Mesures du dioxyde de soufre (SO2) sur le Kilauea (Hawaii) // SO2 measurements on Kilauea Volcano (Hawaii)

Dans un nouvel article, les scientifiques de l’Observatoire des Volcans d’Hawaii (HVO) expliquent comment ils analysent les panaches de dioxyde de soufre (SO2) émis par le Kilauea
Les analyses des panaches de SO2 sont essentielles pour surveiller et comprendre l’activité éruptive. Le HVO s’appuie aussi sur les mesures d’émission de SO2 pour les prévisions concernant le vog (brouillard volcanique) et pour évaluer les émissions de lave.
Le HVO utilise des caméras – aussi bien visuelles que thermiques – pour décrire l’activité volcanique. Un troisième type de caméra, la caméra ultraviolet (UV), permet aux volcanologues de visualiser des panaches de SO2. Le SO2 absorbe la lumière ultraviolette, ce qui la fait apparaître dans les images UV alors qu’elle n’est pas visible avec les caméras classiques.
Des caméras UV sont utilisées sur le Kilauea depuis 2010. En 2013, une collaboration entre le Cascades Volcano Observatory (CVO) et le HVO a permis l’installation d’un système de caméra UV automatisé au sommet du Kilauea. Ce réseau de caméras a été retiré en 2018 lorsqu’il a été menacé par l’ouverture de fractures au sol au cours de l’effondrement de la caldeira sommitale.
Avec le retour de la lave et d’un fort dégazage de SO2 au sommet du Kilauea fin 2020, le HVO et le CVO ont fait équipe avec des collègues de l’Université de Sheffield au Royaume-Uni. Les scientifiques britanniques ont mis au point une nouvelle génération de petites caméras UV qui utilisent la technologie Raspberry Pi. Le Raspberry Pi est un nano-ordinateur monocarte à processeur ARM de la taille d’une carte de crédit conçu par des professeurs du département informatique de l’université de Cambridge dans le cadre de la fondation Raspberry Pi. Le HVO a déjà utilisé la technologie Raspberry Pi dans d’autres applications.
Les nouvelles caméras – PiCams – seront testées fin juillet 2022 et pourront être utilisées comme outils de terrain portables ou installées comme stations permanentes dans le réseau de surveillance du HVO. En attendant le résultat des premiers tests, le HVO prévoit d’installer au moins une PiCam en permanence au sommet du Kilauea. Une deuxième PiCam sera soit portable, soit installée en permanence près du sommet du Mauna Loa.
Les mesures des émissions de SO2 peuvent également être dérivés des images des caméras UV. Les mesures traditionnelles des émissions de SO2 sont effectuées en se plaçant sous le panache avec un spectromètre UV monté sur une voiture. Il faut compter une dizaine de minutes, voire davantage, pour effectuer chaque mesure, et seulement 6 à 10 de ces mesures peuvent être réalisées chaque jour. À partir de 2012, le HVO a installé un réseau de spectromètres continus pour mesurer les émissions de SO2 du Kilauea avec une meilleure résolution temporelle que les mesures à partir de véhicules, mais le réseau ne fournit pas d’informations spatiales sur le panache de SO2.
Une fois que les PiCams seront prêtes à l’emploi,elles fourniront une vue bidimensionnelle du panache de SO2 du Kilauea, mais aussi une résolution temporelle élevée et une série temporelle continue de mesures du taux d’émission de SO2.
Les données continues fournies à propos des émissions de SO2 faciliteront l’étude du dégazage en relation avec d’autres ensembles de données continues, comme l’activité sismique et la déformation du sol. Cela donnera une meilleure idée du rôle du dégazage dans des événements éruptifs spécifiques, ce qui n’a pas toujours été facile à réaliser dans le passé. Des travaux semblables ont été effectués au cours de la dernière décennie sur de nombreux volcans à travers le monde, y compris sur le Kilauea où il a été démontré que l’activité sismique et les émissions de SO2 étaient liées au cours des variations de niveau du lac de lave en 2010. Le lac de lave actuel dans le cratère de l’Halema’uma’ u a une configuration et un comportement différents de ceux du lac de lave de 2008-2018. Le HVO est impatient de voir ce que les nouvelles PiCams révéleront sur le dégazage du nouveau lac.
Source : USGS, HVO.

———————————————-

In a new article, scientists at the Hawaiian Volcano Observatory (HVO) explain how they analyse the sulphur dioxide (SO2) plumes emittes by Kilauea

Observations of SO2 are essential to both monitoring and understanding eruptive activity. HVO relies heavily on measurements of SO2 emission rate which are critical for vog (volcanic air pollution) forecasts and can be used for calculating lava eruption rates.

HVO also relies heavily on cameras to document activity, including both visual and thermal cameras. A third type of camera—an ultraviolet (UV) camera—allows volcanologists to visualize otherwise invisible, SO2 plumes. SO2 absorbs ultraviolet light, which makes it visible in UV imagery even when it cannot be seen by standard cameras.

UV cameras have been used at Kilauea since 2010. Later, in 2013, a combined effort between the Cascades Volcano Observatory (CVO) and HVO resulted in the installation of an automated UV camera system at the summit of Kilauea. That camera station was removed in 2018 when it was threatened by ground cracking associated with summit caldera collapse events.

With lava and strong SO2 degassing having returned to Kilauea summit in late 2020, HVO and CVO are teaming up with colleagues at the University of Sheffield in the United Kingdom. The UK scientists have developed a new generation of small UV cameras that use Raspberry Pi technology. A Raspberry Pi is a small, low-cost computer, about the size of a credit card, and HVO has used them in other applications before.

The new cameras—PiCams—will be tested later this month and can be used as portable field tools or installed as permanent stations in HVO’s monitoring network. Pending the outcome of the initial tests, HVO plans to install at least one PiCam permanently at Kilauea’s summit. A second PiCam will either be kept portable or will eventually be permanently installed near Mauna Loa’s summit.

SO2 emission rates can also be derived from UV camera images. Traditional SO2 emission rate measurements are made by traversing beneath the plume with a UV spectrometer mounted on a car, so that each measurement takes ten or more minutes, with only 6–10 of those measurements made per day. Beginning in 2012, HVO pioneered a network of continuous spectrometers to measure Kilauea’s SO2 emission rate at a much higher temporal resolution than possible with vehicle-based measurements, but the network did not provide spatial information about the SO2 plume.

Once the PiCams are ready for use, they will provide both a 2-dimensional view of Kilauea’s SO2 degassing as well as a high-temporal resolution, continuous timeseries of SO2 emission rate measurements.

The continuous SO2 emission rate data will make it easier to study degassing in conjunction with other continuous datasets, like earthquake activity and ground deformation. This will give greater insight into the role of degassing in specific eruptive events, something that has not always been easy to do in the past. Similar work has been done over the past decade at many volcanoes around the world, including at Kilauea, where earthquake activity and SO2 emissions were shown to be linked during lava lake rise-fall events in 2010. The current lava lake in Halema‘uma‘u has a different configuration and set of behaviours from the 2008–18 lava lake, and HVO is eager to see what the new PiCams will reveal about the degassing of the new lake.

Source: USGS, HVO.

Panache émis par le lac de lave du Kilauea avant l’éruption de 2018 (Photos: C. Grandpey)

Nouvelles mesures sur le Kilauea (Hawaii) // New measurements on Kilauea Volcano (Hawaii)

Alors que l’éruption sommitale du Kilauea se poursuit dans le cratère de l’Halema’uma’u, les géologues du HVO sont impliqués dans deux projets qui devraient leur permettre de mieux comprendre comment fonctionne le volcan, ainsi que le déroulement de l’éruption et l’effondrement du sommet du Kīlauea en 2018.
Les deux projets qui débuteront cet été mettent en jeu le transport aérien d’une boucle de fil oblongue d’une part, et l’enfouissement de bobines de fil d’autre part. La zone cible est l’ensemble du Kilauea, depuis la pointe orientale de Kumukahi au sud-ouest, jusqu’à Punaluʻu. Les deux projets détermineront la distribution des résistivités électriques sous la surface, ce qui peut être utilisé pour cartographier le magma. Le projet aéroporté cartographiera également les variations du champ magnétique pour déterminer dans quelle mesure le champ terrestre est présent dans les minéraux magnétiques du Kilauea.
Le premier projet consistera à enfouir des électrodes et des bobines de fil à faible profondeur pour mesurer l’énergie électromagnétique (EM) générée par la foudre autour de l’équateur. Les orages accompagnés de foudre sont courants dans les régions équatoriales. Ils produisent un bruit électromagnétique constant qui se déplace autour du globe dans l’atmosphère entre la surface de la Terre et l’ionosphère. La réponse de la Terre à cette stimulation EM distante peut indiquer aux géologues les propriétés électriques de la Terre sous les bobines à des profondeurs d’environ 10 km. Le système, d’une surface d’un mètre carré, sera déplacé vers quelque 125 emplacements au sol sur le volcan. Les données obtenues serviront à mettre au point une image détaillée du fonctionnement interne de Kilauea. Cette étude s’étalera sur deux saisons : la première en 2022 durant les mois de mai et juin; la deuxième à l’été 2023.
La deuxième partie du projet utilisera une boucle de fil de forme ovale de 15 m par 25 m suspendue à 30 m sous un hélicoptère survolant la majeure partie du volcan.

 

Source: USGS

La boucle transmettra et recevra de l’énergie EM à très basse fréquence et devra voler à 35–50 m au-dessus du sol ou de la cime des arbres. Un petit capteur mesurera également l’intensité du champ magnétique. Il s’agit de cartographie électromagnétique et magnétique aéroportée (AEM).
Les données AEM permettront d’obtenir une image de la structure peu profonde (600 m de profondeur) du volcan, y compris les eaux souterraines et les schémas d’altération causés par les fluides hydrothermaux comme ceux qui se sont infiltrés dans le lac d’eau de l’Halema’uma’u en 2019-2020. Le champ magnétique terrestre le long de la trajectoire de vol permettra de cartographier également la signature du dyke qui a acheminé le magma vers le district de Puna en 2018. Cette partie du projet est également prévue au cours des mois de juin et juillet 2022.
Les survols actuels ne concernent aucune zone résidentielle ni aucune autre région interdite par la Federal Aviation Administration (FAA) ou le Parc national des volcans d’Hawaï. En revanche, les prochains vols auront lieu de jour et seront coordonnés avec la FAA. Des pilotes expérimentés spécialement formés pour le vol à basse altitude piloteront l’hélicoptère. Aucun des instruments utilisés pendant le projet ne présente de risque pour la santé des personnes ou des animaux.
L’AEM et le champ magnétique terrestre ont été cartographiés pour la dernière fois en 1978 sur le Kilauea et le Mauna Loa. Les résultats ont montré que l’East Rift Zone du Kilauea présentait une forte aberration de champ magnétique typique des dykes verticaux qui alimentent d’innombrables éruptions latérales à partir de la zone sommitale.
L’équipement et le logiciel utilisés pour ces projets ont été beaucoup améliorés au cours des 20 dernières années et les géophysiciens qui supervisent le projet actuel ont utilisé avec succès les nouvelles techniques pour cartographier d’autres volcans aux Etats Unis. La finalité du projet en cours est de produire une image de l’ensemble du système magmatique du Kilauea.
Source : USGS, HVO.

A noter que l’étude aéroportée du volcan a déjà été mise en oeuvre sur le Piton de la Fournaise (Ile de la Réunion). Voir ma note du 22 décembre 2019:

https://claudegrandpeyvolcansetglaciers.com/2019/12/22/nouvelle-approche-de-lile-de-la-reunion-et-son-volcan-new-approach-of-reunion-island-and-its-volcano/

———————————————–

While the summit eruption of Kilauea is continuing within Halema’uma’u Crater, HVO geologists are involved in two projects that will help scientists better understand how the volcano works and how the 2018 eruption and collapse of Kīlauea summit happened.

The two projects that will start this summer employ flying an oblong wire loop and burying wire coils. The target area is the entire volcano of Kilauea, from the eastern point of Kumukahi southwest almost to Punaluʻu. Both project will determine the distribution of electrical resistivities below the surface, which can be used to map magma. The airborne project will also map variations in the magnetic field to determine how well the Earth’s field is frozen into Kīlauea’s magnetic minerals.

The first project will deploy electrodes and wire coils buried at shallow depths to passively measure the electromagnetic (EM) energy generated by lightning strikes around the equator.. Lightning storms are common in equatorial regions and those storms produce surprisingly constant electromagnetic noise that travels around the globe in the atmosphere between the Earth’s surface and the ionosphere. The response of the earth to this distant EM stimulation can tell geologists the electrical properties of the earth below the coils to depths of about 10 km. The one-square-meter setup will be moved to about 125 ground locations on the volcano. The resulting data will be used to develop a detailed picture of Kilauea’s inner workings. This study will be done over two field seasons with the first season in 2022 during the months of May and June. The second season will be in the summer of 2023.

The second part of the project will use a 15 by 25 m oval-shaped wire loop suspended 30 m beneath a helicopter flying over most of the volcano. (see image above) The loop assembly will transmit and receive very low frequency EM energy and will need to be flown 35–50 m above the ground or treetops. A small sensor will also be measuring magnetic field strength. The technique is called airborne electromagnetic and magnetic (AEM) mapping.

AEM data will allow imaging of the shallow (upper 600 m) structure of the volcano including groundwater and patterns of alteration caused by hydrothermal fluids like those that seeped into Halemaʻumaʻu water lake in 2019–2020. Earth’s magnetic field along the flight path will also map the signature of the cooling dike that transported magma to lower Puna in 2018. This part of the project is also scheduled for 2022 in the months of June and July.

Currently planned flight lines do not fly over any residential areas or other regions excluded by the Federal Aviation Administration (FAA) or Hawaiʻi Volcanoes National Park. Flights will occur during daylight hours and be coordinated with the FAA. Experienced pilots specially trained and approved for low-level flying will operate the helicopter. None of the instruments in either part of the project pose a health risk to people or animals.

AEM and Earth’s magnetic field were last mapped in 1978 over both Kilauea and Mauna Loa. The 1978 results showed that Kilauea’s East Rift Zone was clearly outlined by a strong magnetic field aberration typical of vertical dikes that fed countless eruptions laterally from the summit area.

The equipment and software have been much improved in the past 20 years and the geophysicists overseeing the current project have successfully used the technique to map other US volcanoes. Their hope is now to produce a picture of the entire magmatic system of Kilauea.

Source: USGS, HVO.

It should be noted that the airborne technology was already used on Piton de la Fournaise (Reunion Island). See my post of December 22nd, 2019:

https://claudegrandpeyvolcansetglaciers.com/2019/12/22/nouvelle-approche-de-lile-de-la-reunion-et-son-volcan-new-approach-of-reunion-island-and-its-volcano/

Vue de la zone couverte par la campagne de mesures ‘Source: HVO)

Une pelleteuse dans la vallée de Natthagi (Islande) ! // An excavator in Natthagi (Iceland) !

Ces derniers jours, je me demandais pourquoi une pelleteuse s’agitait dans la vallée de Natthagi, juste devant le rempart de terre édifié pour empêcher – si possible – la lave d’atteindre la route côtière et d’endommager un câble à fibre optique. Pour le moment, ce barrage s’avère inutile car la lave a décidé de prendre une trajectoire opposée vers la vallée de Meradalir. Mais on ne sait jamais ; le volcan s’est montré fantasque depuis le début de l’éruption.
Aujourd’hui, j’ai la réponse et je sais pourquoi il y a une pelleteuse à Natthagi. Une tranchée a été creusée dans la vallée avec, à l’intérieur, des tuyaux et divers équipements de mesure dont le but est d’évaluer l’impact qu’aurait une coulée de lave sur de telles installations.
Les scientifiques expliquent que quand (ou si !) la lave recouvre la tranchée, ils recueilleront des données uniques sur l’effet de la coulée sur les câbles et autres infrastructures installées sous terre.
Source : Iceland Monitor.

A noter que le 21 août dans l’après-midi, une brèche s’est ouverte sur la lèvre du cratère côté Natthagi. La lave pourrait bien reprendre le chemin de cette vallée….

————————————-

Over the past days, I was wondering why an excavator was working in the Natthagi valley, right in front of the earthern wall built to prevent – if possible- lava from reaching the coastal road and damaging a fiber optic cable. For the moment, this dam is proving useless as lava has decided to take the opposited way in Meradalir. But one never knows ; the volcano has proved whimsical since the start of the eruption.

Today, I got the answer and I know why there is an excavatorr in Natthagi. A ditch has been dug in the valley. Inside the ditch, there are pipes and various measuring equipment whose aim is to assess the impact lava flow would have on such installations.

Scientists explain that when (or if!) lava flows across the ditch, they will collect unique data about the effect of lava flow on cables and other infrastructure installed underground.

Source : Iceland Monitor.

It should be noted that on August 21st in the afternoon, a breach opened on the crater rim, Natthagi side. The lava might now flow toward this valley ….

Capture écran webcam

Vue de la nouvelle brèche côté sud. Elle laisse échapper un important flot de lave qui devra toutefois être plus constant pour atteindre la tranchée dans Natthagi.

Nouvel instrument de mesure sur le Kilauea (Hawaii) // New measuring instrument on Kilauea Volcano (Hawaii)

Dans sa dernière mise à jour, l’Observatoire des Volcans d’Hawaii, le HVO, indique que le Kilauea n’est pas en éruption. L’alimentation du lac de lave dans l’Halema’uma’u a cessé et les émissions de SO2 et ont retrouvé le niveau qui était le leur avant la dernière éruption. Rien n’annonce en ce moment une reprise imminente de l’activité éruptive.

Bien qu’il n’y ait pas de lac de lave sur le Kilauea ces jours-ci, les scientifiques du HVO expliquent comment ils mesurent la hauteur d’un lac de lave actif.

Une nouvelle technique de mesure a été mise au point pour améliorer encore davantage le réseau permanent de surveillance volcanique. Il s’agit d’un prototype de télémètre laser à mesure continue – Continuous Laser Rangefinder (CLR) – qui a été installé au bord du cratère de l’Halema’uma’u le 26 décembre 2020 et est devenu pleinement opérationnel le 8 janvier 2021.

Ce nouvel instrument contrôle la dynamique du lac de lave avec une résolution encore jamais atteinte. Le CLR mesure en temps réel et en autonomie totale les variations de niveau du lac de lave en utilisant les propriétés de réflexion de la lumière à sa surface.

L’instrument est positionné sur la lèvre ouest de l’Halema’uma’u. Il est orienté vers le cratère avec une inclinaison de 32,57 degrés sous l’horizon. La plage de mesure actuelle est d’environ 733 mètres.

Le CLR transmet une impulsion laser toutes les secondes. Le laser de longueur d’onde de 1550 nanomètres est invisible et sans danger pour l’œil humain. Le faisceau laser s’élargit avec la distance, ce qui crée une empreinte cible d’environ 0,5 m de diamètre sur la surface du lac de lave à proximité des bouches qui étaient actives sur la paroi interne nord-ouest de l’Halema’uma’u.

Une diode réceptrice détecte les signaux laser réfléchis. Un microprocesseur calcule la distance jusqu’à la surface du lac au centimètre près en mesurant le temps mis par l’impulsion laser.

Un inclinomètre à l’intérieur de l’instrument mesure l’angle d’inclinaison du faisceau laser. L’angle du faisceau est utilisé pour calculer la hauteur de la surface du lac de lave par rapport à celle de l’instrument ? Ce dernier est parfaitement stable grâce à un solide trépied, ce qui améliore encore plus la précision des mesures. Ces dernières sont transmises en temps réel via le réseau radio numérique du HVO. .

Le télémètre a également été conçu pour fonctionner par mauvais temps et lorsque les émissions de gaz sont denses. Le Kilauea est un environnement hostile pour les instruments à cause des gaz volcaniques corrosifs, des téphras abrasifs, des fortes pluies, de la foudre et des projections lors des explosions. C’est pourquoi les composants optiques du CLR sont protégés par un boîtier très résistant.

L’instrument fonctionne à l’énergie solaire grâce aux stations photovoltaïques mobiles du HVO qui peuvent être rapidement déployées par hélicoptère.

Le CLR vient compléter d’autres types de données collectées régulièrement par les scientifiques du HVO sur le terrain. Toutefois, ces techniques offrent une couverture spatiale plus large que la mesure à point unique du CLR ; les mesures sont sporadiques et ont une marge d’erreur plus élevée.

Source : USGS/HVO.

——————————————

In its latest update, The USGS Hawaiian Volcano Observatory (HVO) indicaes taht Kilauea is not erupting. Lava supply to the Halema’uma’u lava lake has ceased and SO2 emissions have decreased to near pre-eruption background levels. There are currently no indications suggesting that a resumption of volcanic activity is imminent.

Although there is no lava lake on Kilauea these days, HVO scientists explain how they measure the lake’s height when it is active in a crater.

New technology has been implemented and is improving HVO’s permanent volcano monitoring network. The prototype Continuous Laser Rangefinder (CLR) gauge is one of the new instruments. It was installed on December 26th, 2020 and became fully operational on January 8th, 2021.

This newly-developed instrument monitors lava lake dynamics with unprecedented resolution. The CLR gauge autonomously measures lava lake elevation in real-time, using the light-reflecting properties of the lava surface.

The instrument is stationed on the western rim of Halema’uma’u Crater. It is aimed into the crater at an inclination of 32.57 degrees below the horizon. Current measurement range is about 733 metres.

The CLR gauge transmits a laser pulse every second. The 1550 nanometer wavelength laser is invisible and eye-safe. The laser beam broadens with distance, making a target footprint about 0.5 m diameter on the lava lake surface near the previously active vents on Halema’uma’u’s northwest wall.

A receiver diode senses laser signals reflected from downrange. A microprocessor calculates the distance to the lake surface within a centimetre by measuring the time of flight of the laser pulse.

An onboard inclinometer measures the slant angle of the laser beam. The beam angle is used to calculate vertical elevation of the lake surface below the surveyed instrument elevation. The instrument is stabilized by a sturdy tripod that improves measurement precision.

Real-time range measurements are telemetered via HVO’s digital radio network.

The quipment has laso been designed to work in foul weather and dense gas emissions. Kilauea is a harsh environment for instrumentation. Corrosive volcanic gas, abrasive tephra, heavy rainfall, lightning, and ballistic ejections are a threat to monitoring equipment. The CLR gauge optical components are protected by a custom enclosure.

The CLR gauge is solar powered by HVO’s flyaway photovoltaic stations, which are rapidly deployed by helicopter. The new instrument complements other types of data routinely collected by HVO scientists in the field. However, these techniques provide broader spatial coverage than the CLR’s single-point measurement; they ate are sporadic and have higher error.

Source : USGS / HVO.

Vue du CLR installé sur la lèvre du cratère de l’Halema’uma’u. On peut voir à droite en haut de l’image une vue éclatée du boîtier optique de l’instrument. (Source : USGS)