Séismes lents en Nouvelle Zélande // Slow-motion earthquakes in New Zealand

J’ai appris à me méfier de Wikipedia qui diffuse parfois des informations inexactes, mais la définition d’un séisme lent qui est proposée me semble intéressante. Selon l’encyclopédie collective, « un séisme lent (SSE, pour slow slip event) est un déplacement discontinu semblable à celui d’un séisme classique, mais qui libère l’énergie élastique en plusieurs heures ou plusieurs jours au lieu de quelques minutes pour un séisme ordinaire. Les séismes lents ont d’abord été détectés par la mesure des déplacements et déformations. »

On peut lire aussi : « Les séismes lents correspondent à des phases transitoires de glissement lent et asismique le long des failles de subduction, à des profondeurs généralement plus importantes que les grands séismes. Les séismes lents peuvent atteindre une magnitude supérieure à M 7 et se déclenchent assez régulièrement. Grâce au déploiement de réseaux denses d’observation par GPS, des séismes lents ont pu être observés le long de nombreuses zones de subduction, notamment en Nouvelle-Zélande, au Japon, aux Cascades, au Mexique et en Équateur. »

En lisant la presse néo-zélandaise, on apprend que les stations GNSS de GeoNet le long de la côte sud de la région de Hawkes Bay et au nord de Gisborne se sont déplacées vers l’est de 1 à 2 cm depuis le début de 2023. Cela montre qu’un séisme lent est en cours au niveau de la zone de subduction de Hikurangi au large de la côte est de l’île du Nord. La quantité de mouvement de glissement lent au cours des 30 derniers jours a libéré une énergie équivalente à un tremblement de terre de M 7,0. Les scientifiques estiment que le déplacement sur la zone de subduction pendant l’événement a atteint 7 ou 8 cm au cours des deux dernières semaines.
Un autre épisode de séisme lent au large de Hawkes Bay a déjà été observé en 2022. En plus de l’événement de séisme lent, deux petits essaims sismiques ont été enregistrés dans la région, avec des magnitudes allant de M 1,0 à M 3,5. Ils sont probablement liés au séisme lent et sont vraisemblablement causés par des variations de contraintes dans la croûte terrestre.
Un autre séisme lent sous la région de Manawatu a commencé au début de 2022. Il n’a surpris personne car ces événements se produisent environ tous les cinq ans.
Les scientifiques de GeoNet ont récemment déployé de vastes réseaux temporaires de capteurs pour détecter ces séismes lents et toute activité sismique associée. Un géophysicien de GNS Science explique que les séismes lents sont un excellent rappel que la Nouvelle-Zélande se trouve à la frontière de plaques tectoniques très actives.
Source : New Zealand Herald, GeoNet.

————————————

I have always been wary of Wikipedia, which sometimes disseminates inaccurate information, but the definition of a slow-motion earthquake, or slow slip event (SSE), that is suggested seems interesting to me. According to the collective encyclopedia, « a slow slip event is a discontinuous movement similar to that of a conventional earthquake, but which releases the elastic energy in several hours or several days instead of a few minutes for an ordinary earthquake. Slow earthquakes were first detected by measuring displacements and deformations. »
We can also read: « Slow earthquakes correspond to transient phases of slow and aseismic sliding along subduction faults, at depths generally greater than large earthquakes. Slow earthquakes can reach a magnitude greater than M 7.0 and occur quite regularly. Thanks to the deployment of dense GPS observation networks, slow earthquakes have been observed along many subduction zones, including New Zealand, Japan, the Cascades, Mexico and Ecuador. »

Reading the New Zealand newspapers, we learn that GeoNet’s GNSS stations along the southern coast of the Hawkes Bay area and north of Gisborne have shifted eastward by 1 – 2 cm since the start of 2023, This indicates that a slow-motion earthquake is underway on the Hikurangi subduction plate boundary offshore the North Island’s east coast. The amount of slow slip movement during the last 30 days has released energy equivalent to an M 7.0 earthquake. Scientists estimate that the amount of movement on the subduction zone during the current event now amounts to 7 or 8 cm over the last couple of weeks.

Another large slow slip event offshore Hawkes Bay had already been observed in 2022. In addition to the slow slip event, two small seismic swarms have been recorded in the region, with magnitudes ranging from M 1.0 to M 3.5. These earthquakes are likely related to the slow slip event,and are probbly caused by changes in stress in the Earth’s crust.

Another slow-motion earthquake beneath the Manawatu region started up at the beginning of 2022. It was expectedas these events occur approximately every five years.

GeoNet scientists have recently deployed large, temporary networks of sensors to detect these slow slip events, and any related seismic activity. A GNS Science geophysicist explaines that slow-slip events are a great reminder that New Zealand is located on a very active tectonic plate boundary.

Source : New Zealand Herald, GeoNet.

 

Schéma montrant le mouvement sur la zone de subduction Hikurangi (code couleur en centimètres) au cours des séismes lents depuis la mi-décembre 2022. Les flèches blanches montrent le déplacement horizontal des stations GNSS au cours de la même période. (Source : GeoNet)

Le dégel du permafrost de roche et ses conséquences dans les Alpes (1ère partie : les mesures)

Un article paru dans la Revue de Géographie Alpine analyse l’impact du dégel du permafrost sur le massif alpins Vous trouverez l’intégralité de l’étude, ainsi que de nombreuses illustrations, en cliquant sur ce lien: https://journals.openedition.org/rga/2806

Avec le réchauffement climatique, les Alpes sont fragilisées. Les glaciers reculent et disparaissent. Les parois rocheuses s’effondrent, mettant en danger la vie des alpinistes qui s’y aventurent. Ces effondrements sont dus au dégel (on ne parle pas de fonte) du permafrost de roche qui assure la cohésion et donc la stabilité. des masses rocheuses. Les mesures disponibles depuis 2009 montrent une augmentation des températures du permafrost, à la fois liée à un réchauffement atmosphérique et à un enneigement conséquent ces derniers hivers.

En France, les premières études reconnaissant la présence de permafrost et son rôle sur les environnements alpins remontent au début des années 1980. Un regain d’intérêt pour ce sujet a eu lieu à partir de 2003. L’étendue potentielle du permafrost dans les Alpes françaises est estimée selon les auteurs entre 700 et 1500 km², soit 10 à 20 % des terrains situés au-dessus de 2000 m d’altitude.

Afin de mesurer le régime thermique du sol sous la couche active, des forages ont été effectués depuis 2009 à l’aide de chaînes de capteurs de température mesurant en continu dans trois contextes géologiques différents: le domaine des Deux-Alpes, l’Aiguille du Midi et le glacier rocheux de Bellecombe. Je vous invite à consulter les relevés en allant sur le site mentionné plus haut.

Les forages étant des installations coûteuses, le suivi du permafrost en montagne est donc complété par des mesures de température réalisées en continu par des enregistreurs placés en subsurface (1-5 cm) dans le rocher ou les formations superficielles (10-50 cm). Depuis 2005, neuf capteurs enregistrant la température entre 3 et 55 cm de profondeur ont été installés dans les faces nord, est, sud et ouest du Piton Central de l’Aiguille du Midi. En plus des forages, douze capteurs de surface sont disponibles pour caractériser la distribution de la température.

S’agissant des glaciers rocheux, en octobre 2003, sept enregistreurs autonomes de température ont été placés à quelques dizaines de centimètres sous la surface du glacier de Laurichard, abrités du rayonnement solaire direct. Les enregistrements font clairement ressortir le rôle majeur de l’enneigement sur le régime thermique de surface, et la variabilité du régime thermique hivernal. Ainsi, des hivers à enneigement abondant et précoce se traduisent par un refroidissement hivernal moindre. A l’inverse, des hivers peu neigeux favorisent la perte de chaleur du sol et donc le refroidissement en profondeur.

L’Aiguille du Midi (Photo: C. Grandpey)

Nyiragongo (RDC) : quelques réflexions personnelles

Il n’y a toujours pas, à ma connaissance, confirmation de la vidange du lac de lave du Nyiragongo. Les retombées de cendres observées dans la région de Goma plaident toutefois en faveur de cette hypothèse.

 Je m’en tiens donc à la déclaration du directeur de l’Observatoire : « Il n’a pas été possible de voir à l’intérieur du cratère du volcan à cause du brouillard. Ce qui aurait permis de dégager deux hypothèses: la lave dans le cratère signifierait que les tremblements de terre équivaudraient à une nouvelle activité. Dans le cas contraire, ces tremblements voudraient dire que la terre est en train de reconstituer son équilibre. »

Le processus éruptif le plus fréquent du Nyiragongo est connu et assez facile à comprendre. On remarquera que lorsque la lave perce les flancs du volcan, les coulées démarrent généralement à basse altitude, avec une pente plus faible que vers le sommet. L’importante vitesse d’écoulement de la lave est avant tout due à un taux d’épanchement extrêmement élevé provoqué par la pression de la colonne magmatique à l’intérieur du volcan. Le volcan éclate un peu comme un fruit mûr.

En conséquence, il me paraît essentiel de donner la priorité au contrôle des zones de fractures qui entaillent les flancs du Nyiragongo. Observer le lac de lave depuis la lèvre du cratère, descendre sur les plateformes à l’intérieur, prélever de la lave dont la composition est largement connue, n’est pas inutile mais ne renseigne guère sur le comportement à venir du volcan. Il faudrait un séjour prolongé (plusieurs semaines ou plusieurs mois) ou – encore mieux – la présence de webcams pour bien analyser le comportement du lac de lave. Un bivouac de quelques jours n’est pas suffisant.

Comme je l’ai écrit précédemment, c’est la pression interne exercée par la colonne magmatique sur les parois du volcan qui détermine le déclenchement des éruptions. Pour mieux appréhender la réaction des flancs du volcan à cette pression, il serait intéressant de multiplier les instruments de mesures et autres capteurs. Les satellites sont aujourd’hui parfaitement en mesure de contrôler les déformations des flancs d’un volcan à partir des capteurs installés sur ses flancs. Cela suppose d’une part que l’Observatoire soit opérationnel, mais aussi  que les instruments ne soient pas vandalisés par les voyous qui traînent dans la région.

Le Nyiragongo est un volcan qui montre parfaitement à quel point prévision et prévention volcaniques se rejoignent.

Source : Wikipedia

Un système automatique d’alerte éruptive sur l’Etna (Sicile) // An automatic eruptive alert system on Mt Etna (Sicily)

Selon la presse sicilienne, un système automatique destiné à alerter la population en cas d’éruption a été testé avec succès sur l’Etna  pendant 8 ans, de 2008 à 2016. Il a pu détecter 57 des 59 épisodes éruptifs une heure à l’avance. Basé sur un réseau de capteurs acoustiques, le système a été mis au point par un groupe de scientifiques de l’Université de Florence. Les résultats des tests ont été publiés dans le Journal of Geophysical Research.
Les scientifiques ont placé des capteurs sonores à environ 6 kilomètres du plus haut volcan actif d’Europe. Ces capteurs sont capables d’envoyer des signaux d’avertissement par le biais de messages et de courriers électroniques. À l’aide de ce système, le gouvernement italien a pu mettre au point en 2015 un plan d’alerte prêt à être déclenché une heure avant une éventuelle éruption.

Les chercheurs expliquent que les volcans génèrent des ondes sonores de basse fréquence qui ne peuvent pas être entendues par l’oreille humaine avant une éruption. Ces infrasons peuvent parcourir des milliers de kilomètres à l’intérieur du volcan et sont plus étroitement liés à une éruption que les ondes sismiques.
L’un des scientifiques a fait remarquer que la plupart des 1 500 volcans actifs dans le monde ne sont pas surveillés en temps réel. L’étude des ondes sismiques liées aux mouvements du magma est souvent insuffisante ; elle devrait être accompagnée d’une alerte automatique capable d’accélérer les procédures et réduire les risques. Après les premiers tests positifs sur l’Etna, les capteurs seront également testés sur d’autres volcans. L’objectif est de créer un réseau mondial de surveillance.

Source : Presse sicilienne.

—————————————————

According to the Sicilian press, an automatic system intended to alert the population in the event of an eruption has been successfully tested for 8 years on Mount Etna, from 2008 to 2016. It was able to detect 57 of the 59 eruptive episodes one hour in advance. Based on a network of acoustic sensors, the system was developed by a group of scientists from the University of Florence. The test results were published in the Journal of Geophysical Research.
Scientists set up sound sensors about 6 kilometres from the highest active volcano in Europe. These sensors are capable of sending warning signals through messages and emails. Using this system, the Italian government could develop in 2015 an alert plan ready to be triggered one hour before an eruption.
The researchers explain that volcanoes generate low frequency sound waves that can not be heard by the human ear before an eruption. These infrasounds can travel thousands of kilometres inside the volcano and are more closely related to an eruption than the seismic waves.
One of the scientists pointed out that most of the 1,500 active volcanoes in the world are not monitored in real time. The study of seismic waves related to the movements of magma is often insufficient; it should be accompanied by an automatic alert capable of speeding up procedures and reducing risks. After the first positive tests on Mt Etna, the sensors will also be tested on other volcanoes. The goal is to create a global surveillance network.
Source: Sicilian newspapers.

Photo: C. Grandpey