La température de l’eau dans le cratère de l’Halema’uma’u (Hawaii) // Water temperature in Halema’uma’u Crater (Hawaii)

Le 2 août 2020, j’ai publié une note sur le premier anniversaire de la pièce d’eau au fond du cratère de l’Halema’uma’u au sommet du Kilauea. Le lac couvre maintenant une superficie de plus de 2,5 hectares et atteint une profondeur de plus de 40 m. Sa couleur est variable et la température de surface du lac oscille généralement entre 70°C et 85°C.
Dans un nouvel article, les géologues du HVO expliquent que la température de surface du lac est susceptible de donner des indications sur d’éventuels dangers au sommet du volcan. Par exemple, en interagissant avec de l’eau proche de la surface, le magma peut, dans certains cas, déclencher des explosions phréatiques. En conséquence, le lac constitue une fenêtre ouverte sur ce qui se passe sous la surface du Kilauea.
Comme je l’ai écrit précédemment, le niveau du lac est contrôlé régulièrement à l’aide d’un télémètre laser, tandis que les observations visuelles enregistrent les variations de couleur de l’eau et sa circulation. Sa chimie a été analysée grâce à des échantillons prélevés à deux reprises par un drone. Une caméra thermique fonctionnant en continu a été installée en 2019 pour surveiller les changements de température dans le lac 24 heures sur 24. Les géologues utilisent également une caméra thermique portable lors des visites sur le terrain pour effectuer des mesures plus précises de la température du lac.
Cette dernière est parfois difficile à mesurer. En effet, la vapeur qui s’échappe de la surface de l’eau et se mélange à l’air ambiant est beaucoup plus froide que l’eau proprement dite. Cet épais nuage de vapeur masque en grande partie la surface du lac et rend les mesures difficiles. Il faut donc essayer d’effectuer les mesures dans les trouées à l’intérieur de ces nuages de vapeur. C’est en analysant les centaines d’images fournies par la caméra thermique que l’on a le plus de chances d’obtenir une estimation de la température de surface.
Fin 2019, les premiers résultats ont montré une température maximale de 70 à 75 degrés Celsius. Plus tard, une caméra thermique à plus haute résolution a été utilisée et a révélé des valeurs plus élevées, avec des températures maximales entre 80 et 85°C. La résolution plus élevée semble plus adaptée pour effectuer des mesures dans les trouées des nuages de vapeur. À de nombreuses reprises, les scientifiques du HVO ont utilisé à la fois les caméras basse et haute résolution pour avoir la confirmation que la caméra haute résolution montrait des températures systématiquement plus élevées.
Ces estimations ont été confirmées par une mission avec un drone en janvier 2020. L’appareil avait à son bord une minuscule caméra thermique. Il a été maintenu à quelques mètres au-dessus de la surface du lac, là où la vapeur est beaucoup moins problématique. La température maximale obtenue était d’environ 85°C.
Les images thermiques recueillies en 2019 montrent que la température n’est pas uniforme sur toute la surface du lac. Des zones chaudes sont observées à plusieurs endroits en bordure du lac. Au vu des images en accéléré, ces zones semblent se trouver dans les secteurs où les eaux souterraines pénètrent dans le lac. Le centre du lac est dans l’ensemble moins chaud. Cependant, ces valeurs ne représentent que la température de surface. La température en profondeur reste inconnue. Les futures missions à l’aide de drones devraient disposer d’une sonde de température pour effectuer de telles mesures.
La comparaison de la température du lac de l’Halema’uma’u avec celle d’autres lacs volcaniques dans le monde montre que le lac au sommet du Kilauea est vraiment chaud. À l’échelle de la planète, seuls quelques lacs volcaniques ont une température de surface supérieure à 80 degrés Celsius. La haute température du lac du Kilauea peut s’expliquer par la présence de chaleur résiduelle dans les matériaux d’effondrement à la base de Halema’uma’u, avec des roches qui ont été chauffées par la colonne de lave avant l’effondrement du cratère en 2018. Les bouches de gaz situées à proximité, avec des fumerolles dont la température atteint au moins 150°C, sont une autre explication possible de la température élevée du lac.
Les mesures régulières de la température du lac dans l’Halema’uma’u peuvent permettre de détecter le moindre changement annonciateur de dangers. Par exemple, dans plusieurs autres lacs volcaniques dans le monde, les variations de température ont précédé des explosions. Toutefois, au cours de l’année écoulée, la température du lac du Kilauea est restée stable et il n’y a actuellement aucun changement significatif.
Source: USGS / HVO.

————————————————–

On August 2nd, 2020, I published a post about the first anniversary of the water pond at the bottom of Halema’uma’u Crater at the summit of Kilauea volcano. I wrote that the lake now covers an area of more than 2.5 hectares and reaches a depth of more than 40 m. Its colour is variable and the lake surface temperature is hot, usually between 70°C and 85°C.

In a new article, HVO geologists explain that the lake’s surface water gives indications about the potential for future hazards at the summit. Magma interacting with near-surface water can, in some circumstances, trigger steam-blast explosions. As a consequence, the lake may provide a useful window into what’s happening beneath the surface.

As I put it before, the lake level is tracked regularly with a laser rangefinder, and visual observations record changes in water colour and circulation patterns. Water chemistry has been analyzed in samples collected by two drone missions. A continuously operating thermal camera was installed in 2019 to keep watch on temperature changes in the lake around the clock. Geologists also use a handheld thermal camera during field visits to make more detailed measurements of lake temperature.

The lake temperature can be a little difficult to measure. The steam rising from the water surface and mixing with air is much cooler than the water. The thickness of this steam layer masks much of the underlying water surface and makes the measurements of the lake’s surface rather difficult. It is essential to see through the gaps in the steam. Collecting and analyzing hundreds of images at a time provides the best chance to capture the occasional views through the steam and get an estimate of the hot, underlying water surface.

The initial results in late 2019 showed maximum temperatures of 70-75 degrees Celsius. Later, a higher-resolution thermal camera was used and showed higher values, with maximum temperatures around 80-85°C. The higher resolution seemed to be better at seeing through the gaps in the steam. On numerous occasions HVO scientists used both the low and high-resolution cameras at the same time to confirm that the higher resolution camera showed systematically higher temperatures.

These estimates were confirmed by a mission with a drone in January. The aircraft carried a tiny thermal camera and hovered just yards above the surface, where steam is much less of a problem. The maximum temperature in the images was about 85°C.

The thermal images collected in 2019 show that the temperature is not uniform across the surface. Hot zones are observed in several spots along the lake margin, and time-lapse imagery shows that these areas appear to be zones where groundwater enters the lake. The centre of the lake is generally the coolest. However, these values only represent the surface temperature, and it is still unknown how hot the lake is beneath the surface. Future drone missions may carry a temperature probe to measure this.

Comparing these temperatures to those of other volcanic lakes around the world shows that Kilauea’s summit lake is a hot one. Globally, only a few volcanic lakes have surface temperatures greater than 80 degrees Celsius. The reason why Kilauea’s water lake is so hot can be explained by the residual heat in the collapse rubble at the base of Halema’uma’u, from rock that was heated by the lava column prior to the 2018 collapse. The nearby gas vents, with fumaroles whose temperature reaches at least 150 degrees Celsius, are another potential explanation for the high temperatures.

Carefully measuring the lake temperature can help identify any changes that might be precursors to upcoming hazards. For instance, at several other volcanic lakes around the world, changes in lake temperature have preceded explosions. Over the past year, Kilauea’s lake temperatures have stayed in the same range, and there are currently no significant changes

Source : USGS / HVO.

Image visuelle du lac dans le cratère de l’Halema’uma’u (Source : USGS / HVO)

Image du lac obtenue à l’aide de la caméra thermique le 31 juillet 2020. Les couleurs plus chaudes (jaune-orange) montrent les températures les plus élevées, tandis que les couleurs plus froides (bleu) montrent des températures plus basses. L’image indique que la température maximale à la surface du lac est d’environ 82°C. (Source : USGS / HVO)

Les caméras thermiques du Kilauea (Hawaii) // Kilauea’s thermal cameras (Hawaii)

Des caméras thermiques sont utilisées par des volcanologues du monde entier depuis de nombreuses années pour étudier les processus volcaniques et détecter des signes d’éruptions imminentes.
Sur le Kilauea, les données fournies par les caméras thermiques sont utilisées pour contrôler le niveau et les mouvements du lac de lave dans le cratère de l’Halema’uma’u. Ces données permettent au personnel du HVO de mieux comprendre le comportement du lac et le fonctionnement interne du volcan. Les images thermiques montrent comment la lave est émise, comment elle dégaze et, au cours du temps géologique, comment elle modifie le paysage.
Les caméras thermiques fonctionnent en mesurant l’énergie dans la partie infrarouge à ondes longues du spectre lumineux émis. Cette énergie est ensuite traduite en une valeur de température en utilisant les principes de la physique.
Ci-dessous, on peut voir deux images thermiques (28 juillet 2017) du lac de la lave au sommet du Kilauea. Les couleurs correspondent aux températures de surface: les couleurs sombres indiquent des surfaces plus froides tandis que les couleurs claires représentent la matière en fusion ou récemment solidifiée.
L’échelle à droite de l’image ne reflète pas les températures réelles en raison de divers facteurs comme l’effet obscurcissant des gaz volcaniques. La température de la lave pour les zones les plus chaudes serait d’environ 1150 degrés Celsius. Cependant, les températures relatives restent correctes.
Le champ de vision proposé par la caméra a environ 200 mètres de large. La surface du lac se trouve à environ 120 mètres sous la caméra.
Dans ces images, obtenues le 28 juillet 2017, on peut voir une différence de morphologie de la surface du lac de lave. Elle est due à un effondrement soudain du revêtement qui recouvrait la paroi interne du cratère et qui provenait des projections de lave et de la lave accumulée quand le lac était à un niveau plus élevé.
L’image de gauche montre les conditions habituelles du lac, avec des projections sur sa bordure nord-est. On observe la circulation lente d’une douzaine de plaques de croûte à la surface du lac. Des fissures en zigzag ou droites se forment lorsque les plaques s’écartent, révélant la matière en fusion sous la croûte.
À 16h28 le 28 juillet, un gros morceau de la paroi interne du cratère s’est effondré dans le lac, laissant derrière lui une belle balafre (encerclée dans l’image de droite). L’impact de ces matériaux dans le lac de la lave a provoqué des remous qui ont persisté pendant des dizaines de minutes.
La caméra thermique de l’Halema’uma’u est opérationnelle depuis plus de six ans ; elle envoie des données 24 heures sur 24. Elle est équipée d’une lentille de 53 degrés. Elle est logée dans un boîtier qui la protège contre les intempéries, les gaz volcaniques corrosifs et les bombardements de matériaux qui se produisent de temps en temps. Le boîtier est monté sur un solide trépied. Les images sont transmises au HVO par connexion WiFi ; elles sont collectées sur des serveurs informatiques pour être diffusées sur le site web de l’observatoire et pour être transmises au personnel du HVO pour être analysées.
Le HVO gère également des caméras thermiques qui dont orientées vers le cratère du Pu’uO’o sur l’East Rift Zone du Kilauea et la caldeira Moku’aweoweo du Mauna Loa. Ces caméras capturent une image tous les 2-3 minutes. S’agissant du Pu’uO’o, si un point chaud couvre plus de cinq pour cent des images de la caméra, un programme informatique envoie un texto avec une image jointe au personnel du HVO. La caméra du Mauna Loa dispose elle aussi d’une alarme. Si une température élevée est détectée, un texto est automatiquement envoyé au HVO. Après sa réception, les scientifiques vérifient les autres données de surveillance (y compris les images de webcam plus récentes) pour voir si la lave est soudainement apparue ou s’il y a un autre sujet de préoccupation.
Au cours de l’année à venir, le HVO prévoit l’acquisition d’une nouvelle caméra thermique sur l’Halema’uma’u. Elle permettra d’acquérir des images de résolution plus élevée. Ces images de meilleure qualité permettront des analyses encore plus détaillées et amélioreront le suivi du niveau de la lave dans le lac.
Source: USGS / HVO.

—————————————-

Thermal cameras have been used by volcanologists around the world for many years to study volcanic processes and search for signs of impending eruptions.

On Kilauea, data from thermal cameras are used to track the level and movements of the summit lava lake within Halema’uma’u Overlook Crater. This helps HVO better understand lake behaviour and the inner workings of the volcano. Thermal images continue to teach volcanologists how molten lava erupts, degasses and, over geologic time, changes the landscape.

Thermal cameras work by measuring energy in the long-wave infrared part of the emitted light spectrum. That energy is translated into a temperature value using principles of physics.

Here below, you can see two recent thermal images of Kilauea’s summit lava lake. Colours correspond to surface temperatures: darker colours indicate cooler surfaces and lighter colours represent molten and recently solidified lava.

The scale at right does not reflect true temperatures due to a variety of factors, including the obscuring effects of volcanic fume. Actual lava temperatures for the hottest areas in these images would be about 1150 degrees Celsius. However, relative temperatures are still correct.

The field of view in each frame is roughly 200 metres across. In this view, the lake surface is about 120 metres below the camera.

In these images, captured on July 28th, 2017, one can see a dramatic difference in lava lake surface characteristics. The difference resulted from a sudden collapse of the rocky coating left on the vent wall by spattering and previous higher stands of the lake.

The image on the left shows typical lake conditions, with spattering on the northeast lake margin. About a dozen plates of semi-solid crust on the lake surface slowly circulate. Jagged and straight cracks form as the plates pull apart, revealing molten lava beneath the crust.

At 4:28 p.m. on July 28th, a large patch of the crater wall cascaded into the lava lake, leaving behind a hot scar (circled in the right-hand image). The impact of this rocky debris falling into the lava lake caused agitation that persisted for tens of minutes.

HVO’s thermal camera at Halema’uma’u has functioned well for over six years, sending data around the clock. The camera has a 53-degree-wide lens housed in a case for protection from weather, corrosive volcanic gas, and occasional bombardment by molten spatter. The box is mounted on a well-anchored tripod. Images are transmitted by WiFi connection to HVO, where they are collected on computer servers for delivery to the observatory’s public website and to HVO staff for analysis.

HVO also maintains thermal cameras that look into the Pu’uO’o crater on Kilauea’s East Rift Zone and Moku‘aweoweo caldera atop Mauna Loa. These cameras capture an image every 2–3 minutes. At Pu‘uO’o, if a hot spot fills more than five percent of the camera images, a computer program sends a text message with an embedded image to HVO staff. The Mauna Loa camera is similarly alarmed. If high temperature is detected, a text message is automatically sent to HVO staff. Upon receiving a text, the scientists check other monitoring data (including more recent webcam images) to see if lava has suddenly appeared or if there is another cause for concern.

In the coming year, HVO expects to upgrade the Halema’uma’u thermal camera to a new model that will acquire higher resolution images. Better images will allow even more detailed analyses and enhance tracking of lava levels.

Source: USGS / HVO.

Source: USGS / HVO

Stromboli (Sicile / Italie)

drapeau francaisOn peut lire sur le site web EarthSky (http://earthsky.org/earth/video-thermal-images-of-lava-spewing-from-an-erupting-volcano) un article intéressant qui explique qu’une caméra thermique postée à 250 mètres du cratère du Stromboli permet de mieux analyser l’activité (strombolienne, bien sûr) de ce volcan et d’étudier avec précision la trajectoire des projections.

Cette caméra fait partie du programme ClerVolc mis en place fin 2012 par le laboratoire Magmas et Volcans, groupe de recherches incluant l’Université Blaise Pascal de Clermont-Ferrand, le CNRS et l’IRD.

Les scientifiques ont installé cette caméra en relation avec une batterie de capteurs capables d’effectuer des mesures à travers le spectre électromagnétique. Les données fournies permettront d’apprécier la vitesse et la fréquence des projections, ainsi que leur densité. Au final, cela permettra de mieux préparer les localités situées sous le vent – et donc susceptibles d’être « arrosées » – aux dangers qui les menacent.

A noter que les webcams des Iles Eoliennes sont hors service en ce moment.  Il n’y a pourtant pas de blocage budgétaire en Sicile….!

 

drapeau anglaisOne can read on the EarthSky website (http://earthsky.org/earth/video-thermal-images-of-lava-spewing-from-an-erupting-volcano) an interesting article that explains that a thermal camera standing 250 metres away from an active volcanic vent allows to better analyse the activity of Stromboli volcano and to study accurately the morphology of the projections. .

The camera is part of the ClerVolc program set up late 2012 by the Magmas and Volcanoes Laboratory. It consists of a suite of ground-based sensors that can measure across the electromagnetic spectrum. Data from these sensors can help researchers track particles as they spew from volcanic vents. Scientists will know how fast they move, their densities and their rate of emission from erupting vents. This  will help researchers better prepare communities downwind of volcanic plumes for the hazards they face.

The webcams of the Aeolian Islands are out of order these days…. although there is no government shutdown in Sicily !