Eruption du Kilauea (Hawaii) ! // Eruption of Kilauea Volcano (Hawaii) !

Juste après environ 21h30 (heure locale) le 20 décembre 2020, un essaim sismique a été enregistré sur le Kilauea, accompagné d’une déformation de la zone sommitale du volcan. L’Observatoire des Volcans d’Hawaii (HVO) a ensuite détecté une lueur dans le cratère de l’Halema’uma’u au sommet du Kilauea. Cela signifiait qu’une éruption avait commencé dans la caldeira sommitale. La situation évolue rapidement et le HVO publiera des mises à jour lorsque de nouvelles informations seront disponibles.

Le niveau d’alerte volcanique a été élevé à WARNING (Danger) et la couleur de l’alerte aérienne est passée au ROUGE.

La Protection Civile a mis en garde sur le risque de retombées de cendres dans les secteurs de Wood Valley, Pahala, Naalehu et Ocean View. Il est conseillé aux habitants de ces secteurs de rester à l’intérieur des maisons.

Il est intéressant de noter que peu de temps après le début de l’éruption sommitale, le HVO a enregistré un séisme de M 4,4 sous le flanc sud du Kilauea. L’épicentre se trouvait à environ 14 km au sud de Fern Forest, près de Holei Pali, à une profondeur de 6 km. La secousse ne semble pas être liée à l’éruption. Elle fait partie de la sismicité qui affecte régulièrement le flanc sud du Kilauea qui se déplace vers le sud-est au-dessus de la croûte océanique.

Ne vous précipitez pas pour acheter un billet d’avion pour aller à Hawaii ! En raison de la pandémie de coronavirus, il n’y a actuellement pas d’avions pour les touristes à destination des États-Unis. De plus, Hawaï a été fortement impacté par la maladie. Les services sanitaires hawaiiens signalaient 204 nouveaux cas de coronavirus le 20 décembre, ce qui porte le total pour l’État à 20 217 depuis le début de la pandémie. 1 412 personnes ont été hospitalisées dans l’ensemble de l’État et au moins 282 sont décédées.

—————————————–

Shortly after approximately 9:30 p.m. (local time) on December 20th, 2020, an earthquake swarm began on Kilauea Volcano, accompanied by ground deformation detected by tiltmeters. The Hawaiian Volcano Observatory (HVO) next detected glow within Halema’uma’u crater at the summit of Kilauea. This meant an eruption had started within the summit caldera. The situation is rapidly evolving and HVO will issue another statement when more information is available.
The volcano alert level has been raised to WARNING and its aviation colour code to RED.

Civil Defense cautioned that ash fallout is likely in Wood Valley, Pahala, Naalehu and Ocean View, and advised residents and visitors to stay indoors to avoid exposure to ash.

It should be noted that a short time after the summit eruption started, HVO recorded an M-4.4 earthquake beneath Kilauea’s south flank. The event was centered about 14 km south of Fern Forest, near Holei Pali, at a depth of 6 km. The quake does not seem to be linked to the eruption. It is part of the seismicity that regularly affects Kilauea’s south flank which moves to the southeast over the oceanic crust.

It’s no use hurrying to buy a plane ticket to go to Hawaii. Because of the coronavirus pandemic, there are currently no planes for tourists to the U.S. Moreover, Hawaii has been strongly hit by the disease. The Hawaii Department of Health again reported 204 new cases of coronavirus on December 20th, bringing the statewide total to 20,217 since the pandemic began. A total of 1,412 individuals have been hospitalized statewide as a result of covid-19 infection and at least 282 have died.

Lueur sommitale vue par la webcam sur la tour d’observation du HVO.

Image thermique du fond du cratère de l’Halema’uma’u (Source : HVO)

Une caldeira géante au coeur des Aléoutiennes (Alaska)? // A huge caldera at the heart of the Aleutians (Alaska) ?

L’information a fait la une de nombreux médias. Ainsi, on peut lire sur le site web du très sérieux National Geographic un article très surprenant qui explique que «des îles de l’Alaska font peut-être partie d’un même volcan de taille imposante». Là où les scientifiques pensaient qu’il y avait plusieurs petits volcans indépendants pourrait exister un seul énorme édifice volcanique!

C’est la conclusion d’une étude qui sera présentée lors de la prochaine réunion de l’American Geophysical Union. Le nouveau volcan – si sa découverte est confirmée par des études ultérieures  – se serait formé lors d’un événement bien plus spectaculaire que l’éruption du Mont St. Helens en 1980.

Le volcan géant est délimité par un ensemble semi-circulaire d’édifices potentiellement actifs connus sous le nom d’Iles des Quatre Montagnes – Islands of the Four Mountains (IFM) – au cœur des îles Aléoutiennes. Ces îles, qui ont longtemps été considérées comme des volcans indépendants, pourraient en réalité constituer une série de bouches éruptives reliées entre elles le long de la lèvre d’une caldeira volcanique beaucoup plus grande. Les six sommets en question ont pour noms Herbert, Carlisle, Cleveland, Tana, Uliaga et Kagamil. Toutefois, si cette caldeira volcanique existe, les scientifiques disent que cela ne signifie pas forcément qu’une catastrophe se produira dans le futur.

Pour arriver à leur conclusion surprenante, les chercheurs ont étudié la géologie locale. Ils ont tenté de détecter la moindre sismicité et ont effectué des analyses chimiques pour comprendre la composition des gaz s’échappant du sol. En étudiant ces données, ils ont remarqué certaines caractéristiques qui les ont conduits à penser qu’elles pourraient appartenir à une ancienne éruption de grande ampleur.

La première pièce du puzzle est la forme en demi-cercle des volcans IFM qui fait penser à une caldeira. On sait que la formation d’une caldeira peut donner naissance à un certain nombre de fractures à travers lesquelles le magma peut s’infiltrer avant d’atteindre la surface, de sorte que des groupes de bouches éruptives se rencontrent fréquemment autour ou au centre de la caldeira.

Les chercheurs en ont conclu que les volcans IFM pouvaient représenter une série de structures géologiques connectées entre elles autour d’une caldeira de 20 kilomètres de large dont le fond se situerait à des centaines de mètres sous la surface de l’Océan Pacifique.

La découverte d’ignimbrites a constitué une autre pièce du puzzle. Ces matériaux se forment lorsqu’une grande éruption dépose des couches de cendres volcaniques à haute température si épaisses que les grains se soudent pour former une roche solide.

En plus des premières pièces du puzzle, les scientifiques ont recueilli de nouveaux éléments, en particulier des anomalies gravimétriques fournies par des données satellitaires et des études bathymétriques conduites dans la région peu après la Seconde Guerre mondiale. Les cartes des fonds marins montrent plusieurs structures de dorsales courbées, ainsi qu’une dépression de plus de 120 mètres de profondeur susceptible de faire partie d’une caldeira. Si ces observations sont confirmées, cela pourrait signifier qu’un bassin sous-marin a pu se former à la suite d’une puissante éruption volcanique.

Les chercheurs admettent que «chacune de ces preuves potentielles est discutable». Cependant, à mesure qu’elles s’accumulent, l’idée d’une caldeira devient de plus en plus plausible.

De nouvelles recherches seront nécessaires pour confirmer l’existence d’une telle caldeira dans les Aléoutiennes. Pour le moment, les scientifiques ne connaissent pas la taille exacte de la caldeira, et ils ne savent pas non plus si elle a été formée par une grande éruption ou plusieurs événements de moindre importance.

Source: National Geographic.

°°°°°°°°°°°°°°°°

Cette information est intéressante, mais l’hypothèse avancée par les scientifiques doit être étayée sérieusement. Une caldeira en zone de subduction avec la lèvre ornée de petits volcans comme les bougies d’un gâteau d’anniversaire? Je demande confirmation! Pour le moment, à mes yeux, ces volcans actifs font partie de l’arc de subduction de la Chaîne des Aléoutiennes. Il faudra trouver et analyser sur la terre ferme du sud-ouest de l’Alaska les restes de l’éruption qui a façonné cette caldeira. En effet, si l’explosion a effectivement eu lieu, sa puissance a été considérable et les projections ne se sont probablement pas limitées à l’océan!

————————————————

One can read on the website of the very serious National Geographic a very surprising article that explains that “Alaska islands may be part of single, massive volcano.” What scientists thought were several small, independent volcanoes might actually be a single huge volcanic edifice!.

This is the conclusion of research to be presented at the next American Geophysical Union meeting. If it proves true, the new ly discovered – if it relay exists – once erupted in an event far more dramatic than the 1980 eruption of Mount St. Helens.

The giant volcano is marked by a semi-circular cluster of potentially eruptive summits known as the Islands of the Four Mountains (IFM), among   the Aleutian Islands. These islands, which  have been long considered as independent volcanoes, might actually be a series of connected vents along the edge of a much larger volcanic caldera. The six peaks include Herbert, Carlisle, Cleveland, Tana, Uliaga, and Kagamil. Should this volcanic caldera exist, the scientists say that it does not mean a catastrophe will occur in the future.

To get to their surprising conclusion, the researchers examined the local geology. They used tried to detect the slightest seismicity and performed chemical analyses to understand the composition of gasses effusing from the ground. While studying this data, they notices some features that led them to think they might belong to an enormous and ancient eruption.

The first piece of the puzzle was the curious half-ring shape of the closely clustered IFM volcanoes which really looked like a caldera. The formation of a caldera produces a number of fractures through which magma can then seep to the surface, so that volcanic clusters are common around their edges or centres.

As a consequence, the researchers imagined that the IFM volcanoes might represent a series of connected geologic structures around a potential 20-kilometre-wide caldera whose botto would lie hundreds metres beneath the surface of the Pacific Ocean.

Another piece of the puzzle was the discovery of ignimbrites. These materials form when a large eruption lays down hot temperature volcanic ash so thick that the grains weld together into solid rock.

Confirming the first pieces of the puzzle, the scientists collected more evidence, including gravity anomalies from satellite data and bathymetric surveys that were conducted in the area shortly after World War II. The maps of the seafloor revealed several curved ridge structures and a depression more than 120 metres deep that could be part of a caldera. If these observations are confirmed, it might mean that a potential underwater basin resulted from a powerful volcanic explosion.

The researchers admit that “any one piece of these pieces of evidence is questionable.” However, as they are getting more and more numerous, the idea of a caldera does become more and more reliable.

More research will be needed to confirm the existence of a caldera in the Aleutians. For one thing, the scientists are not sure about the size of the caldera, and they don’t know whether it was made from one large eruption or several smaller events.

Source : National Geographic.

°°°°°°°°°°°°°°°°

This is interesting information, but the hypothesis set forth by scientists needs to be seriously substantiated. A caldera in a subduction zone with its rim adorned with small volcanoes like candles on a birthday cake? I need confirmation! At the moment, to my eyes, these active volcanoes are part of the Aleutian Chain subduction arc. It will be necessary to find and analyze on the mainland of southwest Alaska the remains of the eruption that shaped this caldera. Indeed, if the explosion did indeed take place, its power was considerable and the projections were probably not limited to the ocean!

Carte de localisation des Islands of the Four Mountains (Google Maps)

Islands of the Four Mountains vues depuis l’ISS

Découverte de la plus grande caldeira sur Terre? // Discovery of the largest caldera on Earth ?

Selon un article publié dans la revue Marine Geology, une équipe de chercheurs parmi lesquels des membres de GNS Science (Nouvelle-Zélande) a identifié un ancien volcan de très grande taille, avec ce qui pourrait bien être la plus grande caldeira connue sur Terre. Elle se trouve sur la crête de Benham Rise, un plateau océanique au large de la côte des Philippines. En raison de sa taille impressionnante, on lui a donné le nom du dieu philippin du soleil et de la guerre, Apolaki, qui peut se traduire par « seigneur géant ».
La découverte d’une si grande caldeira soulève des questions sur le volcanisme de Benham Rise il y a environ 48 à 41 millions d’années et sur les conditions particulières qui ont entouré la formation de la caldeira d’Apolaki. Si la découverte est confirmée par d’autres recherches, Apolaki deviendra officiellement la plus grande caldeira connue sur Terre.
La caldeira de Benham Rise, d’environ 150 km de diamètre, peut être comparée aux plus grands cratères d’impact sur Terre. Parmi les plus grands figure le Chicxulub, large de 200 km environ, produit par l’impact de l’astéroïde qui a probablement fait disparaître les dinosaures il y a 66 millions d’années. Toutefois, l’étude publiée dans la revue Marine Geology montre que la caldeira d’Apolaki a plus de points communs avec les caldeiras qu’avec les cratères d’impact. Le sommet en forme de cratère de Benham Rise est semblable en taille aux caldeiras observées sur Mars, comme Olympus Mons. Il est également comparable à celles de Vénus, comme Colette et Sacajawea. Les scientifiques pensent que la caldera d’Apolaki a connu plusieurs effondrements et une phase de résurgence.
Il ne faudrait pas oublier que 80% des fonds océaniques de notre planète ne sont pas cartographiés. La découverte de l’immense caldeira d’Apolaki pourrait être une incitation à davantage d’études sur les fonds marins et pourrait conduire à des découvertes inattendues.
Source: The Watchers.

——————————————–

According to an article published in the journal Marine Geology, a team of researchers including members from New Zealand GNS Science have identified an ancient mega-volcano with what could be the largest known caldera on Earth. The feature is on the crest of Benham Rise, an oceanic plateau off the Philippines coast. Due to its massive size, it was named after Filipino mythical god of the sun and war, Apolaki, whose name also translates to « giant lord ».

The discovery of such a large caldera raises questions about volcanism in the Benham Rise around 48-41 million years ago and what special conditions were present for the Apolaki caldera to form. If the team’s conclusions are confirmed by further research, it will officially become the largest known caldera on Earth.

The caldera on Benham Rise, about 150 km in diameter, can be compared to the biggest impact craters on Earth. The largest known identified craters on Earth include Chicxulub, about 200 km wide, produced by the impact of the asteroid that probably made dinosaurs extinct 66 million years ago. However, the study published in the journal Marine Geology shows it has more in common with calderas than impact craters. The crater-like summit of Benham Rise could be compared in size to calderas on Mars, such as Olympus Mons. It is also comparable to that of Venus, such as Colette and Sacajawea. Scientists believe that the Apolaki caldera went through multiple collapse events and a resurgence phase.

One should bear in mind that 80% of the world’s ocean floor is unmapped. The discovery of the huge Apolaki caldera might be a push for more study about the depth of the seafloor  and could lead to more rare discoveries.

Source : The Watchers.

Source: NAMRIA

Source:  GNS Science

Eruption sommitale du Kilauea (Hawaii): Les prévisions de l’USGS // Kilauea’s summit eruption (Hawaii): USGS predictions

Alors que l’éruption se poursuit dans la Lower East Rift Zone (LERZ) du Kilauea, l’USGS a publié un rapport évaluant les risques volcaniques potentiels au sommet du volcan. Le rapport résume l’activité entre la fin avril et le 29 juin 2018.
L’USGS explique que peu de processus décrits ci-dessous sont suffisamment connus pour pouvoir évaluer quantitativement d’éventuels événements futurs. C’est pourquoi les prévisions sont évaluées en termes qualitatifs sur la base de la compréhension des données actuelles.
En ce qui concerne les épisodes d’effondrement accompagnés d’explosions au sommet du Kilauea, on a remarqué que les premiers événements (avant la fin mai) ont émis des panaches de cendre et de gaz à des altitudes supérieures à 7 500 mètres, avec projections de matériaux de plusieurs dizaines de centimètres de diamètre autour de la bouche éruptive. Les observations et les premières analyses ont montré que ces explosions étaient probablement causées non pas par l’interaction du magma avec les eaux souterraines comme cela s’était produit sur le Kilauea en 1924, mais plutôt par l’expansion et la libération de gaz dissous dans le magma.
Les épisodes d’effondrement accompagnés d’explosions ont continué à se produire par intermittence, avec des périodes de calme d’une demi-journée à deux jours. On remarquera que la sismicité augmente dans les heures qui précèdent les explosions, avec des secousses cycliques ressenties dans la zone sommitale. Le mécanisme qui génère ces événements n’est pas encore bien compris. Les géologues de l’USGS pensent que le retrait du magma du sommet et son évacuation vers la LERZ entraîne une baisse de pression dans le réservoir magmatique superficiel. Lorsque la chute de pression devient trop importante, le plancher de l’Halema’uma’u et certaines parties de la caldeira du Kilauea s’effondrent à l’intérieur de ce réservoir magmatique en provoquant des explosions. Les matériaux qui s’effondrent dans le réservoir remplacent le magma qui a migré dans la LERZ et provoquent une brusque augmentation de la pression dans le réservoir. Des processus similaires ont été observés pendant la formation de caldeiras sur d’autres volcans.
Depuis le début du mois de mai, le volume du cratère a plus que quadruplé. Entre le 29 mai 2018 et aujourd’hui, une station GPS située près du bord nord du cratère de l’Halema’uma’u a mesuré une chute d’environ 100 mètres du plancher du cratère.
À la fin du mois de mai, l’effondrement des parois du cratère a obstrué l’ancien Overlook Crater – qui contenait autrefois le lac de lave – et a modifié l’activité sommitale. Depuis cette époque, les émissions de gaz au sommet ont fortement diminué ; les événements d’effondrement accompagnés d’explosions ne produisent généralement que de faibles panaches de cendre qui ne dépassent plus 1 800 mètres au-dessus de la lèvre du cratère et aucune projection de matériaux n’est observée.
Bien que les panaches soient devenus moins volumineux, ces événements plus récents ont été précédés et accompagnés d’une plus grande activité sismique, et la pression subie par le réservoir magmatique pendant les événements a augmenté.
Les caractéristiques de l’affaissement du sommet ont également évolué. En effet, les déformations se concentrent davantage autour du cratère de l’Halema’uma’u, et se produisent avec une plus grande fréquence ; À l’heure actuelle, la subsidence de la caldeira se poursuit à un rythme élevé en raison du retrait de magma du réservoir situé sous l’Halema’uma’u.
L’USGS pense que l’affaissement se poursuivra tant que le magma s’échappera du (ou des) réservoir(s) sommital avec un volume d’évacuation qui dépasse le volume d’alimentation. Toutefois, la forme et la vitesse de l’affaissement peuvent varier, ainsi que les risques qui y sont liés.

Selon l’USGS, l’évolution la plus probable dans l’avenir immédiat consistera en une poursuite de l’affaissement de la caldeira de Kilauea, l’effondrement périodique du cratère de l’Halema’uma’u qui continuera de s’élargir, des séismes (certains assez puissants pour provoquer des dégâts) et des panaches de cendre.
Au fur et à mesure que la déflation du sommet se poursuit, des fractures et des affaissements de terrain affectent la caldeira du Kilauea. Ce processus va probablement agrandir le cratère de l’Halema’uma’u et pourrait entraîner des affaissements à plus grande échelle qu’auparavant. Cette activité est impressionnante et elle pourrait à terme concerner la totalité de l’actuelle caldeira du Kilauea.
Par ailleurs, une forte activité explosive ne saurait être exclue. Il est possible qu’une grande partie de la paroi de l’Halema’uma’u s’effondre brutalement dans le cratère. Un vaste secteur E et NE de l’Halema’uma’u est actuellement en train de se déformer et il est difficile de dire quelle pourrait être l’ampleur d’un tel effondrement ou les explosions qu’il pourrait déclencher. Un tel événement générerait probablement une forte secousse sismique et un volumineux panache de cendre.

Plusieurs facteurs sont susceptibles de modifier la nature de l’activité éruptive et des risques associés. Les scientifiques les considèrent comme moins probables mais ils ne peuvent pas être exclus :
1. Des explosions plus violentes et donc plus dangereuses pendant l’affaissement continu et l’agrandissement de l’Halema’uma’u
2. L’effondrement soudain et à grande échelle de la caldeira avec rupture des parois de la partie haute de la caldeira
3. Bien que moins probables, des scénarios plus dangereux existent. De grandes éruptions explosives se sont produites dans le passé sur le Kilauea, après la formation de la caldeira ou au cours de la dernière étape de sa formation. Il est possible que ces éruptions aient été déclenchées par l’effondrement rapide de larges portions de la caldeira le long de failles en bordure de la caldeira, en raison du retrait de grandes quantités de magma du système de stockage au sommet. Cependant, une telle activité serait probablement précédée de changements significatifs dans l’activité sismique et la déformation du sol. À l’heure actuelle, les données satellitaires ne montrent pas de déformations importantes à l’extérieur de la caldeira.
4. D’autres dangers associés à l’effondrement rapide et à grande échelle de la caldeira pourraient inclure de puissantes fontaines de lave et des explosions plus fortes avec des coulées pyroclastiques. Cependant, l’USGS insiste sur le fait que les données actuelles ne n’annoncent pas un scénario d’effondrement brutal et plus important que celui auquel on assiste à l’heure actuelle.
Source: U S Geological Survey.

———————————————–

While the eruption is going on in Kilauea’s Lower East Rift Zone (LERZ), USGS has released a report assessing potential volcanic hazards at the summit of Kilauea. The report summarizes activity from late April through June 29,
USGS explains that few processes outlined below are known sufficiently well to be able to assign quantitative probabilities to possible future events. Instead, USGS ranks future possibilities in qualitative terms of likelihood based on its understanding of current data.

As far as Kilauea’s Collapse/Explosion (CE) events are concerned, it has been noticed that early events (before late May) ejected ash and gas to heights above 7,500 metres and large ballistic fragments tens of centimetres in size pelted the area immediately surrounding the vent. Observations and preliminary analyses suggest that these explosions may have been caused not by interaction of magma with groundwater, as previously believed to have occurred at Kīlauea in 1924, but rather by the expansion and release of gases which were dissolved in the magma.

CE events have continued to occur semi-regularly, with repose periods of roughly .5 to two days. Seismicity increases in the hours preceding explosions, leading to cycles of earthquakes that are felt in the summit area. The mechanism producing CE events is not well understood. USGS geologists think that withdrawal of magma towards the LERZ continually works to reduce pressure in the shallow reservoir. When the reduction in pressure becomes too great, the floor of Halema‘uma‘u and parts of surrounding Kilauea Caldera slump down into the shallow magma reservoir in a CE event. The rock that slumps down into the reservoir replaces magma that has migrated into the LERZ and abruptly increases reservoir pressure. Similar processes have been observed during caldera formation at other volcanoes.

Since the beginning of May, the crater’s volume has more than quadrupled and since May 29th, 2018, a GPS station near the north rim of Halema‘uma‘u crater measured a drop of about 100 metres during CE events.

At the end of May, collapse of rock from surrounding crater walls blocked the Overlook Crater (which formerly contained the lava lake) and changed the character of summit activity. Since then, gas emissions at the summit have greatly decreased, CE events generally have produced only weak ash plumes that do not rise higher than 1,800 metres above the crater rim and no ballistic fragments are known to have been ejected.

Although the plumes have become less vigorous, these more recent events have been preceded and accompanied by larger amounts of seismic shaking, and reservoir pressurization during the events has increased.

The character of subsidence at the summit has also changed, with deformation becoming more localized around Halema‘uma‘u Crater, but occurring at a higher rate. At the current time, subsidence of the caldera continues at a high rate due to magma withdrawal from the Halema‘uma‘u magma reservoir.

USGS thinks that ground subsidence will continue for as long as magma is withdrawn from the summit reservoir(s) at a rate exceeding the rate of magma supply, but the rate and style of the subsidence, along with the associated hazards, may vary.

According to USGS, the most likely activity for the immediate future is continued subsidence of the Kilauea caldera, episodic slumping into a widening Halema‘uma‘u Crater, felt earthquakes (some large enough to be damaging) and small to intermediate ash plumes.

As the reservoir deflates, cracking and slumping is gradually engulfing a broader extent of the Kilauea Caldera; this process will likely continue to enlarge Halema‘uma‘u and may involve larger slump blocks than previously. This activity is impressive in scale and may ultimately involve much or even all of the current Kilauea Caldera.

Hazardous explosive activity cannot be ruled out, however. It is possible that a large section of the Halema‘uma‘u wall could abruptly collapse into the crater. Because a broad region E and NE of Halema‘uma‘u is currently deforming, it is difficult to predict how large such a collapse might be or its impact on the explosion hazard. Most likely, such an event would generate only strong seismic shaking and a robust ash plume.

Several mechanisms could change the nature of activity and associated hazards. These are considered less likely but cannot be ruled out.

  1. Larger, more hazardous explosions could happen during ongoing subsidence and enlargement of Halema‘uma‘u
  2. Sudden collapse of broader caldera system and catastrophic failure of high caldera
    walls.
  3. Even less likely, more hazardous scenarios exist. Large explosive eruptions have occurred in Kilauea’s past after caldera formation or during the last stage of its formation. It is possible that these eruptions were triggered by rapid collapse of broad regions of the caldera along caldera-bounding faults due to withdrawal of large quantities of magma from the summit storage system. However, such activity should be preceded by significant changes in earthquake activity and ground deformation. At this time, satellite radar data do not suggest that extensive deformation is occurring outside of the caldera.
  4. Additional hazards associated with rapid, broad-scale caldera collapse could include high lava fountains and larger and more dangerous explosions producing pyroclastic surges. However, USGS emphasizes that current data do not suggest that a larger, sudden collapse scenario is likely at present.

Source: U S Geological Survey.

Voici deux images montrant le cratère de l’Halema’uma’u en 2009 (en haut) et le 21 juin 2018 (en bas). En 2009, un lac de lave était présent dans l’Overlook Crater. En 2018, on remarque les importantes fractures autour du cratère, mais aussi que ce dernier s’est agrandi de manière significative suite aux effondrements de ses parois. Le plancher du cratère s’est affaissé de plus de 300 mètres depuis le début du mois de mai. (Source : USGS)

Source: USGS

Nouvelle vue du sommet du Kilauea (Hawaii) // New view of the Kilauea summit (Hawaii)

Cette vue aérienne du sommet du Kilauea (la photo a été prise le 28 juillet au petit matin et est orientée vers le sud) montre la nouvelle morphologie du cratère de l’Halema’uma’u après les effondrements du plancher de la caldeira sommitale. Plusieurs éléments du paysage sont parfaitement visibles: La Crater Rim Drive (en bas à droite) conduit à l’Hawaiian Volcano Observatory et au Jaggar Museum (à droite, au milieu) ; ils sont perchés sur la lèvre de la caldeira et surplombent l’Halema’uma’u qui ne cesse de s’agrandir. Des fractures dans le sol, parallèles au bord du cratère, sont visibles dans la partie nord de l’Halema’uma’u (côté gauche de l’image). Le South Sulphur Bank se distingue par sa couleur plus claire sur la paroi opposée du cratère.

Vous obtiendrez une photo plus grande en cliquant sur ce lien :
http://bigislandnow.com/wp-content/uploads/2018/07/usgs-july-29f.jpg

————————————————

This aerial view of Kilauea’s summit (taken on July 28th in the early morning, looking south) shows the new morphology of Halema’uma’u Crater after the collapses of the summit caldera floor. Several features are clearly visible: Crater Rim Drive (lower right) leads to the USGS Hawaiian Volcano Observatory and NPS Jaggar Museum (right, middle), perched on the caldera rim and overlooking the growing Halema‘uma‘u. Ground cracks, parallel to the crater rim, are visible on the north side of Halema‘uma‘u (left side of image). South Sulphur Bank stands out as the light-coloured area on the opposite crater wall.

You will get a larger image by clicking on this link:

http://bigislandnow.com/wp-content/uploads/2018/07/usgs-july-29f.jpg

Crédit photo: USGS

Les éruptions explosives du Mauna Loa (Hawaii) // Mauna Loa’s explosive eruptions (Hawaii)

Les volcans hawaiiens donnent en général naissance à des coulées de lave peu dangereuses, mais une petite partie des matériaux émis pendant les éruptions présente aussi un caractère explosif. Dans la mesure où les risques associés aux éruptions explosives sont beaucoup plus importants que ceux associés aux coulées de lave, l’étude des dépôts laissés par les éruptions explosives sur le Mauna Loa aide à mieux comprendre le fonctionnement des volcans hawaïens et les dangers qu’ils représentent pour la population.
En 1840, une expédition conduite par le lieutenant Charles Wilkes a étudié pour la première fois la caldeira sommitale du Mauna Loa. Les rapports d’observations laissent supposer qu’aucun dépôt explosif n’a été découvert..
En 1885, Thomas Jaggar, fondateur de l’Observatoire des Volcans d’Hawaï (le HVO), associa les dépôts présents sur la lèvre de la caldeira sommitale à la colonne éruptive produite par la première phase de l’éruption de 1877 qui avait été précédemment décrite par un missionnaire.
Alors qu’il faisait l’ascension du Mauna Loa en 1924, un ancien géologue de l’USGS a remarqué des dépôts d’explosions dans un kipuka (une zone de terre entourée d’une ou plusieurs coulées de lave plus jeunes) le long de l’Āinapō Trail. Il en a conclu que les éruptions qui avaient produit ces dépôts étaient d’origine phréatique.
En 1949, un géologue du HVO a observé que des blocs angulaires éjectés par des explosions étaient éparpillés sur le pourtour de la caldeira de Moku’weweoweo, avec des diamètres pouvant atteindre 1,50 mètre dans le secteur nord-ouest de la caldeira. À la cabine édifiée au sommet du volcan, il a observé une quantité importante de cendre ainsi que des blocs jusqu’à 1 mètre de diamètre. Lui aussi a conclu que les éruptions étaient phréatiques et que les dépôts provenaient d’une série d’explosions dans la zone sommitale.
La question était de savoir quand ces éruptions explosives se sont produites. Le charbon de bois est normalement utilisé pour dater les coulées de lave au Carbone 14, mais on n’en trouve pas au-dessus de la limite de la végétation. C’est pourquoi les géologues ont utilisé la datation par isotopes cosmogéniques pour dater les roches qui ont été régulièrement exposées aux rayons cosmiques autour de la caldeira de Moku’weweoweo.

Des échantillons représentatifs de chaque zone de dépôts et des coulées de lave sous-jacentes (i.e. du substrat) ont été prélevés. Les roches prélevées dans les trois zones près de Moku’weweeo ont été analysées en utilisant la technique de datation par isotopes cosmogéniques. Les résultats concernant les échantillons d’éjectas du secteur ouest ont révélé un âge moyen de 870 avant notre ère. L’âge moyen des coulées de lave sous-jacentes est de 980 ans avant J.C.
Dans le secteur nord-ouest, un seul bloc a présenté un âge de 830 avant J.C.
L’âge de deux blocs du secteur E est de 220 et 150 ans avant notre ère ; ils sont donc relativement récents. L’âge moyen de cinq échantillons de substrat prélevés près de la cabine au sommet est de 980 ans avant J.C.
Le Mauna Loa a connu au moins quatre éruptions phréatiques au niveau de la caldeira sommitale au cours des 880 dernières années. Bien que personne ne vive au sommet du volcan, de nouvelles éruptions explosives pourraient constituer une menace pour les personnes présentes lorsqu’elles se produisent et pour les avions qui survolent le sommet.
Source: USGS / HVO.

——————————————-

Hawaiian volcanoes usually produce harmless lava flows, but a small percentage of the material produced by the eruptions is explosive in character. Since risks associated with explosive eruptions are much greater than those associated with lava flows, investigating the deposits on Mauna Loa is an important part of understanding how Hawaiian volcanoes work and the full range of hazards they pose.

In 1840, an expedition led by Lieutenant Charles Wilkes provided the first documented investigation of Mauna Loa’s summit caldera. The reports of his observations suggest that he saw no explosive deposits.

In 1885,   Thomas Jaggar, founder of the Hawaiian Volcano Observatory, later associated the deposits on the rim of the summit caldera with the eruption column in the opening phase of the 1877 eruption previously described by a missionary.

While ascending Mauna Loa in 1924, a former USGS geologist, noted explosion deposits in a kipuka (an area of land surrounded by one or more younger lava flows) along Āinapō Trail. He concluded that the eruptions producing the debris were phreatic in origin.

In 1949, a HVO geologist observed that angular blocks of rocks ejected by explosions were scattered about the rim of Moku‘āweoweo, with maximum diameters of 1.5 metres on the northwest fan. At the National Park’s summit cabin, he noted an abundance of ash, as well as blocks up to 1 metre in size. He, too, concluded that the eruptions were phreatic and that the deposits were caused by a series of explosions from the summit caldera area.

The question was to know when these explosive eruptions occurred. Charcoal is normally used to date lava flows, but it is not found above tree line. Therefore, geologists use cosmogenic radionuclide dating to establish reliable ages of the rocks around the Moku‘āweoweo caldera, which have been steadily exposed to cosmic rays.

In a study of the deposits, representative samples from each fan and the underlying lava flows were collected. Rocks from all three fans near Moku‘āweoweo were processed using the exposure dating technique.

Results from exposure age-dating of the three west fan ejecta samples yield an average age of 870 before present (BP). The average age of the underlying lava flows is 980 years BP.

From the northwest fan, a single block yielded an age of 830 years BP.

The east fan’s exposure ages for two blocks are 220 and 150 years BP, making this deposit very young! The average age from five substrate samples near the summit cabin is 980 years BP.

Mauna Loa has had at least four explosive phreatic eruptions from the caldera region in the past 880 years. Although no one lives at the summit of Mauna Loa, additional explosive summit eruptions have the potential to pose a threat to people on the ground and to aircraft.

Source : USGS / HVO.

Sommet du Mauna Loa (Crédit photo: USGS / HVO)

Photos: C. Grandpey

La caldeira de Kikai (Japon) // The Kikai caldera (Japan)

Il y a environ 7300 ans, l’éruption du volcan Akahoya a dévasté ce qui correspond aujourd’hui aux îles du sud du Japon, et enfoui la majeure partie de l’archipel sous une épaisse couche de cendre. Considéré comme une super éruption avec un VEI de niveau 7, l’événement a provoqué l’effondrement de la chambre magmatique du volcan et l’apparition de la caldeira de Kikai, d’un diamètre d’une vingtaine de kilomètres, dissimulée en grande partie sous l’eau de la mer.
Dans une nouvelle étude publiée dans la revue Science Advances, les scientifiques ont découvert qu’un dôme de lave se cache sous la caldeira. En étudiant les conduits magmatiques, les volcanologues pourraient avoir un aperçu de l’ensemble du système d’alimentation de la caldeira, ce qui pourrait les aider à mieux prévoir une éventuelle prochaine éruption.
Des recherches antérieures avaient indiqué que les chances de voir une super éruption dans l’archipel japonais au cours du siècle prochain ne sont que d’environ un pour cent. Cependant, les chercheurs indiquaient que si un volcan dans cette région entrait en éruption, il pourrait éjecter près de 42 kilomètres cubes de matériaux et recouvrir presque tout le pays et ses 120 millions d’habitants de près de 20 centimètres de cendre.
La nouvelle étude explique que les scientifiques du Centre d’Exploration des Fonds océaniques de Kobe ont effectué trois levés dans la caldeira. Ils ont associé les observations de robots sous-marins et les résultats d’analyses de roches avec des sismographes et des électromagnétomètres.
Ils ont découvert le dôme de lave en effectuant un sondage acoustique. On estime qu’il a un volume d’environ 33 kilomètres cubes, un diamètre d’une dizaine de kilomètres et une hauteur de près de 600 mètres.
Le site de la caldeira a connu au moins trois super éruptions: il y a 140 000 ans, il y a 95 000 ans, puis l’éruption du Akahoya il y a 7 300 ans. Les scientifiques ne savent pas exactement quand le dôme actuel a commencé à se former. Il se peut que ce soit immédiatement après l’éruption ou progressivement au cours des milliers d’années qui ont suivi. Comme le dôme de lave présente une composition chimique différente des matériaux émis pendant la super éruption, il se peut qu’un nouveau système d’alimentation magmatique se soit développé il y a 7300 ans. Les chercheurs ont découvert que le dôme de lave est formé d’un magma similaire à celui observé dans les volcans de l’île voisine de Satsuma Iwo-jima. Une nouvelle mission sur le terrain prévue pour le mois de mars permettra de recueillir des images haute résolution du système magmatique souterrain en utilisant des méthodes sismiques et électromagnétiques. Les chercheurs espèrent ainsi avoir une meilleure idée de l’époque à laquelle la caldeira et son dôme de lave pourraient à nouveau entrer en éruption, et sous quelle forme. .
Source: The New York Times et d’autres médias d’information scientifique.

———————————————

Some 7,300 years ago, the Akahoya eruption devastated the southern islands of what is now Japan, burying most of the archipelago in thick ash. Considered as a super eruption with a VEI of 7, it caused the volcano’s magma chamber to collapse, leaving the 20-kilometre-wide Kikai Caldera which is mostly underwater.

In a new study published in the journal Science Advances, scientists have discovered that a dome of lava lurks beneath the caldera. By studying its magma plumbing, volcanologists could gain insight into the entire caldera system, which could help them better predict when another eruption might occur.

Previous research had suggested that the chances of a super eruption happening in the Japanese archipelago in the next century are only about one percent. However, it indicated that if a volcano in this area erupted, it could eject nearly 42 cubic kilometres of magma, covering almost all of the country and its 120 million people in nearly 20 centimetres of ash.

The new study explains that Japanese scientists at the Kobe Ocean Bottom Exploration Center conducted three surveys of the caldera, during which they combined the observations of underwater robots and the results of rock sample analysis with data collected by seismographs and electromagnetometers.

They found the lava dome using an acoustic survey. It is estimated to have a volume of about 33 cubic kilometres, a diameter of about 10 kilometres and a height of almost 600 metres.

This site has experienced at least three super eruptions: One 140,000 years ago, another 95,000 years ago, and then the Akahoya eruption 7,300 years ago. The scientists are not sure when exactly the current dome began to form, whether it was immediately after the eruption or gradually in the thousands of years that followed. As the lava dome is chemically different from the super eruption, a new magma supply system might have developed after 7,300 years ago. The researchers found that the lava dome was made of similar magma to what is seen in volcanoes on the nearby island of Satsuma Iwo-jima. Another survey in March will gather high-resolution images of the underground magma system by using seismic and electromagnetic methods. The future surveys will give them a better idea of how and when the caldera and its lava dome might erupt in the future.

Source: The New York Times and other scientific news media.

Situation géographique de la caldeira de Kikai