole, the eruption is declining or increasing.

In other words, nobody knows…..

Considering these changes in activity, the size of the hazard area at the eruption site is being re-evaluated. It should be extended to a 500 metre radius from the eruption, due to a change in the volcanic activity.