L’éruption du Kilauea (Hawaii) en 1952

Dans l’un de ses Volcano Watch, l’USGS / HVO revient sur l’éruption du Kilauea en 1952. Elle pourrait avoir des points communs avec la prochaine éruption du volcan après la pause actuelle qui fait suite à l’événement de 2018.
Le 27 juin 1952, une éruption a commencé au sommet du Kilauea, mettant fin à une période de repos de près de 18 ans. Pendant près de deux décennies de calme après l’éruption sommitale de 1934, on a observé plusieurs périodes d’activité sismique intense et de déformation au niveau du sommet. Cependant, aucun de ces événements n’a entraîné d’éruption.
Au début du mois d’avril 1952, une série de séismes a été enregistrée le long de l’East Rift Zone du Kilauea et sous le sommet. Les séismes, accompagnés d’une inflation sommitale, ont persisté en mai et juin.
En fin de soirée le 27 juin, une éruption a commencé au sommet, avec une forte incandescence et des grondements en provenance du cratère de l’Halema’uma’u ..
Quelques minutes après le début de l’éruption, une fontaine de lave a jailli dans la partie sud-ouest du cratère et s’est élevée à près de 250 mètres au-dessus de la lèvre. La fontaine a rapidement décliné et la lave s’est accumulée le long d’une fissure qui parcourait tout le plancher de l’Halema’uma’u.
Le HVO explique que le lac de lave ainsi formé avait à sa surface des plaques de croûte refroidie espacées par des fissures qui permettaient de voir la lave ci-dessous, un peu comme sur le petit lac de lave qui est apparu de 2008 à 2018 dans l’« Overlook Crater» de l’Halema’uma’u. Le jaillissement de la lave donnait naissance à des vagues à la surface du lac. On pouvait voir parfois des tourbillons à la surface du lac ; ils projetaient des morceaux de croûte, parfois d’un mètre de diamètre, à plusieurs mètres de hauteur. Ce même phénomène a été observé en 2018 sur le chenal de lave issu de la Fracture n°8.
Après les premières heures de l’éruption, les fontaines de lave ont commencé à se calmer. Après un peu plus de quatre heures d’éruption, seul le quart nord-est de la fissure était actif et on pensait que l’éruption allait peut-être se terminer. Peu de temps après, cependant, la partie sud-ouest de la fissure s’est réactivée avec de petits bouillonnements de lave. A ce moment-là, on estime que le cratère de l’Halema’uma’u contenait un lac de lave d’environ 15 mètres de profondeur.
Le 11 juillet, la partie active de la fissure avait fortement diminué. Deux fontaines ont continué à être actives et ont édifié un grand cône à l’intérieur du lac de lave. Des ouvertures dans les flancs du cône permettaient à la lave de se répandre et d’alimenter le lac dont la surface était maintenant considérablement réduite.
À la fin du mois d’août, la majeure partie de la lave produite par l’éruption était contenue dans le grand cône à l’intérieur duquel deux bouches actives construisaient de plus petits cônes de projection. Entre ces deux cônes de projection, il y avait une petite mare de lave d’une trentaine de mètres de diamètre.
L’éruption a continué de la même manière pendant les mois suivants, avant de se terminer, après 136 jours d’activité, le 10 novembre 1952
Un volume d’environ 60 millions de mètres cubes de lave s’est accumulé dans le cratère de l’Halema’uma’u. Avec l’éruption, le plancher de l’Halema’uma’u s’est élevé de 230 mètres à 140 mètres sous la lèvre du cratère. À titre de comparaison, le plancher du cratère avant l’effondrement sommital de 2018 se trouvait à environ 80 mètres sous la lèvre.
Source: USGS / HVO.

————————————————-

In one of its Volcano Watch, the USGS / HVO describes the 1952 eruption of Kilauea which might have similarities with the volcano’s next eruption after the current pause that followed the 2018 event.

On June 27th, 1952, an eruption started at the summit of Kilauea, ending a period of quiescence that had lasted nearly 18 years.

During the nearly two decades of quiet following a summit eruption in 1934, there were several periods of increased earthquake activity and deformation beneath the summit. However, none of these phases of unrest resulted in an eruption.

Early in April 1952, a series of earthquakes began along Kilauea’s East Rift Zone and beneath the summit. The earthquakes, accompanied by summit inflation, persisted through May and June.

Late in the evening on June 27th, an eruption started at the summit, with a loud roaring and bright glow emanating from Halema‘uma‘u Crater..

Within minutes of the eruption onset, a lava fountain erupted on the southwestern edge of the Halema‘uma‘u Crater floor, nearly 250 metres higher than the crater rim. The fountain quickly waned and lava pooled along a fissure that crossed the entire floor of Halema’uma’u crater.

HVO explains that the lava lake had plates of cooled crust on its surface separated by cracks that provided views of the incandescent molten lava below,  much like the smaller 2008 to 2018 lava lake within the Halema‘uma‘u “Overlook crater.” The fountaining lava created waves over the surface of the lake. Observers also noted seeing occasional whirlwinds on the lake surface that threw pieces of crust, up to a metre across, several metres into the air. This same phenomenon was observed in 2018 over the fissure 8 lava channel.

After the initial hours of the eruption, the lava fountains began to subside. After a little more than four hours, only the northeastern quarter of the fissure was active, and observers thought that the eruption could be ending. Shortly after, however, the southwestern end of the fissure reactivated with low bubbling fountains, and by that time Halema‘uma‘u Crater was estimated to have been filled with a lake of lava approximately 15 metres deep.

By July 11th, the active length of the fissure had shortened to approximately 120 metres. Two main fountains persisted and began to build a large cinder and spatter cone within the lava lake. Gaps within the cone wall allowed lava to spill out and feed the surrounding lava lake, whose surface had been considerably reduced.

By the end of August, most of the erupted lava was contained within the large cone, where two active vents were building smaller spatter cones. Between the two spatter cones, there was a small lava pond that had an average diameter of about 30 metres.

The eruption continued in the same way for the next few months until it ended after 136 days on November 10th, 1952

A volume of about 60,000,000 cubic metres of erupted lava was confined within Halema‘uma‘u Crater. The eruption raised the floor of Halema’uma’u Crater from 230 metres to 140 metres below the rim. For comparison, the Halema‘uma‘u Crater floor prior to the 2018 summit collapse was approximately 80 metres below the rim.

Source: USGS / HVO.

Vue du cratère de l’Halemaumau le 26 juin 1952, veille du début de l’éruption (photo du haut), et de ce même cratère (photo du bas) quatre semaines plus tard. Comme indiqué dans la description de l’éruption, le plancher s’est élevé de 230 mètres à 140 mètres sous la lèvre du cratère.  (Crédit photo: National Park Service).

Le mois de mai sur le Kilauea (Hawaii) // May on Kilauea Volcano (Hawaii)

Le mois de mai est particulièrement riche en éruptions sur le Kilauea. Plusieurs d’entre elles ont débuté, évolué ou pris fin au cours de ce mois. Dans son dernier « Volcano Watch », le HVO a examiné quelques uns des événements les plus marquants entre le 19ème et le 21ème siècle.

La première éruption du Kilauea décrite par des missionnaires occidentaux a eu lieu en 1823. Une fracture de 10 kilomètres de long baptisée «The Great Crack» a donné naissance à la coulée de Keaiwa dans la Lower Southwest Rift Zone (zone de fracture SO) au début de l’été de cette même année. À l’époque, les Hawaïens ont raconté que «Pélé était sortie d’une caverne souterraine et avait débordé dans la plaine… L’apparition de la lave a été soudaine et violente, a brûlé un canot et en a emporté quatre autres dans la mer. À Mahuku [Bay], le puissant torrent de lave est entré dans la mer… »

L’éruption de 1840 a commencé le 30 mai dans la partie inférieure du District de Puna et a duré 26 jours. Il existe peu de témoignages oculaires de cet événement qui a montré l’importance du travail sur le terrain pour déterminer la chronologie des événements. La cartographie géologique révèle que l’éruption de 1840 a probablement ressemblé à celle de 2018.

En 1922, dix ans après la création de l’Observatoire des Volcans d’Hawaii (le HVO), une éruption fissurale a commencé le 28 mai vers 21 heures au niveau des cratères Makaopuhi et Napau sur l’East Rift Zone (zone de fracture E) du Kilauea.

Il a fallu aux scientifiques du HVO 30 minutes de voiture, puis trois heures de marche pour atteindre le Makaopuhi Crater. Le lendemain, une autre équipe scientifique s’est approchée par le côté est et a observé de faibles projections dans le Napau Crater avant d’atteindre le Makaopuhi. Les deux équipes ont dû traverser des zones de végétation dense et difficile pendant plusieurs heures avant d’atteindre les sites éruptifs.

L’éruption explosive de l’Halema’uma’u en 1924 a duré 17 jours et a pris fin le 28 mai. Un volumineux panache de cendre s’est échappé du cratère pendant cette éruption qui a tué une personne le 18 mai 1924, le même jour de mai que la célèbre éruption du Mont St. Helens.

Une éruption fissurale de trois jours et demi a commencé le 31 mai 1954 dans le cratère de l’Halema’uma’u. Cette éruption a été l’une des premières du Kilauea à avoir été annoncée grâce au réseau de surveillance géophysique. Les scientifiques du HVO avaient observé des signes d’augmentation de la pression magmatique sous le sommet et déclaré que «dans de telles conditions, une éruption pourrait survenir avec sans prévenir longtemps à l’avance». Le premier séisme a réveillé la population à 3 h 42, le tremor est apparu à 4 h 09 et une lueur rouge a été observée dans le ciel à 4 h 10.

L’éruption dans la partie basse du District de Puna en 1955 s’est terminée le 26 mai après 88 jours d’activité dans la même zone que l’éruption de 2018. Cette éruption a dévasté des terres agricoles et isolé le village de Kapoho.

Le 24 mai 1969, le Mauna Ulu est entré en éruption dans l’Upper East Rift Zone du Kilauea. Cet événement a fait suite à une décennie de brèves éruptions fissurales. Les scientifiques du HVO pensaient que cette nouvelle éruption allait durer entre une semaine et un mois. Ce ne fut pas le cas. L’activité s’est concentrée sur une bouche unique entre les cratères Alae et Alo aujourd’hui recouverts par la lave, et s’est poursuivie presque continuellement pendant quatre ans et demi ! Cette longue éruption a permis aux volcanologues du HVO d’étudier et de comprendre les processus volcaniques. L’éruption a permis d’analyser comment se comportent les coulées de lave, les fluctuations de leur vitesse en fonction de la pente, le phénomène de gas pistoning, et la formation des laves en coussins (pillow lavas) lorsque la lave entre dans l’océan.

Lors de l’éruption de 2018 dans la Lower East Rift Zone, la Fracture n°8 s’est réactivée une dernière fois le 24 mai, brièvement accompagnée le 27 mai par l’ouverture de la Fracture n°24. Dans la soirée du 27 mai, la principale coulée de lave issue de la Fracture n°8 a commencé a progresser vers l’océan. Cette éruption est sans aucun doute celle qui a été le mieux documenté sur le Kilauea.
Source: USGS / HVO.

————————————————

The month of May has been quite rich on Kilauea, with several notable eruption beginnings, changes, and endings. In its latest “Volcano Watch”, HVO examined a few significant events that marked the last three centuries.

The first eruption of Kilauea documented by western missionaries occurred in 1823. A 10-kilometre-long fissure called “the Great Crack” produced the Keaiwa Flow on the Lower Southwest Rift Zone sometime in the early summer. At the time, local Hawaiians explained that “Pele had issued from a subterranean cavern and overflowed the lowland … The inundation was sudden and violent, burnt one canoe, and carried four more into the sea. At Mahuku [Bay], the deep torrent of lava bore into the sea…”

The 1840 eruption in lower Puna began on May 30th and lasted for 26 days. Few eyewitness accounts exist of this eruption, which emphasized the importance of geological fieldwork to reconstruct the chronology of events that occurred. Geologic mapping indicated 1840 may have been similar to the 2018 eruption.

In 1922, ten years after the Hawaiian Volcano Observatory (HVO) was founded, a fissure eruption began around 9 p.m. on May 28th in Makaopuhi and Napau craters on Kilauea’s East Rift Zone. HVO scientists drove for 30 minutes and then hiked three hours to reach Makaopuhi. The next day, another field party approached from the east and saw weak spattering in Napau Crater before reaching Makaopuhi Crater. Both teams endured hours of jungle bushwhacking to reach the eruption sites.

The explosive 1924 eruption of Halema’uma’u lasted 17 days and ended activity on May 28th. The crater unleashed a large ash cloud that killed one person on May 18th, 1924, a day later associated with the famous Mount St. Helens eruption.

A 3.5-day-long fissure eruption started on May 31st, 1954 in Halema’uma’u crater. This eruption was one of the first at Kilauea to be “anticipated” through geophysical monitoring. HVO scientists had noted signs of increasing pressurization at the summit and stated that “under such conditions, an eruption might come with very little forewarning.” The first earthquake woke residents at 3:42 a.m., seismic tremor started at 4:09 a.m., and at 4:10, there was red glow in the sky.

The 1955 lower Puna eruption ended on May 26th after 88 days of activity in the same area as the recent 2018 eruption. This eruption devastated farmland and isolated Kapoho Village.

Mauna Ulu began erupting on Kilauea’s Upper East Rift Zone on May 24th, 1969. It followed a decade of short-lived fissure eruptions and HVO staff suspected it would be another week-to-month-long event. However, activity focused at a single vent between the now buried ‘Alae and Alo’i craters and continued there almost continuously for 4.5 years. This sustained activity allowed HVO staff to document, study and understand volcanic processes in great detail. The eruption advanced understanding of how lava flows advance and inflate, the effect of lava velocity and slope on flow textures, gas-pistoning behaviour, and the formation of pillow basalts when lava flows into the ocean.

During the 2018 Lower East Rift Zone eruption, fissure 8 reactivated for a final time on May 24th and was joined briefly on May 27th by the final fissure (#24) opening. In the evening of May 27th, the main fissure 8 lava flow began its advance towards the ocean. This eruption was arguably the best-documented eruption at Kilauea yet.

Source : USGS / HVO.

L’éruption de l’Halema’uma »u en 1924 (Source : USGS / HVO)

Eruption 2018 : coulée issue de la Fracture n°8 (Crédit photo : HVO)

 

La mare au fond de l’Halema’uma’u (Hawaii) // The water pond at the bottom of Halema’uma’u (Hawaii)

On peut lire ces jours-ci dans la presse américaine plusieurs articles à propos de l’eau qui est apparue au fond du cratère de l’Halema’uma’u après l’éruption du Kilauea en 2018.

Le 12 octobre 2019, j’ai publié une note intitulée « Kilauea : l’eau de l’Halema’uma’u » :

https://claudegrandpeyvolcansetglaciers.com/2019/10/12/kilauea-hawaii-leau-de-lhalemaumau-the-water-in-halemaumau-crater/

Elle résumait une étude réalisée par Matt Patrick et Jim Kauahikaua, deux scientifiques de l’USGS, respectivement géologue et géophysicien au HVO. Illustré de schémas et de photos, le document explique pourquoi cette eau est apparue au fond du cratère, et comment pourrait évoluer la situation.

Depuis le mois d’octobre 2019, l’étendue d’eau au fond de l’Halema’uma’u n’a cessé de croître. D’une profondeur de plus de 35 mètres, elle présente une longueur d’environ 210 mètres pour une largeur d’une centaine de mètres. Sa couleur, verdâtre au début, est maintenant marron sous l’effet des réactions chimiques.

S’agissant de l’avenir de cette mare, il existe plusieurs possibilités. Dans un premier scénario, on peut imaginer que le magma remonte rapidement le long du conduit d’alimentation et entre en contact avec l’eau, ce qui ne manquerait pas de créer une situation explosive. Dans un deuxième scénario, le fond du cratère pourrait s’effondrer et laisser s’évacuer toute l’eau vers une zone très chaude où elle se transformerait rapidement en vapeur. En conclusion, si une éruption explosive reste possible, les scientifiques du HVO pensent que la prochaine éruption pourrait aussi se déclencher lentement et toute l’eau pourrait s’évaporer.

————————————————–

One can read these days several articles in the American press about the pool of water that appeared at the bottom of Halema’uma’u crater after the eruption of Kilauea in 2018.
On October 12th, 2019, I published a note entitled « Kilauea: the water in Halema’uma’u Crater »:

https://claudegrandpeyvolcansetglaciers.com/2019/10/10/12/kilauea-hawaii-leau-de-lhalemaumau-the-water-in-halemaumau-crater/

It summarized a study by Matt Patrick and Jim Kauahikaua, two USGS scientists, respectively ageologist and a geophysicist at HVO. Illustrated with diagrams and photos, the document explains why this water appeared at the bottom of the crater, and how the situation could evolve.
Since October 2019, the body of water at the bottom of Halema’uma’u crater has grown steadily. With a depth of more than 35 meters, it has a length of about 210 metres and a width of a hundred metres. Its colour, greenish at first, is now brown under the effect of chemical reactions.

As far as the future of the water pond is concerned, there are several possibilities. In one case, magma could rise quickly up the conduit and intersect with the water, which would inevitably cause an explosive situation. In the second scenario, the crater floor could collapse and drop all of the water down to a zone where it would be quickly heated into steam. In short, if an explosive eruption remains possible for Kilauea, HVO scientists think the next eruption could also happen slowly and all the water could evaporate.

Crédit photo : USGS / HVO

Halema’uma’u (Hawaii): Résultats de l’analyse de l’eau // Results of water analysis

Comme prévu, le HVO a récemment échantillonné l’eau du lac qui est apparu au fond du cratère de l’Halema’uma’u, au sommet de Kilauea. Le niveau de cette eau a augmenté d’environ 90 centimètres par semaine depuis sa première apparition le 25 juillet 2019. Jusqu’à présent, le HVO ne pouvait qu’évaluer à distance la taille du lac, observer sa couleur et estimer sa température. En voyant la lac s’agrandir, le HVO a décidé d’élaborer une stratégie pour échantillonner son eau. En effet, la chimie du lac est une bonne indication de la provenance de l’eau, de son influence possible sur le dégazage et donc des risques potentiels au sommet du Kilauea.
Il a été décidé qu’un drone serait la meilleure solution pour l’échantillonnage. Le 26 octobre, un engin a prélevé avec succès 0,73 litre d’eau du lac. L’échantillon a ensuite été envoyé à des laboratoires sur le continent pour des analyses exhaustives.
Les résultats obtenus jusqu’à maintenant indiquent que l’eau est acide, avec un pH de 4,2 (le pH neutre est de 7). Il est intéressant de noter que la plupart des lacs de cratères ont un pH inférieur à 3,5 (plus acide) ou supérieur à 5 (moins acide), ce qui place le lac de l’Halema’uma’u dans la moyenne.
Une modélisation mathématique effectuée avant l’apparition du lac indiquait que l’eau de la nappe phréatique était susceptible de pénétrer dans le cratère de l’Halema’uma’u une fois que l’environnement se serait suffisamment refroidi, après la disparition du lac de lave qui avait séjourné dans le cratère entre 2008 et 2018. Il n’est donc pas surprenant de voir de l’eau appraître dans le cratère.
Cependant, il est important de noter que l’Halema’uma’u est l’endroit où les émissions sommitales de dioxyde de soufre (SO2) sont les plus importantes, et que le SO2 se dissout facilement dans l’eau.
Lorsque l’eau souterraine s’écoule en direction du cratère en cours de refroidissement, elle dissout le SO2 provenant du magma situé en dessous. Cela conduit à des concentrations élevées d’ions sulfate dans le lac (53 000 milligrammes par litre) et à un pH plus acide.
A côté de cela, cette eau acide réagit chimiquement avec le basalte du Kilauea, ce qui diminue son acidité et augmente donc son pH. On observe aussi des concentrations élevées de magnésium dans l’eau. Les rapports magnésium / sodium et sodium / potassium dans l’eau du lac sont semblables à ceux du basalte du Kilauea, confirmation des réactions chimiques entre l’eau et la roche.
Les concentrations de calcium ne sont pas très élevées dans l’échantillon d’eau prélevé. Cela s’explique par le fait que le calcium se combine avec des ions sulfate pour former des minéraux solides qui précipitent dans l’eau. Le fer est également susceptible de former divers minéraux, ce qui explique les teintes jaunâtres du lac.
Les réactions complexes entre les gaz et les roches environnantes expliquent pourquoi l’eau du lac dans l’Halema’uma’u est chimiquement différente de la nappe phréatique au fond d’un puits de recherche situé au sud de Halema’uma’u et aussi de l’eau de pluie. Les tests effectués sur l’oxygène et l’hydrogène qui forment les molécules d’eau révèlent que l’eau du lac était à l’origine une eau de pluie qui a percolé dans le sous-sol où sa chimie a évolué.
Le niveau du lac au fond de l’Halema’uma’u continue à s’élever. Le pH actuel reflète un équilibre entre les eaux souterraines qui y pénètrent et le niveau des émissions de SO2 en provenance du sous-sol. Si le niveau du lac se stabilise ou si la quantité de SO2 change, le pH est susceptible de se modifier. Sur le Pinatubo aux Philippines, après l’éruption de 1991, un lac de cratère s’est formé avec un pH presque neutre, mais l’eau est devenue plus acide quand le dégazage de SO2 s’est intensifié, avec l’apparition d’une activité volcanique ultérieure.
Les analyses chimiques confirment que le lac au fond du cratère de l’Halema’uma’u dissout le SO2 d’origine magmatique. Cela signifie que les niveaux d’émission de SO2 mesurés par le HVO (environ 30 tonnes par jour) sous-estiment le SO2 émis globalement par le Kilauea. Sans le lac, les émissions de SO2 au sommet du volcan seraient probablement plus élevées. Cette découverte est importante car un niveau d’émission de SO2 en hausse peut indiquer la présence de magma à faible profondeur.  .
Source: HVO.

———————————————

As expected, HVO recently sampled the Halema‘uma‘u water lake at the bottom of Kilauea’s summit crater. The water has risen about 90 centimetres per week since first spotted on July 25th, 2019. Initially, HVO was limited to remote observations of lake size, colour, and surface temperature. As the lake grew, HVO began formulating a plan to sample the water. Indeed, the lake’s chemistry could reveal where the water was coming from and what it might mean for degassing and potential hazards at Kilauea’s summit.

It was decided that a UAS was the best option for sampling. On October 26th, a drone successfully collected about 0.73 litres of water from the lake. The sample was then shipped to mainland USGS laboratories for sophisticated analyses.

Results thus far indicate an acidic lake, with a pH of 4.2 (neutral is pH 7). Interestingly, most volcanic crater lakes have a pH of less than 3.5 (more acidic) or higher than 5 (less acidic), which places the Halema’uma’u lake in the midddle range.

Mathematical modelling performed prior to the lake’s appearance predicted that groundwater could flow into Halema‘uma‘u once the area had cooled enough after the 2008-18 lava lake drained away. So, it was not entirely a surprise when water began to pond in the crater.

But, it’s important to note that Halema‘uma‘u is where most summit sulfur dioxide (SO2) degassing takes place, and that SO2 dissolves readily in water.

As water flows underground toward the now-cooling crater, it dissolves SO2 rising from magma below. This leads to high concentrations of sulfate ions in the lake (53,000 milligrams per liter) and a tendency towards a more acidic pH.

However, that acidic water reacts chemically with Kilauea’s basaltic rock, which makes the lake less acidic (raises the pH) and results in high concentrations of magnesium in the water. The ratios of magnesium to sodium and of sodium to potassium in the lake water are similar to those ratios in Kilauea’s basalt, which is further evidence of chemical reactions between the water and rocks.

Calcium concentrations are not very high in the water sample; calcium is instead combining with sulfate ions to form solid minerals that precipitate from the water. Iron is also likely forming various minerals, contributing to the lake’s yellowish colours.

Complex gas/rock reactions result in Kilauea’s lake water being chemically different from groundwater in a research well south of Halema‘uma‘u and from rainwater. Testing of oxygen and hydrogen that form the water molecules indicate that the lake water was originally rain that percolated into the subsurface where it became groundwater and the chemistry changed.

The Halema’uma’u lake is still rising. The current pH reflects the balance between incoming groundwater and the degree of SO2 degassing from below. If the lake level stabilizes, or the amount of SO2 changes, the pH may also change. At Mount Pinatubo (Philippines), after the 1991 eruption, a crater lake formed with a nearly-neutral pH but became more acidic with increased SO2 degassing and later volcanic activity.

Chemical analyses confirm that the Halema’uma’u crater lake dissolves magmatic SO2. This implies that HVO’s measured SO2 emission rates (about 30 tonnes per day) underestimate the total outgassed SO2 at Kilauea. Without the lake, SO2 emissions from the summit would likely be higher. This finding is important given that an increasing SO2 emission rate can indicate shallowing magma.

Source : HVO.

Le lac acide au fond du cratère de l’Halema’uma’u (Crédit photo: HVO)

Kilauea (Hawaii): L’eau de l’Halema’uma’u // The water in Halema’uma’u Crater

Au cours de l’éruption du Kilauea en 2018, le plancher de l’Halema’uma’u s’est effondré lorsque le magma a quitté le réservoir sommital pour se diriger vers la Lower East Rift Zone où la lave a détruit quelque 700 structures. Aujourd’hui, le plancher de la caldeira a été remplacé par un gouffre profond d’environ 500 mètres, et une petite mare d’eau est apparue en juillet 2019 au fond du nouveau cratère qui a la forme d’un cône inversé.

L’USGS a mis en ligne un document dans lequel Matt Patrick et Jim Kauahikaua (géologue et géophysicien au HVO) expliquent comment et pourquoi cette eau est apparue au fond du cratère, et comment pourrait évoluer la situation. Vous pourrez visionner le document en anglais en cliquant sur ce lien :

https://youtu.be/WLpBMa1576I

En voici une petite synthèse en français :

Au début la mare d’eau était relativement petite, d’une dizaine de mètres de diamètre, et peu profonde.

Les scientifiques se sont demandés quelle pouvait en être l’origine. Il y avait deux possibilités : ce pouvait être le résultat de l’accumulation d’eau de pluie, ou bien une résurgence de la nappe phréatique qui se trouve sous le cratère de l’Halemau’lau’.

Avant l’éruption, des forages avaient révélé que la partie supérieure de la nappe phréatique se trouvait à environ  500 mètres sous le plancher de la caldeira.

Au moment de l’éruption, quand le plancher de la caldeira s’est effondré et a été remplacé par le gouffre profond que l’on observe aujourd’hui, le niveau de la nappe phréatique s’est abaissé sous le cratère nouvellement formé, tout en étant isolée de la lave par un manchon de matériaux.. On peut voir le comportement de la nappe phréatique pendant et à la fin de l’éruption sur ces deux schémas :

 Une fois l’éruption terminée en août 2018, la situation géologique du sommet du Kilauea s’est stabilisée, de sorte que le niveau de la nappe phréatique a commencé à s’élever et, peu à peu, va probablement retrouver son niveau d’origine, autrement dit un équilibre hydraulique avec la nappe phréatique. C’est un phénomène que l’on a déjà observé dans les mines où la nappe phréatique a occupé à nouveau les puits une fois que leur exploitation a été abandonnée.

 Aujourd’hui, la mare d’eau  présente une longueur d’une centaine de mètres de longueur sur une cinquantaine de largeur et une profondeur estimée à une dizaine de mètres. Son niveau s’élève d’une douzaine de centimètres par jour.

Les vidéos en accéléré montrent que la surface est agitée par de nouvelles arrivées d’eau en provenance de la bordure sud de la mare et présente des couleurs allant du jaune au vert, ce qui montre des concentrations importantes de soufre. Il sera intéressant – quand il sera techniquement possible de prélever des échantillons – d’analyser cette eau chauffée par le magma en dessous et dont la température très stable se situe autour de 70°C.

(Photos et schémas: HVO / USGS)

 S’agissant de l’évolution de la situation, le risque serait qu’une arrivée de magma juvénile entre en contact avec cette eau, ce qui ne manquerait pas de provoquer des explosions. Toutefois, les deux scientifiques pensent que ces explosions seraient relativement modestes, avec des projections qui ne dépasseraient pas l’enceinte du cratère de l’Halema’uma’u.

———————————————–

During the 2018 Kilauea eruption, the Halema’umau’ crater floor collapsed when magma travelled to the East Rift Zone where it erupted, destroying about 700 structures. Today a huge gap about 500 metres deep has replaced the caldera floor and a small water pond appeared in July 2019 at the bottom of the inverted cone.

USGS has released a document in which Matt Patrick and Jim Kauahikaua (HVO geologist and geophysicist) explain how and why the water pond appeared and what could be its evolution for the future. You will see the document by clicking o this link:

https://youtu.be/WLpBMa1576I

Halema’uma’u (Hawaii): Eau de pluie ou eau de source? // The water in Halema’uma’u (Hawaii): Rainwater or groundwater?

La mare d’eau au fond du nouveau cratère de Halema’uma’u soulève un certain nombre de questions. Les deux plus fréquentes sont: d’où vient l’eau et quelles pourraient être ses conséquences?
Les deux sources les plus probables sont l’eau de pluie et l’eau souterraine, autrement dit la présence d’une nappe phréatique. Selon les scientifiques du HVO, les deux hypothèses sont à prendre en compte, avec une préférence pour les eaux d’origine souterraine.
La nappe phréatique dans la zone sommitale du Kilauea se situe à une altitude d’environ 590 mètres, telle qu’elle a été mesurée dans un puits de forage creusé en 1973 à environ 800 mètres au sud de Halema’uma’u. La hauteur du plancher d’Halema’uma’u est d’environ 512 mètres, soit 70 mètres en dessous de la nappe phréatique qui se trouve à proximité.
Avant l’effondrement du sommet du Kilauea en 2018, les données géophysiques laissaient supposer que la nappe phréatique à proximité de Halema’uma’uu était à peu près à la même altitude que dans le forage, mais elle s’est probablement modifiée lors de l’effondrement du cratère. La nappe phréatique est probablement en train de se rétablir et, au fur et  à mesure qu’elle monte, l’eau s’infiltre dans des zones basses au niveau du plancher du cratère.
En ce moment, la surface de la mare d’eau dans le cratère s’élève lentement et régulièrement, ce qui correspond probablement à une hausse de la nappe phréatique. Le niveau de l’eau dans le cratère augmenterait par à-coups s’il dépendait des fortes pluies sur le Kilauea. Or, l’Halema’suma n’a pas reçu de fortes pluies depuis la première observation de l’eau dans le cratère le 25 juillet 2019. Il serait intéressant de prélever un échantillon de cette eau et de la dater à l’aide de moyens isotopiques; l’eau de pluie aurait l’âge actuel, tandis que les eaux souterraines seraient plus vieilles.
En ce qui concerne la profondeur de la mare, elle ne dépasse pas quelques mètres. Il se pourrait que ce ne soit que le sommet de la zone saturée en eau, qui pourrait atteindre plusieurs dizaines de mètres de profondeur. Cette profondeur n’est toutefois pas infinie car elle est forcément freinée par la chaleur résiduelle du magma dans le conduit d’alimentation. Malgré tout, à mesure que le conduit refroidit, une plus grande quantité d’eau peut s’accumuler et contribuer à augmenter le volume en surface.

Le volume de la masse d’eau aura forcément une influence sur les risques potentiels. Une simple mare n’aura aucune incidence sur la prochaine éruption sommitale. En revanche, si le magma devait entrer en contact avec plusieurs dizaines de mètres d’eau, un scénario explosif plus important pourrait être observé, comme cela s’est déjà produit dans le passé.
Source: USGS / HVO.

————————————————-

The pond of water at the bottom of Halema‘uma‘u’s new crater is raising many questions. The two most frequent are, where is the water coming from and what is its importance?

Two potential sources of the water are recent rainfall and groundwater. According to HVO scientists, either remains a possibility. Circumstantial evidence, however, favours groundwater.

The local water table, below which rocks are saturated with water, is at an elevation of about 590 metres, as measured in a deep hole drilled in 1973 about 800 metres south of Halema‘uma‘u. The elevation of the floor of Halema‘uma‘u is about 512 metres, 70 metres lower than the nearby water table.

Before the 2018 collapse of Kilauea’s summit, geophysical data suggested that the water table near Halema‘uma‘u was at about the same elevation as in the drill hole, but it was apparently drawn down during the collapse. The water table is likely recovering now, and as it rises, water inundates low areas such as the crater floor.

So far, the surface of the pond is rising slowly and steadily, consistent with a rising water table. Normally, the pond level would rise in jumps during downpours if rain was directly responsible for feeding it. However, Halema‘uma‘u has experienced no heavy rain since the pond was first observed on July 25th, 2019. It would be best to sample the water and date it using isotopic means; rain would have today’s age, groundwater an older age.

As far as the water’s depth is concerned, it is no more than a couple of metres. But the visible pond could be just the top of the saturated zone, which could conceivably be several tens of metres. There is probably a bottom to the standing water, because heat in the magma conduit below the floor of Halema‘uma‘u would boil away water at some depth. But as the conduit cools, the floor of standing water could move downward, deepening the water body from below as well as at the surface.

The total thickness of the water body impacts potential hazards. A mere puddle would scarcely affect the next summit eruption. But, if rising magma had to penetrate several tens of metres of water, an explosive scenario that has played out in the past could repeat.

Source: USGS / HVO.

Crédit photo: USGS / HVO

L’eau de l’Halema’uma’u (Hawaii) // The water of Halema’uma’u (Hawaii)

La dernière éruption du Kilauea a pris fin en août 2018 et il n’y a actuellement aucune coulée de lave sur le volcan….mais il y a de l’eau au fond du cratère de l’Halema’uma’u, au sommet du Kilauea ! Le lac de lave qui a persisté pendant l’éruption a maintenant été remplacé par des mares d’eau. .
L’apparition récente d’eau au fond du cratère a provoqué de nombreuses interrogations. Comme on peut le voir sur les photos mises en ligne par le HVO (voir ci-dessous), cette eau est de couleur turquoise, laiteuse ou verdâtre, ce qui trahit la présence de soufre dissous et de métaux provenant du mélange avec l’eau des gaz magmatiques ou des roches environnantes. Les caméras thermiques révèlent une température de surface d’environ 70°C.
L’eau au fond de l’Halema’uma’u n’est pas visible depuis les zones du parc national ouvertes au public, mais le HVO a déplacé l’une de ses webcams vers un site offrant une vue directe sur le fond du cratère.
Pour mesurer le niveau de cette eau, les scientifiques du HVO utilisent un télémètre laser à longue portée. Les mesures quotidiennes montrent que le niveau s’est lentement élevé. Les prochains survols en hélicoptère permettront de cartographier et de mesurer avec précision la superficie et le volume des mares. À l’aide de photographies obliques, il est possible de créer des modèles tridimensionnels du fond du cratère. La comparaison de ces modèles mis à jour régulièrement avec les données LIDAR (système de mesure par détection laser) collectées en juillet 2019 permettra d’estimer le volume d’eau. Les images satellites haute résolution compléteront ces informations. Des drones pourront également fournir des images aériennes et des mesures précises de la superficie et du volume de l’eau accumulée.
L’échantillonnage direct et les analyses chimiques permettront enfin de savoir s’il s’agit d’une accumulation d’eau de pluie en surface ou d’une eau souterraine plus profonde. Il se peut aussi qu’une partie de l’eau provienne de la condensation de la vapeur produite directement par le magma.

Une meilleure connaissance de la source de cette eau permettra de mieux comprendre les dangers possibles qui y sont associés. Par exemple, si elle est une émergence de la vaste zone d’eaux souterraines autour du cratère, elle risque d’interagir avec une montée éventuelle du magma et provoquer une activité explosive.
A cause de la dangerosité du site, l’échantillonnage direct est problématique. Il est déconseillé de se rendre auprès des mares en raison de l’accumulation possible de dioxyde de carbone au fond du cratère. Les effondrements fréquents des pentes instables du cratère sont un autre danger. Les prélèvements se feront probablement par la voie aérienne, avec un récipient de captage accroché au bout d’un filin.
À l’heure actuelle, les instruments ne révèlent aucun signe d’activité à court terme au sommet du Kilauea. Le réservoir magmatique sommital continue à se recharger lentement. Le niveau d’alerte volcanique est maintenu à « Normal ». En conséquence, le HVO n’émet plus que des bulletins mensuels.
Source: USGS / HVO.

—————————————

The last eruption of Kilauea ended in August 2018 and there is currently no active lava on the volcano….but there is water at the bottom of Halema’uma’u Crater. The lava lake that persisted during the eruption has now been replaced by water ponds.   .

The recent appearance of water at the bottom of Halema‘uma‘u Crater at the summit of Kilauea, has attracted wide attention and generated many questions. As shown in HVO’s website photos, the ponds are milky turquoise, or greenish, in colour, indicative of dissolved sulphur and metals from magmatic gases or surrounding rock mixing into the water. Thermal images show water surface temperatures of approximately 70°C.

The water in Halema‘uma‘u is not visible from publicly accessible areas of the national park but HVO has moved one of its existing webcams to a site that provides a direct view of the ponds.

To measure the level of water in the ponds, HVO scientists use a long-range laser rangefinder. These daily measurements show that the water level has slowly risen. Future helicopter overflights will allow for the mapping and precise measuring of the area and volume of the changing ponds. Using oblique photographs, 3-dimensional models of the crater floor can be created. Comparing these updated models with the LIDAR (light detection and ranging) data collected in July 2019 will help estimate water volume. High-resolution satellite images can fill in observational gaps between HVO’s overflights. Drones could also provide aerial imagery and precise measurements of pond area and volume.

Direct sampling and chemical analyses of the water in Halema‘uma‘u would provide insight into its source, and know if it is a shallow accumulation of rainwater or the surface expression of a deeper-seated layer of groundwater. Some of the water could also be from condensed water vapour directly released by the magma. Knowing the water’s source will offer a better understanding of the possible hazards associated with it. For instance, if the water is from the extensive zone of groundwater around the crater, it could be more likely to interact with rising magma and result in explosive activity.

Given the hazardous location of the water, however, direct sampling is tricky. Walking down to the ponds is not advised due to the possible accumulation of carbon dioxide on the crater floor. Other dangers include frequent rockfalls from the steep, unstable slopes.

At the current time, monitoring data do not indicate any signs of imminent unrest at Kilauea’s summit. Magma continues to quietly recharge the summit magma reservoir.

The alert level for Kilauea remains at Normal. Reflecting this alert level, HVO is now only issuing monthly updates.

Source: USGS / HVO.

Vue générale du cratère de l’Halema’uma’u avec la petite mare d’eau au fond de la cavité (Crédit photo: USGS / HVO)

Vue rapprochée de l’eau au fond de l’Halema’uma’u le 8 août 2019 (Crédit photo: USGS / HVO)