Les éruptions du 6ème siècle // The sixth-century eruptions

On sait depuis longtemps que les éruptions volcaniques peuvent avoir un effet sur le climat. L’exemple le plus récent est l’éruption du Pinatubo en 1991 aux Philippines qui a fait baisser en moyenne de 0,6°C la température de notre planète pendant 2 ou 3 ans.
En 1815, l’éruption du Tambora en Indonésie, a provoqué, entre autres, des gelées en plein été dans l’État de New York et des chutes de neige en juin en Nouvelle-Angleterre. 1816 a été baptisée « l’Année sans été ».
L’été de 1783 a été exceptionnellement froid à cause de l’éruption du Laki en Islande. Le volcan a émis d’énormes quantités de dioxyde de soufre, ce qui a provoqué la mort d’une grande partie du bétail de l’île, ainsi qu’une famine catastrophique qui a tué un quart de la population islandaise. Les températures de l’hémisphère nord ont chuté d’environ 1°C dans l’année qui a suivi l’éruption du Laki.
Au cours de l’été 536, un mystérieux nuage a recouvert le bassin méditerranéen. Le climat local s’est refroidi pendant plus d’une décennie. Les récoltes ont été anéanties, ce qui a entraîné une famine de grande ampleur. De 541 à 542, une pandémie connue sous le nom de Peste de Justinien a affecté l’Empire Romain d’Orient.
Les scientifiques ont longtemps pensé que la cause des problèmes dont fut victime l’Empire Romain pouvait être une éruption volcanique majeure, probablement celle du volcan Ilopango au Salvador, dont la cendre aurait envahi l’atmosphère. Aujourd’hui, les chercheurs sont convaincus qu’il y a eu en fait deux éruptions – une sur 535 ou 536 dans l’hémisphère nord et une autre en 539 ou 540 sous les tropiques – qui ont refroidi les températures de l’hémisphère nord jusqu’en 550.
Cette nouvelle hypothèse fait suite à une analyse récente qui associe des carottes de glace prélevées en Antarctique et au Groenland et des données provenant de cernes (ou anneaux de croissance) d’arbres. Selon ces données, presque tous les événements de refroidissement survenus dans l’hémisphère nord au cours des 2 500 dernières années peuvent être attribués à des volcans.
Quand un volcan entre en éruption, il envoie des aérosols soufrés dans l’atmosphère où ils peuvent persister pendant deux à trois ans. Ces aérosols bloquent une partie du rayonnement solaire et provoquent un refroidissement.
Les arbres enregistrent les impacts climatiques d’une éruption et cela se traduit par la taille de leurs cernes; Quand un événement lié au climat se produit, les anneaux de croissance peuvent être plus larges ou plus minces que la moyenne, selon que la région est humide ou sèche, et en fonction de la durée normale de la période de croissance. Dans le même temps, les aérosols soufrés finissent par retomber sur Terre et s’infiltrent dans la glace de la banquise et des glaciers, fournissant un enregistrement des éruptions.
L’association des carottes glaciaires et des cernes des arbres s’est avérée difficile dans le passé. C’est pourquoi les chercheurs du Desert Research Institute de Las Vegas ont utilisé un plus grand nombre de carottes de glace que les  études précédentes. Ils ont également employé une nouvelle méthode pour améliorer la résolution des données obtenues à partir des carottes. Elle consiste à faire fondre la carotte à une extrémité et à analyser en continu l’eau de fonte. L’équipe scientifique a ensuite utilisé un algorithme pour faire correspondre les données obtenues à partir des carottes de glace et celles fournies par les cernes des arbres.
Dans un article publié dans la revue Nature, les chercheurs disent avoir détecté 238 éruptions au cours des 2500 dernières années. Environ la moitié d’entre elles se situaient dans les hautes et moyennes latitudes de l’hémisphère nord, tandis que 81 se trouvaient dans les zones tropicales. En raison de la rotation de la Terre, les matériaux émis par des volcans tropicaux se retrouvent au Groenland et en Antarctique, tandis que les matériaux émis par des volcans de l’hémisphère nord tendent à y rester. Les sources exactes de la plupart des éruptions restent inconnues, mais l’équipe de chercheurs a pu faire correspondre leurs effets sur le climat aux enregistrements fournis par les cernes des arbres.
En ce qui concerne l’Empire Romain, la première éruption, à la fin de l’année 535 ou au début de 536, a injecté de grandes quantités de sulfates et de cendres dans l’atmosphère. Selon les récits historiques, l’atmosphère s’est assombrie en mars 536, et est restée ainsi pendant 18 mois. Les cernes ont enregistré des températures froides en Amérique du Nord, en Asie et en Europe où les températures estivales ont chuté de 1,1 à 2,2 degrés Celsius par rapport à la moyenne des 30 années précédentes. Puis, en 539 ou 540, un autre volcan est entré en éruption. Il a émis 10 pour cent de plus d’aérosols dans l’atmosphère que l’éruption du Tambora en 1815. De nouvelles calamités sont apparues, avec des famines et des pandémies. Selon les auteurs de l’article, ces éruptions ont probablement contribué au déclin de l’empire maya.
Tous ces exemples montrent clairement l’impact des éruptions volcaniques sur notre climat et, dans certains cas, sur la santé humaine, l’économie et l’histoire.
Source: Smithsonian Magazine.

——————————————-

It is well known that volcanic eruptions can have an effect on the climate. The most recent example is the 1991 eruption of Mount Pinatubo in the Philippines which cooled global temperatures for about 2–3 years.

The 1815 eruption of Mount Tambora in Indonesia, occasioned – among others – mid-summer frosts in New York State and June snowfalls in New England. 1816 came to be known as the « Year Without a Summer. »

The summer of 1783 was unusually cold because of the volcanic dust produced by the eruption of Laki volcano in Iceland. It released enormous amounts of sulfur dioxide, resulting in the death of much of the island’s livestock and a catastrophic famine which killed a quarter of the Icelandic population. Northern hemisphere temperatures dropped by about 1°C in the year following the Laki eruption.

In the summer of 536, a mysterious cloud appeared over the Mediterranean basin. The local climate cooled for more than a decade. Crops failed, and there was widespread famine. From 541 to 542, a pandemic known as the Plague of Justinian swept through the Eastern Roman Empire.

Scientists had long suspected that the cause of all this misery might be a volcanic eruption, probably from Ilopango in El Salvador, which filled Earth’s atmosphere with ash. But now researchers say there were actually two eruptions – one in 535 or 536 in the northern hemisphere and another in 539 or 540 in the tropics – that kept temperatures in the north cool until 550.

The revelation comes from a new analysis that combines ice cores collected in Antarctica and Greenland with data from tree rings. According to the data, nearly all extreme summer cooling events in the northern hemisphere in the past 2,500 years can be traced to volcanoes.

When a volcano erupts, it spews sulfur aerosols into the air, where they can persist for two to three years. These aerosols block out some of the sun’s incoming radiation, causing cooling.

Trees record the climate impacts of an eruption in the size of their rings ; when a climate-related event occurs, the rings may appear wider or thinner than average, depending on whether the region is typically wet or dry and the normal length of the growing season. Meanwhile, the sulfur particles eventually fall to Earth and get incorporated into polar and glacial ice, providing a record of the eruptions.

Combining the two types of records had proven difficult in the past. So, researchers at the Desert Research Institute in Las Vegas used more ice cores than any previous study. They also employed a method to enhance the resolution in the data obtained from the cores. It consisted in melting the core from one end and continuously analyzing the meltwater. The team then used a sophisticated algorithm to match up their ice core data with existing tree ring datasets.

In an article published in the journal Nature, the researchers say they detected 238 eruptions from the past 2,500 years. About half were in the mid- to high-latitudes in the northern hemisphere, while 81 were in the tropics. Because of the rotation of the Earth, material from tropical volcanoes ends up in both Greenland and Antarctica, while material from northern volcanoes tends to stay in the north. The exact sources of most of the eruptions are as yet unknown, but the team was able to match their effects on climate to the tree ring records.

As far as the Roman Empire is concerned, the first eruption, in late 535 or early 536, injected large amounts of sulfate and ash into the atmosphere. According to historical accounts, the atmosphere had dimmed by March 536, and it stayed that way for another 18 months. Tree rings recorded cold temperatures in North America, Asia and Europe, where summer temperatures dropped by 1.1 to 2.2 degrees Celsius below the average of the previous 30 years. Then, in 539 or 540, another volcano erupted. It spewed 10 percent more aerosols into the atmosphere than the huge eruption of Tambora in Indonesia in 1815. More misery ensued, including the famines and pandemics. According to the authors of the article, the same eruptions may have even contributed to a decline in the Maya empire.

All these examples clearly show the marked impact that volcanic eruptions have on our climate and, in some cases, on human health, economics and so history.

Source: Smithsonian Magazine.

Vue du lac et de la caldeira de l’Ilopango au Salvador (Crédit photo : Wikipedia)

Des carottes de glace précieuses // Precious ice cores

Aujourd’hui, les glaciers sont de plus en plus utilisés pour étudier le passé de la Terre et plus particulièrement les différents changements climatiques survenus au cours du temps. Ils peuvent aussi aider à dater des éruptions volcaniques.
Les glaciers se forment lorsque la neige s’accumule régulièrement sur les hautes pentes des montagnes. Comme il fait très froid au-dessus de 3000 mètres d’altitude, la neige ne fond pas. Lentement, le poids des nouvelles couches déforme les cristaux qui se trouvent en dessous. Avec la compression, ces cristaux deviennent une couche de glace dense et dure qui finit par donner naissance à un glacier, avec une glace de plus en plus vieille au fur et à mesure que l’on s’enfonce.
Les glaciers jouent le rôle d’enregistreurs du climat. Quand une nouvelle couche se forme, de minuscules bulles d’air sont emprisonnées à l’intérieur. En analysant cet air piégé, les scientifiques peuvent déterminer la quantité de gaz à effet de serre contenue dans l’atmosphère au moment de la première solidification de la glace. Comme je l’ai écrit plus haut, cette glace peut également piéger les cendres volcaniques, ce qui permet de savoir quand a eu lieu une éruption dans des temps reculés. La glace permet également de connaître la force des vents préhistoriques et les températures globales de la Terre il y a des millénaires.
Les carottes contenant ces informations précieuses sont récoltées par forage. À l’aide de foreuses mécaniques ou thermiques, les glaciologues peuvent extraire des coupes verticales d’un glacier. Les carottes les plus courtes mesurent habituellement une centaine de mètres de longueur, mais des carottes de plus de trois kilomètres ont également été prélevées. Pendant le processus d’extraction, une carotte est partagée en morceaux plus petits qui sont ensuite placés dans des cylindres métalliques et stockés dans des laboratoires réfrigérés.
Ce qui est pratique avec les glaciers, c’est qu’ils sont constitués de couches annuelles. En les comptant, les scientifiques peuvent avoir une bonne idée de l’âge d’un segment de carotte de glace. Une autre technique est la datation radiométrique qui utilise la variation de la proportion de radioisotopes dans certains corps.
Pour avoir une vision globale de notre planète, les glaciologues essaient de collecter des carottes de glace provenant de différents glaciers sur différents continents. Cependant, l’Australie n’est pas concernée car il n’y a pas de glaciers là-bas. Malgré cela, la plupart des carottes de glace ont été prélevées jusqu’à présent au Groenland ou en Antarctique. À la mi-décembre, les glaciologues ont annoncé qu’ils avaient à leur disposition une carotte d’une grande importance historique qui a été retirée du plateau tibétain.
Cette carotte de glace a été extraite par des chercheurs de l’Ohio State University lors d’une expédition conjointe de scientifiques du Byrd Polar and Climate Research Centre (BPCRC) et  du Chinese Institute of Tibetan Plateau Research. Leur mission a débuté en septembre et octobre 2015, lorsque le groupe international s’est rendu sur la calotte glaciaire de Guliya dans les montagnes de Kunlun, dans l’ouest du Tibet. Ils ont acheminé 5,4 tonnes d’équipement qui avaient été transportées par avion depuis les États-Unis.
Le but de la mission était d’extraire de nouvelles carottes de glace pour améliorer notre connaissance de l’histoire glaciaire du Tibet occidental. Plus de 1,4 milliard de personnes tirent leur eau potable des 46 000 glaciers qui se trouvent sur le plateau tibétain. Le changement climatique a mis en péril la stabilité à long terme de la région. Selon un rapport publié en 2012 dans la revue Nature, la plupart des glaciers du Tibet ont reculé au cours des 30 dernières années (voir les articles précédents sur ce blog). La fonte des glaces des hauts plateaux tibétains est considérée comme un facteur important de l’élévation du niveau de la mer dans le monde.
Au total, l’équipe de glaciologues a extrait cinq carottes de Guliya. La plus longue mesure plus de 300 mètres ! Les couches de glace les plus profondes se sont formées il y a environ 600 000 ans. C’est la date la plus ancienne pour une carotte de glace prélevée ailleurs qu’au Groenland et en Antarctique. Toutefois, par rapport à d’autres carottes, l’âge de la glace tibétaine n’est pas extraordinaire. Une glace de 2,7 millions d’années a été extraite en Antarctique en 2015.
En étudiant les carottes prélevées dans différentes parties du monde, les scientifiques peuvent déterminer si les tendances météorologiques au cours de l’Histoire étaient universelles ou simplement régionales. Au début des années 2010, par exemple, les scientifiques ont comparé des spécimens de glace du Tibet et d’Europe. Les données ont montré que pendant que l’Europe connaissait une période chaude à l’époque médiévale, l’Asie centrale y échappait. Les scientifiques chinois et américains soumettront les nouvelles carottes à des analyses chimiques poussées au cours des prochains mois.

Voici une vidéo qui illustre la mission au Tibet:
https://youtu.be/UcwSonWRVlE

Source: Byrd Polar et Climate Research Centre – Université d’État de l’Ohio.
https://bpcrc.osu.edu/

—————————————–

Today, glaciers are more and more used to study the Earth’s past and more particularly the different climate changes that occurred through the ages. Glaciers can also help us date volcanic eruptions.

Glaciers form when snow is steadily accumulating on the upper slopes of the mountains. As it is very cold above 3000 metres above sea level, the snow does not melt. Slowly, the weight of new layers deforms the snow crystals below them. The compression fuses old, buried snowflakes together until they become a dense, rock-hard sheet of ice. Eventually, that becomes a glacier, with the older ice sitting at the bottom.

Glacial ice is a kind of annual record book. While a new layer forms, tiny bubbles of air get trapped inside. By analyzing that trapped air, scientists can determine how much greenhouse gas was in the atmosphere back when a given ice chunk first solidified. As I put it above, hardening glacial ice can also trap volcanic ash, which lets us know when an ancient eruption must have taken place. Other elements extrapolated from the ice include the strength of prehistoric winds and the global temperatures of ancient periods of the Earth.

The precious information is harvested via drilling. With the help of mechanical or thermal drills, a research team can extract vertical cross-sections from a glacier. These are called « ice cores. » The shortest are usually around100 metres long, but cores stretching more than three kilometres have also been collected. During the extraction process, a core is broken up into smaller pieces, which are then placed into metal cylinders and stored in chilled laboratories.

A convenient feature of glaciers is the fact that they are made up of annual layers. By counting these, scientists can get a good idea of how old an ice core segment is. Another technique is radiometric dating.

To get a global view of our planet, glaciologists try to collect ice cores from different glaciers on different continents. However, Australia is not concerned as there are no glaciers down there. Despite this, most of the ice cores recovered so far were drilled in either Greenland or Antarctica. In mid-December, however, scientists announced they had an ice core of huge historical importance that was removed from the Tibetan Plateau.

The ice core was extracted by glaciologists of The Ohio State University during a joint expedition by scientists from the school’s Byrd Polar and Climate Research Center (BPCRC) and the Chinese Institute of Tibetan Plateau Research. Their mission began in September and October 2015, when the international party made its way to the Guliya Ice Cap in Tibet’s western Kunlun Mountains. They carried along 5.4 metric tons of equipment that was flown over from the U.S.

The aim of the mission was to drill new ice cores to enhance our knowledge of west Tibet’s glacial history. More than 1.4 billion people get their fresh water from the 46,000 glaciers that stand on the Tibetan Plateau. Climate change has put the area’s long-term stability in question. According to a 2012 report published in the journal Nature, most of the glaciers in Tibet have shrunk over the past 30 years (see previous posts on this blog). Melting ice from Tibet’s highlands has been cited as a large contributor to the rise of global sea levels.

Altogether, the international team of glaciologists pulled five ice cores out of Guliya. The longest among them was more than 300 metres long!. The lowest layers were formed around 600,000 years ago. That’s the oldest date ever represented in an ice core that was found outside of Earth’s two polar continents. Compared to other cores, though, the age of the Tibetan ice is not that old. Some 2.7 million year-old glacial ice was extracted from an Antarctic core in 2015.

By consulting the cores found in different parts of the world, scientists can figure out if historic weather trends were universal or just regional. In the early 2010s, for example, scientists compared specimens from Tibet and Europe. The data showed that while the latter continent saw a temporary warm period in medieval times, central Asia most likely didn’t. Chinese and American scientists will be putting these newfound cores through an intensive chemical analysis over the next few months.

Here is a video that illustrates the mission in Tibet:

https://youtu.be/UcwSonWRVlE

Source: Byrd Polar and Climate Research Center – The Ohio State University.

https://bpcrc.osu.edu/

La glace du Groenland donne des indications précieuses sur le climat de notre planète (Photo: C. Grandpey)

Activité éruptive et changement climatique en Antarctique // Eruptive activity and climate change in Antarctica

Les résultats d’une étude publiée au début de septembre 2017 dans les Proceedings of the National Academy of Sciences apportent une nouvelle lumière sur une période de presque deux siècles d’éruptions volcaniques en Antarctique, alors que le continent connaissait une rapide déglaciation il y a environ 17 700 ans.
Les mesures chimiques effectuées sur des carottes de glace de l’Antarctique montrent que des éruptions puissantes et riches en halogènes du Mont Takahe dans l’Antarctique de l’Ouest ont coïncidé exactement avec l’apparition d’un changement climatique rapide et à grande échelle dans l’hémisphère sud à la fin de la dernière période glaciaire et le début de l’augmentation des concentrations de gaz à effet de serre au niveau de la planète.
Les changements climatiques qui ont débuté il y a environ 17 700 ans ont été accompagnés d’un déplacement des vents d’ouest vers le pôle avec, en parallèle, des changements dans la surface occupée par la glace de mer, la circulation océanique et la ventilation de l’océan profond. Les preuves de ces changements sont observées dans de nombreuses parties de l’hémisphère sud et dans différentes archives paléoclimatiques, mais leur cause était en grande partie inexpliquée.
On sait que les évolutions climatiques rapides qui ont eu lieu à cette époque ont été provoquées par des changements intervenus dans l’ensoleillement et sur la banquise de l’hémisphère nord. Les cycles glaciaires et interglaciaires sont influencés par les paramètres orbitaux du soleil et de la Terre qui influent sur l’ensoleillement (l’intensité des rayons du soleil) ainsi que par les changements dans les couches de glace continentale et les concentrations de gaz à effet de serre. Les scientifiques pensent que les éruptions du Mt Takahe, riches en halogènes, ont créé un trou d’ozone dans la stratosphère au-dessus de l’Antarctique, semblable au trou dans la couche d’ozone de nos jours ; elles ont par ailleurs entraîné des changements à grande échelle dans la circulation atmosphérique et l’hydroclimat dans l’hémisphère sud. Même si le système climatique était déjà programmé pour subir une évolution, ces changements ont probablement entraîné le passage d’un état climatique profondément glaciaire à un état climatique largement interglaciaire.
En outre, les retombées de ces éruptions, avec des niveaux élevés d’acide fluorhydrique et de métaux lourds toxiques, se sont propagées au moins jusqu’à 2 800 kilomètres du Mont. Takahe et ont probablement atteint le sud de l’Amérique du Sud.
Ces puissantes éruptions volcaniques en Antarctique ont été découvertes et vérifiées grâce à des carottes de glace extraites de régions comme le Groenland et l’Antarctique. L’une de ces carottes, connue sous le nom de West Antarctic Ice Sheet Divide (WAIS Divide) a été forée à une profondeur de plus de 3 400 mètres, et les analyses ont mis à jour plus de 30 éléments et espèces chimiques différents. Elles confirment que l’anomalie chimique observée dans la carotte de glace WAIS Divide résulte d’une série d’éruptions du Mont. Takahe qui se trouve à 350 kilomètres au nord.
La découverte de cet événement unique dans le WAIS Divide n’était pas la première indication d’une anomalie chimique qui a eu lieu il y a environ 17 700 ans. L’anomalie a également été détectée de manière plus limitée dans une carotte de glace prélevée  sur le glacier Byrd dans les années 1990, mais les données n’ont pas pu être interprétées clairement. La plupart des études des anciennes carottes de glace en Antarctique n’ont pas pris en compte de nombreux éléments et espèces chimiques étudiés par des chercheurs, comme les métaux lourds et les éléments rares qui caractérisent l’anomalie. Donc, à bien des égards, ces autres études sont passées à côté de l’éruption Mont Takahe.
Source: Science Daily

—————————————–

New findings published early in September in the Proceedings of the National Academy of Sciences document a 192-year series of volcanic eruptions in Antarctica that coincided with accelerated deglaciation about 17,700 years ago.

Detailed chemical measurements in Antarctic ice cores show that massive, halogen-rich eruptions from the West Antarctic Mt. Takahe volcano coincided exactly with the onset of the most rapid, widespread climate change in the Southern Hemisphere during the end of the last ice age and the start of increasing global greenhouse gas concentrations.

Climate changes that began about17,700 years ago included a sudden poleward shift in westerly winds encircling Antarctica with corresponding changes in sea ice extent, ocean circulation, and ventilation of the deep ocean. Evidence of these changes is found in many parts of the Southern Hemisphere and in different paleoclimate archives, but what prompted these changes has remained largely unexplained.

It is known that rapid climate change at this time was primed by changes in solar insolation and the Northern Hemisphere ice sheets. Glacial and interglacial cycles are driven by the sun and Earth orbital parameters that impact solar insolation (intensity of the sun’s rays) as well as by changes in the continental ice sheets and greenhouse gas concentrations. Scientists postulate that these halogen-rich eruptions created a stratospheric ozone hole over Antarctica that, analogous to the modern ozone hole, led to large-scale changes in atmospheric circulation and hydroclimate throughout the Southern Hemisphere. Although the climate system already was primed for the switch, these changes probably initiated the shift from a largely glacial to a largely interglacial climate state.

Furthermore, the fallout from these eruptions, containing elevated levels of hydrofluoric acid and toxic heavy metals, extended at least 2,800 kilometres from Mt. Takahe and likely reached southern South America.

These massive Antarctic volcanic eruptions were discovered and verified thanks to ice cores extracted from remote regions of the Earth, such as Greenland and Antarctica. One such ice core, known as the West Antarctic Ice Sheet Divide (WAIS Divide) core was drilled to a depth of more than 3,400 metres, and much of it was analyzed for more than 30 different elements and chemical species. These precise, high-resolution records illustrate that the chemical anomaly observed in the WAIS Divide ice core was the result of a series of eruptions of Mt. Takahe located 350 kilometres to the north.

Discovery of this unique event in the WAIS Divide record was not the first indication of a chemical anomaly occurring about 17,700 years ago. The anomaly was detected in much more limited measurements of the Byrd ice core in the 1990s, but exactly what it was or what created it was not clear. Most previous Antarctic ice core records have not included many of the elements and chemical species that are studied by researchers, such as heavy metals and rare earth elements that characterize the anomaly. So in many ways these other studies were blind to the Mt. Takahe event.

Source: Science Daily

Vue du Mont Takahe, volcan qui culmine à 2000 mètres au-dessus de l’Ouest antarctique (Source : NASA)

 

Les secrets des carottes de glace // The secrets of ice cores

Une carotte de glace vieille de 2,7 millions d’années a été prélevée en Antarctique. Cette carotte et les bulles d’air qu’elle renferme racontent beaucoup de choses sur l’histoire du climat terrestre et pourraient même révéler ce qui a provoqué les âges de glace. La carotte est la seule de son genre à pouvoir révéler à quoi ressemblait l’atmosphère terrestre à cette époque reculée.
La carotte montre que le niveau de dioxyde de carbone (CO2) dans l’atmosphère au moment où elle s’est formée était inférieur à 300 parties par million. Actuellement, ce niveau est supérieur à 400 ppm (voir la courbe de Keeling ci-dessous) et ce nombre est en hausse constante. Le niveau de CO2 a toujours montré des tendances cycliques, mais depuis l’époque industrielle, il ene cesse de grimper, ce qui aboutit aujourd’hui à des niveaux sans précédent.
Grâce aux carottes de glace, les climatologues peuvent connaître l’atmosphère des années passées. Après avoir prélevé de fines carottes dans les glaciers et les icebergs, les scientifiques analysent les bulles d’air piégées dans ces échantillons. La composition des bulles révèle la composition de l’air au moment où il a été piégé et au moment où la carotte s’est formée.
Pour extraire l’air des carottes de glace, les scientifiques peuvent écraser la carotte ou la faire fondre sous vide afin que l’air qu’elle contient ne soit pas contaminé avant l’analyse. La carotte est ensuite examinée à l’aide d’instruments de haute technologie qui analysent les niveaux de pollution en contrôlant les sulfates, les aérosols de métaux et les gaz. Selon la NOAA, le type d’isotope d’oxygène contenu dans la carotte peut également révéler la température de la Terre au moment où la carotte s’est formée.
La carotte vieille de 2,7 millions d’années n’a pas été prélevée très profondément dans la «glace bleue» qui est fréquemment ignorée lors de la collecte d’échantillons de glace. Cette glace bleue est le résultat de la chute de neige sur la glace formée et de sa compression. La glace n’est pas vraiment bleue; La couleur provient des courtes longueurs d’ondes de la diffusion de la lumière et plus la lumière se déplace dans la glace, plus elle est bleue.
Les chercheurs de l’Université de Princeton qui ont prélevé la carotte de glace espèrent retourner dans la zone qui a été forée dans l’espoir de trouver des glaces encore plus anciennes qui leur permettront d’effectuer de nouvelles recherches dans les années à venir.
Source: Science Magazine.

————————————-

A 2.7 million-year-old ice core has been collected in Antarctica. The core’s age and the air bubbles it contains reveal a lot about the Earth’s climate history and possibly reveal what caused the Ice Ages. The core is the only of its kind that can reveal what the atmosphere on Earth was like so long ago.

This specific core shows that the level of carbon dioxide (CO2) in the atmosphere at the time it was formed was no greater than 300 parts per million.. Currently the Earth’s atmosphere is at more than 400 ppm (see Keeling Curve below), a number that is increasing. Levels of CO2 have always shown some cyclical trends, but since the industrial era CO2 levels have spiked leading to unprecedented levels never recorded.

Ice cores are a key means by which climate scientists learn about the atmosphere of years past. By removing thin ice cores from glaciers and icebergs scientists then test the air bubbles trapped in those cores. The composition of the bubbles reveal what the air was like around the time it was trapped and the core was formed.

To extract the air from the cores scientists can crush the core or melt it in a vacuum so no other air contaminates it before testing. The core then goes through sophisticated instruments that measure levels of pollution by checking for sulfates, metals aerosols and any gases. According to NOAA, the type of oxygen isotope found in the core can also reveal what the temperature on Earth was like when the core formed.

The 2.7 million year old core was found not very deep down in “blue ice” which is frequently ignored when looking for ice cores. That blue ice is the result of snow falling on formed ice and compressing down. The ice is not actually blue; the colour comes from the short wavelengths of light scattering and the further the light travels in the ice the bluer it looks.

The researchers from Princeton University who found the core are hoping to return to the area where it was drilled to find possibly even older ice for further research in the future.

Source : Science Magazine.

Ce graphique de la NASA montre les niveaux de CO2 dans des carottes de glace au coours des 400 000 dernères années.

Courbe de Keeling montrant les concentrations de CO2 dans l’atmosphère au cours des 800 000 dernières années. Depuis 1958, la courbe se réfère aux mesures en continu effectuées à l’observatoire du Mauna Loa à Hawaii. Les données antérieures s’appuient sur les carottes de glace. On remarquera que la concentration actuelle de CO2 est supérieure à 405 ppm.

 

Volcans et refroidissement de la planète // Volcanoes and cooling of the planet

drapeau francaisEn visitant le site web LiveScience (http://www.livescience.com/), j’ai lu un article très intéressant expliquant que le refroidissement global causé par certaines éruptions volcaniques historiques n’était pas aussi extrême que les climatologues le pensaient jusqu’à présent. Les scientifiques sont arrivés à cette conclusion en étudiant de récentes carottes de glace prélevées en Antarctique.
On sait depuis longtemps que les éruptions volcaniques envoient du SO2 dans la stratosphère où il se transforme en minuscules particules appelées aérosols sulfatés qui renvoient l’énergie solaire et contribuent donc au refroidissement de la planète. La neige qui tombe en Antarctique enregistre les niveaux de sulfate dans l’air au moment des éruptions. Cette neige devient ensuite la glace forée par les chercheurs et prélevée en longues carottes tubulaires.
Les scientifiques ont mesuré les concentrations de sulfate dans 26 carottes de glace prélevées dans 19 endroits différents de l’Antarctique et couvrant les 2000 dernières années de l’histoire de la Terre. Ils ont comparé ces niveaux de sulfate avec des carottes de glace retirées du Groenland afin de vérifier si les éruptions avaient véritablement eu un effet à l’échelle mondiale.
Tout en découvrant dans les carottes de glace des éruptions volcaniques jusqu’alors inconnues avant l’an 500, les chercheurs ont réalisé que certaines éruptions historiques n’avaient pas eu pour la planète des effets aussi sévères que l’avaient laissé entendre les modèles climatiques antérieurs.
L’équipe scientifique a identifié 116 éruptions volcaniques dans les carottes de glace prélevées sur les 19 sites couvrant les 2000 dernières années, y compris des événements historiques tels que le Tambora en 1815, le Kuwae en 1458 et le Rinjani en 1257. La totalité de ces 116 éruptions n’a pas été enregistrée dans les carottes de glace du Groenland, mais pour leur prochain projet, les chercheurs envisagent d’évaluer les niveaux de sulfate dans les carottes de l’île danoise.

Les dernières carottes de glace révèlent que le 13ème siècle a été marquée par un grand nombre d’éruptions sous les tropiques, comme la grande éruption du Rinjani en 1257. Certains chercheurs pensent que ces éruptions ont déclenché le Petit Age Glaciaire, épisode de refroidissement climatique qui a duré jusqu’aux années 1850.
Il s’avère que le Kuwae (Vanuatu) et le Rinjani (Indonésie), deux des plus grandes éruptions volcaniques tropicales observées dans les carottes de glace, ont déposé de 30 à 35 pour cent moins de sulfate dans l’Antarctique que l’avaient révélé les calculs antérieurs. Les résultats obtenus avec des dernières carottes de glace sont plus précis que par le passé et ils couvrent une plus grande surface de l’Antarctique, de sorte que les chercheurs peuvent mieux estimer la quantité de sulfate qui s’est déposée sur ce continent.

 ———————————————

drapeau anglaisWhile visiting the LiveScience website (http://www.livescience.com/), I read a very interesting article explaining that global cooling caused by some historic volcanic eruptions wasn’t as extreme as climate scientists recently thought, according to newly revised ice core records from Antarctica.

It is well known that volcanic eruptions send SO2 into the stratosphere, where it turns into tiny particles called sulfate aerosols that reflect the sun’s energy and cool the Earth. Snow falling in Antarctica records the levels of sulfate in the air at the time, and it eventually becomes ice drilled by researchers in long, tubular cores.

Researchers have measured sulfate concentrations in 26 ice cores from 19 different locations in Antarctica that cover the last 2,000 years of Earth’s history. They synchronized the sulfate records with ice cores from Greenland, to determine if the eruptions had a truly global effect.

Along with finding previously unknown volcanic eruptions in the ice cores from before A.D. 500, the researchers discovered that some historic eruptions weren’t as hard on the planet as earlier climate models suggested.

The team identified 116 volcanic eruptions in the ice cores from the 19 sites covering the past 2,000 years, including historic events such as Tambora in 1815, Kuwae in 1458 and  Rinjani in 1257. Not all of these 116 eruptions are recorded in Greenland’s ice cores, but for their next project, the researchers are planning to assess sulfate levels in the Greenland cores.

The new ice-core record reveals that the 13th century was marked by an onslaught of tropical eruptions, such as the massive 1257 eruption of Mount Rinjani. Some researchers think these eruptions triggered the start of the Little Ice Age, an episode of global cooling that lasted until the 1850s.

It turns out that Indonesia’s Kuwae and Rinjani, two of the largest tropical volcanic eruptions in the ice core record, deposited 30 to 35 percent less sulfate in Antarctica than previously had been calculated. The new ice core records are more detailed than before, and cover a greater area of Antarctica, so the researchers can better estimate how much sulfate was deposited across the continent.

Rinjani-blog

Vue de la caldeira du Rinjani  (Crédit photo:  Wikipedia)