Les caméras thermiques du Kilauea (Hawaii) // Kilauea’s thermal cameras (Hawaii)

Des caméras thermiques sont utilisées par des volcanologues du monde entier depuis de nombreuses années pour étudier les processus volcaniques et détecter des signes d’éruptions imminentes.
Sur le Kilauea, les données fournies par les caméras thermiques sont utilisées pour contrôler le niveau et les mouvements du lac de lave dans le cratère de l’Halema’uma’u. Ces données permettent au personnel du HVO de mieux comprendre le comportement du lac et le fonctionnement interne du volcan. Les images thermiques montrent comment la lave est émise, comment elle dégaze et, au cours du temps géologique, comment elle modifie le paysage.
Les caméras thermiques fonctionnent en mesurant l’énergie dans la partie infrarouge à ondes longues du spectre lumineux émis. Cette énergie est ensuite traduite en une valeur de température en utilisant les principes de la physique.
Ci-dessous, on peut voir deux images thermiques (28 juillet 2017) du lac de la lave au sommet du Kilauea. Les couleurs correspondent aux températures de surface: les couleurs sombres indiquent des surfaces plus froides tandis que les couleurs claires représentent la matière en fusion ou récemment solidifiée.
L’échelle à droite de l’image ne reflète pas les températures réelles en raison de divers facteurs comme l’effet obscurcissant des gaz volcaniques. La température de la lave pour les zones les plus chaudes serait d’environ 1150 degrés Celsius. Cependant, les températures relatives restent correctes.
Le champ de vision proposé par la caméra a environ 200 mètres de large. La surface du lac se trouve à environ 120 mètres sous la caméra.
Dans ces images, obtenues le 28 juillet 2017, on peut voir une différence de morphologie de la surface du lac de lave. Elle est due à un effondrement soudain du revêtement qui recouvrait la paroi interne du cratère et qui provenait des projections de lave et de la lave accumulée quand le lac était à un niveau plus élevé.
L’image de gauche montre les conditions habituelles du lac, avec des projections sur sa bordure nord-est. On observe la circulation lente d’une douzaine de plaques de croûte à la surface du lac. Des fissures en zigzag ou droites se forment lorsque les plaques s’écartent, révélant la matière en fusion sous la croûte.
À 16h28 le 28 juillet, un gros morceau de la paroi interne du cratère s’est effondré dans le lac, laissant derrière lui une belle balafre (encerclée dans l’image de droite). L’impact de ces matériaux dans le lac de la lave a provoqué des remous qui ont persisté pendant des dizaines de minutes.
La caméra thermique de l’Halema’uma’u est opérationnelle depuis plus de six ans ; elle envoie des données 24 heures sur 24. Elle est équipée d’une lentille de 53 degrés. Elle est logée dans un boîtier qui la protège contre les intempéries, les gaz volcaniques corrosifs et les bombardements de matériaux qui se produisent de temps en temps. Le boîtier est monté sur un solide trépied. Les images sont transmises au HVO par connexion WiFi ; elles sont collectées sur des serveurs informatiques pour être diffusées sur le site web de l’observatoire et pour être transmises au personnel du HVO pour être analysées.
Le HVO gère également des caméras thermiques qui dont orientées vers le cratère du Pu’uO’o sur l’East Rift Zone du Kilauea et la caldeira Moku’aweoweo du Mauna Loa. Ces caméras capturent une image tous les 2-3 minutes. S’agissant du Pu’uO’o, si un point chaud couvre plus de cinq pour cent des images de la caméra, un programme informatique envoie un texto avec une image jointe au personnel du HVO. La caméra du Mauna Loa dispose elle aussi d’une alarme. Si une température élevée est détectée, un texto est automatiquement envoyé au HVO. Après sa réception, les scientifiques vérifient les autres données de surveillance (y compris les images de webcam plus récentes) pour voir si la lave est soudainement apparue ou s’il y a un autre sujet de préoccupation.
Au cours de l’année à venir, le HVO prévoit l’acquisition d’une nouvelle caméra thermique sur l’Halema’uma’u. Elle permettra d’acquérir des images de résolution plus élevée. Ces images de meilleure qualité permettront des analyses encore plus détaillées et amélioreront le suivi du niveau de la lave dans le lac.
Source: USGS / HVO.

—————————————-

Thermal cameras have been used by volcanologists around the world for many years to study volcanic processes and search for signs of impending eruptions.

On Kilauea, data from thermal cameras are used to track the level and movements of the summit lava lake within Halema’uma’u Overlook Crater. This helps HVO better understand lake behaviour and the inner workings of the volcano. Thermal images continue to teach volcanologists how molten lava erupts, degasses and, over geologic time, changes the landscape.

Thermal cameras work by measuring energy in the long-wave infrared part of the emitted light spectrum. That energy is translated into a temperature value using principles of physics.

Here below, you can see two recent thermal images of Kilauea’s summit lava lake. Colours correspond to surface temperatures: darker colours indicate cooler surfaces and lighter colours represent molten and recently solidified lava.

The scale at right does not reflect true temperatures due to a variety of factors, including the obscuring effects of volcanic fume. Actual lava temperatures for the hottest areas in these images would be about 1150 degrees Celsius. However, relative temperatures are still correct.

The field of view in each frame is roughly 200 metres across. In this view, the lake surface is about 120 metres below the camera.

In these images, captured on July 28th, 2017, one can see a dramatic difference in lava lake surface characteristics. The difference resulted from a sudden collapse of the rocky coating left on the vent wall by spattering and previous higher stands of the lake.

The image on the left shows typical lake conditions, with spattering on the northeast lake margin. About a dozen plates of semi-solid crust on the lake surface slowly circulate. Jagged and straight cracks form as the plates pull apart, revealing molten lava beneath the crust.

At 4:28 p.m. on July 28th, a large patch of the crater wall cascaded into the lava lake, leaving behind a hot scar (circled in the right-hand image). The impact of this rocky debris falling into the lava lake caused agitation that persisted for tens of minutes.

HVO’s thermal camera at Halema’uma’u has functioned well for over six years, sending data around the clock. The camera has a 53-degree-wide lens housed in a case for protection from weather, corrosive volcanic gas, and occasional bombardment by molten spatter. The box is mounted on a well-anchored tripod. Images are transmitted by WiFi connection to HVO, where they are collected on computer servers for delivery to the observatory’s public website and to HVO staff for analysis.

HVO also maintains thermal cameras that look into the Pu’uO’o crater on Kilauea’s East Rift Zone and Moku‘aweoweo caldera atop Mauna Loa. These cameras capture an image every 2–3 minutes. At Pu‘uO’o, if a hot spot fills more than five percent of the camera images, a computer program sends a text message with an embedded image to HVO staff. The Mauna Loa camera is similarly alarmed. If high temperature is detected, a text message is automatically sent to HVO staff. Upon receiving a text, the scientists check other monitoring data (including more recent webcam images) to see if lava has suddenly appeared or if there is another cause for concern.

In the coming year, HVO expects to upgrade the Halema’uma’u thermal camera to a new model that will acquire higher resolution images. Better images will allow even more detailed analyses and enhance tracking of lava levels.

Source: USGS / HVO.

Source: USGS / HVO

Des drones sur l’Etna (Sicile) // Drones on Mt Etna (Sicily)

DJI (http://store.dji.com/fr), le leader mondial des drones civils et de l’imagerie aérienne, a collaboré avec l’Université de Mayence (Allemagne) au cours d’une mission volcanologique innovante dont le but était de prélever directement des gaz dans l’un des cratères de l’Etna.
Les volcanologues ont effectué cette mission de nouvelle génération en utilisant un DJI Inspire 1 couplé à la caméra thermique Zenmuse XT pour détecter la température du cratère, avec le DJI Matrice 600 Pro comme support d’un caisson destiné à analyser la composition des gaz depuis le ciel.
Le caisson de mesure de gaz renfermait des capteurs électrochimiques avec des détecteurs spéciaux pour analyser les vapeurs du volcan et fournir une estimation instantanée de la concentration de gaz au moment où le drone revient au camp de base.
La mission a révélé que les concentrations de soufre sont beaucoup plus élevées près des bouches actives. En outre, le drone a pu échantillonner les solides qui se forment au moment de la réaction du soufre dans l’atmosphère avec de l’eau et d’autres composants. Cela a permis aux scientifiques de mieux comprendre l’évolution chimique des panaches de gaz volcaniques.
L’expédition de 6 jours sur l’Etna, à plus de 3000 mètres d’altitude, a été une expérience tout à fait exceptionnelle pour DJI et l’Université de Mayence. Les drones ont permis une collecte de données plus rapide et plus précise. Ils contribuent également à réduire l’exposition à des conditions de travail dangereuses.
Source: sUAS News
Il convient de noter que cette mission avec des drones a eu lieu pendant une période où l’Etna était très calme. Il faudra voir si des mesures similaires peuvent être effectuées au cours d’une période pré-éruptive, lorsque les émissions de gaz sont beaucoup plus intenses et lorsque les explosions peuvent détruire les drones ! Le seul drone utilisé pendant la mission coûte environ 4000 euros !

————————————-

DJI (http://store.dji.com/fr), the world’s leader in civilian drones and aerial imaging technology, and the University of Mainz, Germany, have completed a ground-breaking mission for volcano research by collecting gas directly from the crater of Mount Etna.

The scientists took innovation in their field to an unprecedented level by using a DJI Inspire 1 with Zenmuse XT thermal camera to detect the crater’s temperature in combination with the DJI Matrice 600 Pro as a frame for a multi-gas measurement box to analyse gas composition  from the air.

The gas measurement box used electrochemical sensors with special detectors that captured the volcano’s vapours and provided an instant estimate of the gas concentration when the drone returned to the base camp.

The mission found that sulphur concentrations are much higher near active vents. In addition, the drone was able to sample solids that were forming due to sulphur reacting in the atmosphere with water and other components helping the scientists to better grasp the chemical evolution of volcanic gas plumes.

The 6-day expedition to Mount Etna, operating at more than 3000 meters above sea level, was a one-of-a kind experience for DJI and the University of Mainz. Drones allow for faster and accurate data collection. They also help reduce exposure to hazardous working conditions.

Source: sUAS News

It should be noted that the mission with drones was performed during a period when Mt Etna was very quiet. It remains to be seen if similar measurements could de done during a pre-eruptive period when gas emissions are far more intense and when explosions may destroy the drones. The one used during the mission cost around 4,000 euros!

Source: sUAS News

 

Les secrets des carottes de glace // The secrets of ice cores

Une carotte de glace vieille de 2,7 millions d’années a été prélevée en Antarctique. Cette carotte et les bulles d’air qu’elle renferme racontent beaucoup de choses sur l’histoire du climat terrestre et pourraient même révéler ce qui a provoqué les âges de glace. La carotte est la seule de son genre à pouvoir révéler à quoi ressemblait l’atmosphère terrestre à cette époque reculée.
La carotte montre que le niveau de dioxyde de carbone (CO2) dans l’atmosphère au moment où elle s’est formée était inférieur à 300 parties par million. Actuellement, ce niveau est supérieur à 400 ppm (voir la courbe de Keeling ci-dessous) et ce nombre est en hausse constante. Le niveau de CO2 a toujours montré des tendances cycliques, mais depuis l’époque industrielle, il ene cesse de grimper, ce qui aboutit aujourd’hui à des niveaux sans précédent.
Grâce aux carottes de glace, les climatologues peuvent connaître l’atmosphère des années passées. Après avoir prélevé de fines carottes dans les glaciers et les icebergs, les scientifiques analysent les bulles d’air piégées dans ces échantillons. La composition des bulles révèle la composition de l’air au moment où il a été piégé et au moment où la carotte s’est formée.
Pour extraire l’air des carottes de glace, les scientifiques peuvent écraser la carotte ou la faire fondre sous vide afin que l’air qu’elle contient ne soit pas contaminé avant l’analyse. La carotte est ensuite examinée à l’aide d’instruments de haute technologie qui analysent les niveaux de pollution en contrôlant les sulfates, les aérosols de métaux et les gaz. Selon la NOAA, le type d’isotope d’oxygène contenu dans la carotte peut également révéler la température de la Terre au moment où la carotte s’est formée.
La carotte vieille de 2,7 millions d’années n’a pas été prélevée très profondément dans la «glace bleue» qui est fréquemment ignorée lors de la collecte d’échantillons de glace. Cette glace bleue est le résultat de la chute de neige sur la glace formée et de sa compression. La glace n’est pas vraiment bleue; La couleur provient des courtes longueurs d’ondes de la diffusion de la lumière et plus la lumière se déplace dans la glace, plus elle est bleue.
Les chercheurs de l’Université de Princeton qui ont prélevé la carotte de glace espèrent retourner dans la zone qui a été forée dans l’espoir de trouver des glaces encore plus anciennes qui leur permettront d’effectuer de nouvelles recherches dans les années à venir.
Source: Science Magazine.

————————————-

A 2.7 million-year-old ice core has been collected in Antarctica. The core’s age and the air bubbles it contains reveal a lot about the Earth’s climate history and possibly reveal what caused the Ice Ages. The core is the only of its kind that can reveal what the atmosphere on Earth was like so long ago.

This specific core shows that the level of carbon dioxide (CO2) in the atmosphere at the time it was formed was no greater than 300 parts per million.. Currently the Earth’s atmosphere is at more than 400 ppm (see Keeling Curve below), a number that is increasing. Levels of CO2 have always shown some cyclical trends, but since the industrial era CO2 levels have spiked leading to unprecedented levels never recorded.

Ice cores are a key means by which climate scientists learn about the atmosphere of years past. By removing thin ice cores from glaciers and icebergs scientists then test the air bubbles trapped in those cores. The composition of the bubbles reveal what the air was like around the time it was trapped and the core was formed.

To extract the air from the cores scientists can crush the core or melt it in a vacuum so no other air contaminates it before testing. The core then goes through sophisticated instruments that measure levels of pollution by checking for sulfates, metals aerosols and any gases. According to NOAA, the type of oxygen isotope found in the core can also reveal what the temperature on Earth was like when the core formed.

The 2.7 million year old core was found not very deep down in “blue ice” which is frequently ignored when looking for ice cores. That blue ice is the result of snow falling on formed ice and compressing down. The ice is not actually blue; the colour comes from the short wavelengths of light scattering and the further the light travels in the ice the bluer it looks.

The researchers from Princeton University who found the core are hoping to return to the area where it was drilled to find possibly even older ice for further research in the future.

Source : Science Magazine.

Ce graphique de la NASA montre les niveaux de CO2 dans des carottes de glace au coours des 400 000 dernères années.

Courbe de Keeling montrant les concentrations de CO2 dans l’atmosphère au cours des 800 000 dernières années. Depuis 1958, la courbe se réfère aux mesures en continu effectuées à l’observatoire du Mauna Loa à Hawaii. Les données antérieures s’appuient sur les carottes de glace. On remarquera que la concentration actuelle de CO2 est supérieure à 405 ppm.

 

Piton de la Fournaise (Ile de la Réunion)

L’éruption qui a débuté le 14 juillet se poursuit mais le tremor a cessé ses oscillations en début de soirée le 19 août pour se stabiliser à un niveau très faible. Comme je l’indiquais précédemment, le sursaut d’activité des derniers jours était probablement dû à l’évacuation d’un bouchon de lave qui s’était accumulée dans le conduit d’alimentation et qui avait provoqué une légère inflation de l’édifice volcanique. Cet événement touchant à sa fin, on s’achemine probablement vers la fin de l’éruption qui aura tout de même duré plus d’un mois.

————————————

The eruption that began on July 14th continues but the tremor has stopped its oscillations in the early evening of August 19th  and khas now stabilized at a very low level. As I put it earlier, the increase in activity of the past days was probably due to the evacuation of a lava plug that had accumulated in the feeding conduit and caused a slight inflation of the volcanic edifice. As this event is coming to an end, we are probably headed towards the end of the eruption which will have lasted more than a month.

Le tremor le 20 août 2017 (Source: OVPF)