Nouvelle carte géologique du flanc nord-est du Mauna Loa // New geological map of the northeast flank of Mauna Loa

Une nouvelle « Carte géologique du flanc nord-est du Mauna Loa », l’aboutissement de nombreuses années de travail par des géologues du HVO, a récemment été publiée par  l’USGS. Le travail a été mené par John P. Lockwood et Frank Trusdell. Cette nouvelle carte a été mise à jour et remplace la « Carte géologique de l’île d’Hawaï » (1996) et la « Carte géologique de l’État d’Hawaii » (2007).
Couvrant 1 140 kilomètres carrés sur le flanc nord-est du Mauna Loa, la nouvelle carte représente une superficie égale aux îles de Molokai et Lanai réunies. La surface cartographique s’étend de l’altitude 3316 mètres jusqu’au niveau de la mer, de Pu’u’ula’ula («Colline Rouge») au sud-ouest jusqu’à Hilo au nord-est.
Le Mauna Loa s’est manifesté à 33 reprises depuis le début des descriptions écrites des éruptions en 1832. Certaines éruptions ont été précédées de brefs épisodes de sismicité, tandis que d’autres ont suivi plusieurs mois à une année de sismicité intense. Depuis 1832, sept éruptions se sont produites dans la zone couverte par la carte: 1852, 1855-56, 1880-81, 1899, 1935-36, 1942 et 1984.
La Zone de Rift Nord-Est (ZRNE) du Mauna Loa mesure environ 40 km de long et 2 à 4 km de large. Les fissures éruptives et les fractures au sol coupent les dépôts volcaniques et des coulées à l’intérieur et à proximité du sommet de la zone de rift. Au départ de la ZRNE, la lave s’écoule généralement vers le nord, l’est ou le sud, selon l’emplacement des bouches éruptives par rapport au sommet de la zone. Par exemple, lors de l’éruption du Mauna Loa en 1880-1881, les coulées se sont d’abord orientées vers le sud, en direction du Kilauea, avant de bifurquer vers le nord-est en direction de Hilo.
Bien que la plupart des bouches éruptives de la ZRNE soient à plus de 30 km de Hilo, une branche de coulée lors de l’éruption de 1880-1881 a presque atteint la baie de Hilo. En fait, la ville de Hilo est entièrement construite sur des coulées de lave en provenance de la ZRNE, la plupart d’entre elles ayant eu lieu avant 1852.
La carte montre la répartition de 105 coulées, réparties en 15 groupes d’âge allant de plus de 30 000 ans avant notre ère, jusqu’à 1984. Le schéma de couleurs adopté pour la carte est basé sur l’âge des dépôts volcaniques. Les couleurs chaudes (rouge, rose et orange) représentent des dépôts d’époques récentes, tandis que les couleurs froides (bleu et violet) représentent des dépôts plus anciens.
Du point de vue géologique, on peut déduire plusieurs faits intéressants de l’histoire géologique de la ZRNE. Par exemple, au cours des 4000 dernières années, les parties centrale et supérieure de la zone de rift étaient plus actives que la partie inférieure, peut-être en raison de la compression exercée sur la partie inférieure de la ZRNE par les volcans Mauna Kea et Kilauea tout proches.
La carte géologique fournit des informations fondamentales sur le comportement éruptif du Mauna Loa sur le long terme. Elle constitue une base à partir de laquelle des études collaboratives en géologie et en biologie pourront être lancées. La carte peut être visualisée ou téléchargée gratuitement sur le site des publications de l’USGS à cette adresse : doi.org/10.3133/sim2932A.

.Source: USGS / HVO

————————————————–

A new “Geologic map of the northeast flank of Mauna Loa volcano” the culmination of many years of work by Hawaiian Volcano Observatory (HVO) geologists, was recently published by the U.S. Geological Survey (USGS). The work was spearheaded by John P. Lockwood and Frank Trusdell.

For the northeast region of Mauna Loa, this updated map supersedes the “Geologic Map of the Island of Hawaii” (1996) and the “Geologic Map of the State of Hawaii” (2007).

Encompassing 1,140 square kilometres of the northeast flank of Mauna Loa, the new map comprises an area equivalent to the islands of Molokai and Lanai combined. The mapped area extends from an elevation of 3316 m to sea level, from Pu‘u‘ula‘ula (“Red Hill”) on the southwest to Hilo on the northeast.

Mauna Loa is known to have erupted 33 times since written descriptions became available in 1832. Some eruptions were preceded by only brief seismic unrest, while others followed several months to a year of increased seismicity. Since 1832, seven eruptions occurred within the area covered by the map: 1852, 1855–56, 1880–81, 1899, 1935–36, 1942, and 1984.

The Northeast Rift Zone (NERZ) of Mauna Loa is about 40 km long and 2–4 km wide. Eruptive fissures and ground cracks cut volcanic deposits and flows in and near the crest of the rift zone. Lava typically flows from the NERZ to the north, east, or south, depending on vent location relative to the rift crest. For instance, during the 1880–1881 eruption of Mauna Loa, flows initially traveled south towards Kilauea, but later, northeast towards Hilo.

Although most of the NERZ source vents are more than 30 km from Hilo, one branch of the 1880–1881 flow nearly reached Hilo Bay. In fact, Hilo is built entirely on lava flows erupted from the NERZ, most of them older than 1852.

The map shows the distribution of 105 eruptive flows, separated into 15 age groups ranging from more than 30,000 years before present to 1984. The color scheme adopted for the map is based on the age of the volcanic deposits. Warm colors (red, pink, and orange) represent deposits from recent epochs of time, while cool colours (blue and purple) represent older deposits.

From the geologic record, we can deduce several facts about the geologic history of the NERZ. For example, in the past 4,000 years, the middle to uppermost sections of the rift zone were more active than the lower section, perhaps due to compression of the lower northeast rift zone by the adjacent Mauna Kea and Kilauea volcanoes.

The geologic map provides fundamental information on the long-term eruptive behaviour of Mauna Loa Volcano. In addition, it offers a valuable foundation from which collaborative studies in geology and biology can be launched. The map can be viewed or freely downloaded from USGS Publications at doi.org/10.3133/sim2932A.

Source : USGS / HVO.

Une image plus grande de la carte peut être téléchargée gratuitement à cette adresse:
A larger image of the map can be freely uploaded at this address :

http://cf.hawaii247.com/wp-content/uploads/2017/07/VW-2017-07-12_Mauna-Loa-NE-geologic-map_full-sheet_USGS.jpg

Une cartographie des super éruptions du passé // Mapping the super eruptions of the past

De nouvelles recherches effectuées par des géologues de l’Université Carleton à Ottawa (Canada) et de l’Université d’État de Tomsk (Russie) ont révélé que de colossales éruptions volcaniques ont déversé leur lave à la surface de la Terre beaucoup plus souvent qu’on ne le pense généralement. Ces énormes éruptions se sont produites au moins 10 fois au cours des 3 milliards d’années écoulées. Elles ont provoqué certains des changements les plus profonds de l’histoire de la Terre, comme la grande extinction de masse il y a 252 millions d’années, lorsque les volcans ont déversé sur la Sibérie des flots de lave et des nuages de gaz toxiques.
Savoir quand et où se sont produites de telles éruptions permettra aux géologues de repérer les gisements de minerais, de reconstruire les anciens super continents et de comprendre la naissance de la croûte terrestre. L’étude ce type d’activité volcanique sur d’autres planètes peut aussi donner des indications sur l’histoire géologique de la Terre.
Les données fournies par les dernières recherches devraient être rendues publiques d’ici la fin de l’année, avec la publication d’une carte par la Commission de la Carte Géologique du Monde à Paris. Les éruptions du passé apparaissent clairement sur cette carte. La lave émise par ces super volcans s’est érodée depuis longtemps, mais les conduits d’alimentation qui ont fait sortir la lave à la surface de la Terre sont toujours là. Les géologues qui ont effectué l’étude ont parcouru le globe pour trouver des traces de cette tuyauterie. Les conduits d’alimentation apparaissent généralement sous forme de lignes radiales, signes d’anciennes émissions de lave, réparties autour de la bouche éruptive d’un volcan disparu depuis longtemps. Les géologues ont cartographié ces dykes et ont effectué une datation de chacun d’eux à l’uranium-plomb. En faisant correspondre les âges des dykes, ils ont pu établir un lien entre ceux issus d’une seule méga éruption.
Chacune des éruptions nouvellement identifiées entre dans une base de données. On y trouve, entre autres, une éruption qui a eu lieu il y a 1,32 milliard d’années en Australie et qui se connecte à une autre dans le nord de la Chine. Techniquement, ces méga éruptions sont connues sous le nom de «grandes provinces ignées» (Large Igneous Provinces – LIP). Elles sont capables de répandre plus d’un million de kilomètres cubes de roche en quelques millions d’années. Par comparaison, l’éruption de 1980 du Mont St Helens dans l’Etat de Washington a émis seulement 10 kilomètres cubes de matériaux.
Ces grandes éruptions émettent également des gaz qui peuvent modifier la température de l’atmosphère et la chimie des océans. Une modélisation publiée en février 2017 montre que la température de notre planète a probablement augmenté de 7°C par an au plus fort des éruptions de Sibérie. Les particules de soufre provenant de ces éruptions ont ensuite rapidement conduit à un refroidissement global et à des pluies acides qui ont provoqué la disparition de plus de 96% des espèces marines.
Les chercheurs ont été confrontés à des difficultés en remontant loin dans le temps. En effet, les traces laissées par les grandes provinces ignées deviennent de plus en plus floues avec le temps. Les incertitudes de datation grandissent, et il devient difficile de corréler les éruptions individuelles avec des impacts environnementaux spécifiques.
En moyenne, ces méga éruptions qui ont donné naissance aux grandes provinces ignées se produisent environ tous les 20 millions d’années. La plus récente est celle qui a  façonné le plateau basaltique de la Columbia River il y a 17 millions d’années, dans ce qui est maintenant le nord-ouest des États-Unis. La découverte de nouvelles grandes provinces ignées sur Terre permettrait de mettre en perspective l’histoire géologique des planètes voisines. Vénus, Mars, Mercure et la Lune montrent toutes des signes d’énormes éruptions. Sur la Lune, le volcanisme de style LIP a commencé il y a 3,8 milliards d’années et sur Mars il y a peut-être 3,5 milliards d’années. Sans tectonique des plaques pour maintenir la surface active, ces éruptions ont fini par s’arrêter. Les chercheurs pensent que d’autres corps planétaires conservent des informations sur les premières phases de l’évolution planétaire, une information que nous avons perdu sur Terre. Elles pourraient ouvrir une fenêtre sur l’histoire ancienne de notre propre planète.
Source: Scientific American.

—————————————-

New research by geologists at Carleton University in Ottawa (Canada) and Tomsk State University (Russia) has revealed that enormous volcanoes vomited lava over the ancient Earth much more often than geologists had suspected. Such huge eruptions occurred at least 10 times in the past 3 billion years. Such eruptions are linked with some of the most profound changes in Earth’s history, like the biggest mass extinction which happened 252 million years ago when volcanoes blanketed Siberia with lava and poisonous gases.

Knowing when and where such eruptions happened can help geologists to pinpoint ore deposits, reconstruct past supercontinents and understand the birth of planetary crust. Studying this type of volcanic activity on other planets can even reveal clues to the geological history of the early Earth.

The data provided by the mew research are expected to be made public by the end of the year, through a map from the Commission for the Geological Map of the World in Paris. Surprisingly, the ancient eruptions lurk almost in plain sight on the map. The lava they spewed has long since eroded away, but the underlying plumbing that funnelled molten rock from deep in the Earth up through the volcanoes is still there. The geologists who performed the study scoured the globe for traces of this plumbing. It usually appears as radial spokes of ancient squirts of lava, fanned out around the throat of a long-gone volcano. The geologists mapped these dyke swarms, and used uranium–lead dating to pinpoint the age of the rock in each dyke. By matching the ages of the dykes, they could connect those that came from a single huge eruption.

Each of those newly identified eruptions goes into the database. They include a 1.32-billion-year-old eruption in Australia that connects to one in northern China. Technically, the eruptions are known as ‘large igneous provinces’ (LIPs). They can spew more than one million cubic kilometres of rock in a few million years. By comparison, the 1980 eruption of Mount St Helens in Washington State put out just 10 cubic kilometres.

These large events also emit gases that can change atmospheric temperature and ocean chemistry. A modelling study published in February 2017 suggests that global temperatures could have soared by as much as 7°C per year at the height of the Siberian eruptions. Sulphur particles from the eruptions would have soon led to global cooling and acid rain; more than 96% of marine species went extinct.

The researchers were confronted with difficulties as they went very far back in time. The picture of how LIPs affected the global environment gets murkier the further back in time you get. Uncertainties in dating grow, and it becomes hard to correlate individual eruptions with specific environmental impacts.

On average, LIPs occur every 20 million years or so. The most recent one was the Columbia River eruption 17 million years ago, in what is now the northwestern United States. Discovering more LIPs on Earth helps to put the geological history of neighbouring planets in perspective. Venus, Mars, Mercury and the Moon all show signs of enormous eruptions. On the Moon, LIP-style volcanism started as early as 3.8 billion years ago; on Mars, possibly 3.5 billion years ago. But without plate tectonics to keep the surface active, those eruptions eventually ceased. The researchers think that other planetary bodies retain information about the earliest parts of planetary evolution, information that we have lost on Earth. They can give us a window into the early history of our own planet.

Source: Scientific American.

Epanchements basaltiques du Columbia Plateau aux Etats Unis.

(Photos: C. Grandpey)

Kilauea (Hawaii) : Nouvelle carte du champ de lave // New map of the lava field

drapeau-francaisEn fonction des variations du débit de la lave à sa source sur le Pu’uO’o, les coulées changent leurs points de sortie sur l’East Rift Zone du Kilauea. Une nouvelle carte a été mise en ligne par le HVO ; elle montre l’emplacement des nouvelles sorties de lave le 16 février 2017.

L’emplacement du champ de lave actif en date du 12 janvier est représenté en rose, alors que son élargissement avec l’apparition de nouvelles coulées en date du 16 février est montré en rouge.

Les coulées de lave plus anciennes (1983-2016) sont représentées en gris.

La ligne jaune marque la trajectoire probable des tunnels de lave actifs (en pointillé quand le tracé est incertain).

Les lignes bleues sur le champ de lave du Pu’uO’o marquent les lignes de pente les plus abruptes. Elles ont été calculées à partir d’un modèle numérique (MN) datant de 2013, alors que les lignes bleues sur le reste de la carte sont les lignes de pente les plus abruptes calculées à partir d’un MN de 1983. Cette analyse des lignes de pente se base sur l’hypothèse que les modèles numériques représentent parfaitement la surface de la terre. Toutefois, ces modèles ne sont pas parfaits. Les lignes bleues donnent donc seulement une idée de la trajectoire possible qu’emprunteraient des coulées de lave.
Source: USGS / HVO.

—————————————

drapeau-anglaisAccording to the lava output from Pu’uO’o, the lava flows are changing on the slopes of Kilauea Volcano’s East Rift Zone. A new map has been released by HVO, showing where the news breakouts were located on February 16th 2017. .

The area of the active flow field as of January 12th is shown in pink, while widening and advancement of the active flow as of February 16 is shown in red.

Older Pu’uO’o lava flows (1983–2016) are shown in gray.

The yellow line marks the trace of the active lava tube (dashed where uncertain).

The blue lines over the Pu’uO’o flow field are steepest-descent paths calculated from a 2013 digital elevation model (DEM), while the blue lines on the rest of the map are steepest-descent paths calculated from a 1983 DEM. Steepest-descent path analysis is based on the assumption that the DEM perfectly represents the earth’s surface. DEMs, however, are not perfect, so the blue lines on this map can be used to infer only approximate flow paths.

Source: USGS / HVO.

haw-coul

Source: USGS / HVO.

Carte plus grande avec ce lien: https://hvo.wr.usgs.gov/maps/uploads/image-367.jpg

Cartographie de Hunga Ha’apai (Iles Tonga) // Mapping of Hunga Ha’apai (Tonga Islands)

drapeau-francaisEn janvier 2015 (voir mes notes), une nouvelle île est brusquement apparue à la surface de l’Océan Pacifique dans l’archipel des Tonga. Au cours du printemps 2016, les scientifiques ont élaboré une carte détaillée de sa topographie.
La nouvelle île, officieusement baptisée «  Hunga Tonga Hunga Ha’apai »,.s’est formée au cours d’une éruption « surtseyenne », avec montée de magma depuis les fonds marins et rencontre avec les eaux froides de l’océan, ce qui a donné naissance à de spectaculaires gerbes cypressoïdes, bien connues dans un tel contexte.

Le navire de recherche Falkor du Schmidt Ocean Institute a permis de réaliser la cartographie de la nouvelle île en collaboration avec la NASA au cours d’une mission dont l’objectif était en fait d’étudier la vie marine dans les zones hydrothermales du Bassin de Lau (voir carte ci-dessous).
Comme une grande partie de la dynamique des paysages associés aux nouveaux volcans insulaires océaniques se produit sous l’eau, ce projet fournira aux scientifiques une vue en trois dimensions de la nouvelle île, depuis les fonds marins jusqu’à son sommet qui se dresse à environ 130 mètres au-dessus du niveau de la mer.
La cartographie permettra aux chercheurs de mieux comprendre comment évoluent ces îles à la formation rapide et pourquoi leur espérance de vie est souvent limitée. Une analyse préliminaire par les scientifiques de la NASA montre pourquoi la nouvelle île a perdu près de 30 pour cent de sa superficie initiale en seulement 15 mois, depuis l’arrêt de l’activité éruptive fin janvier 2015. Les travaux ont montré que la topographie sous-marine autour de la nouvelle île affecte la vitesse et l’emplacement de l’érosion qui est due principalement à l’abrasion marine et à l’affaissement de l’édifice.
Le travail contribuera également à la compréhension des processus hydro-volcaniques sur des planètes telles que Mars où les structures volcaniques de morphologie semblable ont été observées par les satellites de la NASA.
Source: Phys.org: http://phys.org/

————————————–

drapeau-anglaisIn January 2015 (see my notes), a new island exploded into view from the bottom of the Pacific Ocean and scientists this spring have created a detailed map of its topography.

The new island—unofficially named Hunga Tonga Hunga Ha’apai—was formed in a « surtseyan » eruption, with hot magma rising from the seafloor into cool water, which causes cypress tree-like steam and magma emissions.

The Schmidt Ocean Institute’s research vessel Falkor conducted the mapping in collaboration with NASA during a research cruise whose focus was actually to explore marine life around the hydrothermal vent fields of the nearby eastern Lau Basin (see map below).

Because much of the landscape dynamics associated with new oceanic island volcanoes happens underwater, this project provides scientists with a view of the three dimensional character of the new island, from the seafloor to its approximately 130-metre-tall summit above sea-level.

The mapping will help researchers understand how such rapidly formed volcanic islands evolve and why their survival as land is often limited. Preliminary analysis by NASA scientists show why the new island has lost nearly 30 percent of its initial land area in only 15 months since the eruptive activity ended in late January 2015. The work showed that the submarine topography around the new island clearly affects the pace and location of erosion due primarily to marine abrasion and local subsidence.

The work will contribute to understanding of hydro-volcanic processes on planets such as Mars, where similar-appearing volcanic structures have been observed by NASA satellites.

Source: Phys.org: http://phys.org/

 Tonga-blog

Archipel des Tonga.

Tonga Kermadec Arc

Vue de l’arc Tonga-Kermadec.

Tonga ile

Hunga Ha’apai vue depuis l’espace (Crédit photo: NASA)

La carte géologique de l’Ile d’Hawaii // The geological map of the Island of Hawaii

drapeau-francais2016 marque le 20ème anniversaire de la Carte Géologique de l’Ile d’Hawaii, également connue sous le nom de BIMP (Big Island Mapping Project). La première édition de cette carte remonte à 1996. Numérisée en 2005, elle est encore imprimée aujourd’hui et est disponible en ligne à cette adresse : http://pubs.usgs.gov/ds/2005/144/.

La carte représente un travail de dix ans qui a permis de mettre à jour la carte géologique des années 1940 dessinée par des géologues hawaiiens Harold Stearns et Gordon Macdonald. La carte de 1996 a impliqué plus de vingt géologues, un cartographe, un analyseur de données et de nombreux bénévoles. Il a fallu un énorme travail sur le terrain de la part des géologues pour recueillir de nouvelles informations. Le cartographe a ensuite effectué la synthèse des données géologique pour dessiner la carte telle que nous la connaissons. Toutes ces informations ont ensuite été soigneusement reportées à la main et coloriées sur la carte de référence topographique de l’USGS au 1 : 100 000.

En 1996, la carte géologique présentait six feuilles. Un ensemble de trois feuilles contenait la carte géologique en couleur, avec les origines, les formes, les reliefs, l’âge des coulées de lave et d’autres dépôts de surface, les cônes de scories, les fractures, les bouches et les failles. Un livret explicatif de 18 pages était proposé avec la carte géologique.
La deuxième série de trois cartes présentait l’emplacement et les données analytiques de 1783 échantillons de roches ainsi que l’analyse au Carbone 14 de 242 autres échantillons recueillis par les géologues. L’âge et l’analyse chimique de chaque échantillon étaient indiqués dans des tableaux à l’intérieur d’une brochure de 51 pages qui accompagnait les cartes.
Cette évolution de la carte entre 1946 et 1996 est propre à toutes les cartes géologiques. Elle représente une image du terrain à un certain moment. Elle sera mise à jour par les futures générations de scientifiques. Un jour, les cartes géologiques numériques seront probablement en trois dimensions et totalement interactives, et utiliseront des technologies que nous ne pouvons même pas imaginer aujourd’hui.
Source: USGS / HVO.

NB : Je possède la dernière édition de cette carte. Autant que je me souvienne, je l’ai achetée dans la boutique du Jaggar Museum.

————————————

drapeau-anglais2016 marks the 20th anniversary of the Geologic Map of the Island of Hawaii, also known as the BIMP (Big Island Mapping Project). The first printing of this map was in 1996. Digitized in 2005, it is still in print today and is available online at pubs.usgs.gov/ds/2005/144/.

The BIMP was a decade-long project that updated the 1940s geologic map by legendary Hawaii geologists Harold Stearns and Gordon Macdonald. The 1996 map was a large undertaking involving more than two dozen geologists, a cartographer, a data technician, and many volunteers. It required a huge on-the-field work by geologist to gather new information. The cartographer then unified the field geologists’ linework for the final map. All this information was then carefully hand drawn and coloured onto the USGS 1:100,000 Hawaii County topographic base map.

The 1996 geologic map publication contains six sheets. One set of three sheets presents the coloured geologic map, which displays the origins, shapes, physical compositions, and ages of the lava flows and other surface deposits, including cinder cones, fissure vents, and faults. An 18-page text summary of the three sheets is included with the geologic map.

The second set of three maps displays the location and some analytical data for 1,783 rock and 242 radiocarbon samples gathered by BIMP geologists. The chemical composition or radiocarbon age of each sample is published in tables in the accompanying 51-page pamphlet.

This evolution of the map from 1946 to 1996 illustrates a theme of geologic maps: they are always a snapshot of understanding at a point in time. These maps will be updated by future generations of scientists. Someday, digital geologic maps will be three dimensional and completely interactive, probably in ways we cannot even imagine now.

Source: USGS / HVO.

2mapsVolMonitorV2

Source: USGS / HVO.

Nouvelle carte d’évacuation du Mont Fuji (Japon) // New evacuation map for Mt Fuji (Japan)

drapeau francaisSuite à l’augmentation de l’activité volcanique sur plusieurs sites touristiques très fréquentés au Japon, en particulier le Mont Hakone, et l’éruption meurtrière au Mont Ontake, une nouvelle carte d’évacuation a été diffusée dans l’éventualité d’une éruption du Mont Fuji.
La période d’ascension du volcan commence le mois prochain et dure jusqu’à la mi-septembre. Les autorités locales ont mis en ligne une carte montrant les itinéraires d’évacuation pour les randonneurs et les simples touristes. Elle a été réalisée en fonction de quatre scénarios éruptifs basés sur l’emplacement des bouches potentiellement actives et la trajectoire que pourrait emprunter la lave. Les modèles s’appuient sur les éruptions connues qui ont eu lieu il y a 1000 ans et auparavant. Les autorités ont également organisé un exercice de simulation de catastrophe destiné aux entreprises touristiques locales et aux services d’urgence.
Le Mont Fuji attire environ 300 000 randonneurs chaque année et il est considéré comme un volcan actif. Il est toutefois difficile de prévoir une éruption avec précision car ce volcan, qui culmine à 3776 mètres, présente plusieurs bouches potentiellement actives.
Source: The Japan Times.

 —————————————————

drapeau anglaisIn the wake of increased volcanic activity at some popular tourist spots across Japan, especially Mount Hakone, and the deadly eruption at Mt Ontake, a new evacuation map has been released in the event of an eruption of Mount Fuji.

The climbing season for the volcano begins next month and runs through mid-September. Local authorities have posted an evacuation route map online for climbers and tourists that outlines four scenarios for how the mountain might blow. They are based on the vent’s location and the reach of lava. The models are based on known eruptions that took place 1,000 years ago and earlier. Authorities also held a disaster drill for local tourism businesses and the emergency services.

Mount Fuji draws roughly 300,000 climbers a year and is designated as an active volcano. However, it is difficult to predict how it might erupt as the 3,776-meter mountain has a number of possible vents.

Source : The Japan Times.

Fuji-blog

Crédit photo:  Wikipedia.

Suivez la cendre du Turrialba (Costa Rica)! // Track the ash from Turrialba Volcano (Costa Rica)!

drapeau francaisL’Observatoire volcanologique et sismologique du Costa Rica (OVSICORI) a mis en ligne lundi un nouvel outil permettant de suivre la trajectoire de la cendre expulsée par le Turrialba. L’outil, appelé Ash3D, a été mis au point par l’USGS.

L’outil Ash3D calcule conditions météorologiques et évalue les changements de vent afin de créer un modèle de la trajectoire possible de la cendre en cas d’éruption. Le logiciel permet également aux scientifiques de déterminer les endroits où des matériaux volcaniques pourraient s’accumuler. L’information est mise à jour toutes les 12 heures et peut être consultée à l’adresse suivante: www.ovsicori.una.ac.cr

En ce qui concerne les effets de la cendre du Turrialba, un rapport du gouvernement indiquait lundi soir que 165 personnes dans 13 localités avaient été affectées par l’activité du volcan. Soixante-deux familles ont été évacuées par mesure de précaution. Un abri temporaire a été établi à Santa Cruz, au nord du canton de Turrialba. Jusqu’à présent, le refuge est vide.
Les cours ont été suspendus dans 13 écoles publiques et les fonctionnaires du Ministère l’Éducation ont assuré cette semaine le transfert des élèves des classes terminales du secondaire vers d’autres écoles publiques afin qu’ils puissent passer leurs examens de fin d’études qui commençaient ce mardi.

Source : The Tico Times.

 ————————————————-

drapeau anglaisThe Volcanological and Seismological Observatory of Costa Rica (OVSICORI) on Monday launched a new online tool for users to track the trajectory of ash expelled by the Turrialba Volcano. The tool, called Ash3D, was developed by the U.S. Geological Survey (USGS).

The Ash3D calculates weather conditions and evaluates wind changes in order to create a model of the possible trajectory of ash in case of an eruption. The software also allows experts to determine locations where volcanic material could accumulate. The information is updated every 12 hours and can be seen at: www.ovsicori.una.ac.cr

As far ash effects are concerned, on Monday evening, a governmental report noted that 165 people from 13 communities said they had been affected by the volcano’s activity. Sixty-two families were evacuated as a precautionary measure. A temporary shelter has been established in Santa Cruz, north of the Turrialba canton. So far, the shelter is empty.

Classes at 13 public schools have been suspended, and Education Ministry officials this week coordinated the transfer of high school seniors to other public schools in order to take their graduation tests that begin on Tuesday.

Source : The Tico Times.

Turrialba-blog

La bouche éruptive du Turrialba  (Crédit photo:  OVSICORI)